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1. Introduction 

Time-lagged ensembles (TLE), originally proposed by Hoffman and Kalnay (1983) as a computationally 

inexpensive alternative to full initial condition perturbation ensembles, combine a (usually small) sample of 

deterministic model runs initialized at different times. Experience with TLEs has shown that they can provide 

some useful probabilistic information since run-to-run differences in initial conditions can be used as a measure of 

the uncertainty of the initial atmospheric state. For short-cycle (i.e., hourly) models such as the High Resolution 

Rapid Refresh (HRRR), however, the resulting time-lagged estimate of the analysis uncertainty is too small. Since 

more sophisticated ensembles are also underdispersive (e.g., Hamill and Whitaker 2007 and references therein; 

Novak et al. 2008), underdispersion is not a new problem, but merely a problem of degree, and as with other types 

of ensembles, post-processing is a useful method for at least partially accounting for this limitation and producing 

more reliable probabilistic forecasts. 

The HRRR-TLE (Alexander et al. 2014) run by NOAA’s Earth System Research Laboratory (ESRL) 

currently uses the three most recent runs of the experimental “HRRRx” and provides forecasts out to 24 hours. 

Given the ~2h latency, the result is that the 1200 UTC HRRR-TLE, for example, is based on the HRRRx forecasts 

from the 0800, 0900, and 1000 UTC initializations and provides forecasts out for the next six hours. ESRL made 

the choice to limit ensemble size in order to maximize ensemble lead time, understanding that for a TLE there are 

rapidly diminishing returns as the number of members is increased. Although ESRL has been moving towards a      
high-resolution ensemble that is not based on time-lagging, the process of extracting maximum information from 

ensemble members used in this study is not dependent on how those members are produced. For the purposes of 

this study, the effort was focused on improving the time-lagging approach in the context of winter precipitation 

phase, in collaboration with NOAA/ESRL scientists Isidora Jankov and Trevor Alcott. In the next section, we will 

describe the results from these investigations, and in section 3, we will discuss what these findings suggest about 

potentially profitable future research and application directions. 

 

2. Approach and Findings 

a. Methods 

 The HRRR-TLE dataset was provided by NOAA/ESRL, covering the period November 2013 through 

February 2017. These data were restricted to the cold season months (November-March) for the purposes of this 

study. We focused on cyclones that tracked from the Gulf of Mexico or Colorado and only considered those 

events in which more than one precipitation type was observed during the cyclone lifetime. We identified such 

cases in order to make the analysis tractable (i.e., considering cases that are directly involved with cyclone 

precipitation processes and not fundamentally dependent on orographic features). The focus on multiple 

precipitation types was made in order to highlight the ability of the approach to account for phase transitions. 

Additional work/models may need to be developed to account for orographically-dependent precipitation events 

but the method should be transferable to cases where no precipitation phase transitions occur. With these 

restrictions, 29 cyclones were identified and constitute the set of cases that were considered. 

In order to verify precipitation type, observations were obtained from the regular synoptic surface 

network (including National Weather Service Offices, manual stations, and automated surface observing system 

stations along and to the east of 100°W longitude). The HRRR-TLE dataset included forecasts for twenty surface 

variables of which fourteen were used in this study, based on their potential relevance to determining precipitation 

type. An additional, derived variable is included which categorizes the temperature relative to the freezing point 

(Table 1). After determining the categorical temperature, we normalize each HRRR-TLE variable based on the 

given variable’s mean value and standard deviation determined by the subset of data used for training. 

Normalization was not applied to categorical, probabilistic, and percentage variables. The resulting standard 

anomalies were then applied as inputs in our future methods.  

In order to compare the 3 km gridded HRRR-TLE forecasts to a station observation, a bilinear 

interpolation was applied, based on the nearest four grid point locations. All cases where no precipitation was 
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reported are removed, such that the algorithm predictions are conditional on the expectation of precipitation. (the 

model also can be applied operationally under the expectation that no precipitation occurs at the site of interest, 

since the precipitation amount is an input to the equations and the probabilities will account for the zero value). In 

order to balance cases of freezing rain, rain, and snow for training, a randomized filtering process is applied to 

each observation and forecast, leaving approximately 1,000 observations and associated forecasts of each 

precipitation type. Slightly over half of the filtered data are used for training with another 20% used for 

validation. The remaining 25% are applied for independent testing. Only the dates of the cyclones were used to 

determine which data will be used for training, validation, and testing. 

Evolutionary Programing (EP; Roebber 2010, 2013, 2015abc, 2018) is the method which is used to 

“map” the HRRR forecasts to the observations. The EP algorithms take the form of logistic regression equations, 

formed from two sets of five IF-THEN equations, each composed of five variables, three operators, and three 

variable coefficients. The two sets of IF-THEN algorithms are then used in the logistic function for each of the 

three precipitation types to determine probability. 

 

Forecast Variables Units Identifiers 

2 m Temperature k T 

2 m Dew Point Temperature k TTD 

Low Level Cloud Coverage 0/1 CL 

Middle Level Cloud Coverage 0/1 CM 

Upper Level Cloud Coverage 0/1 CH 

U-Component Wind m/s U 

V-Component Wind m/s V 

Precipitable Water (PWAT) mm PWAT 

Total Accumulated Precipitation  mm PP 

Visibility m VIS 

Precipitation Type - Rain 0/1 RN 

Precipitation Type - Snow 0/1 SN 

Precipitation Type –Ice Pellets 0/1 IP 

Precipitation Type –Freezing Rain 0/1 ZR 

Categorical Temperature  -2, -1, 0, 1, 2 TCAT 

 

Table 1: The forecast variables provided as input to the Evolutionary Program (EP) algorithms. 

 

The probability P of freezing rain is then given by: 

   

     𝑃𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔 𝑟𝑎𝑖𝑛 =  
𝑒𝑥

(1+𝑒𝑥+𝑒𝑦)
 

 

 (1) 
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where x and y represent the results from the two sets of five IF-THEN equations (x for freezing rain and y for 

snow). The probability for snow is then: 

   

     𝑃𝑠𝑛𝑜𝑤 =  
𝑒𝑦

(1+𝑒𝑥+𝑒𝑦)
 

 

 (2) 

 

 and the probability for rain is 1-Pfreezing rain-Psnow. 

 The EP protocol is similar to prior studies (Roebber 2015abc; Roebber 2018), in which the process is to 

start by random initialization of a large set of algorithms, evaluate their performance [in this case, using the Brier 

Score (Brier 1950) as the measure of success], and reproduce the so-defined best fit algorithms via cloning with 

some mutation to introduce innovation (where these new algorithms replace the bottom 20% based on the 

performance measure). The evaluation and reproduction steps continue until a convergence criterion is met. Here, 

we maintain a master list of the top 100 performers at any stage in the training, based on performance on the 

validation dataset – if an algorithm at generation N is found that outperforms any one of the members of the 

master list, it replaces that algorithm, and training continues until a fixed number of generations have been studied 

(set to a number larger than is expected to be needed for optimization; in this study, we use 300 generations).  

Although Roebber (2015a) introduced cloning and mutation in this process to allow the propagation of 

the best solutions while still providing for innovation, here we apply mutations more aggressively such that 

mutation occurs in the production of every new algorithm. Although mutation can often be destructive (Roebber 

2015a), the cloning process along with the master list ensures that the best solutions are not lost. Once the training 

is completed for 300 generations, a full random initialization and training is run again for another 300 generations 

except that the master list is retained, and updated only when a new algorithm performs sufficiently well to make 

this list. This procedure is followed for a total of 5 sets of 300 generations. The rationale for this procedure is to 

allow for a robust search of the phase space in order to define the best algorithms. The overall procedure is 

applied to each of the three HRRR-TLE members, yielding a total of 300 EP algorithms to be used in the next 

step. A decaying average bias correction following Cui et al. (2012) is applied to the probabilities produced by the 

EP algorithms, with a 5 percent weighting of the current error. Finally, after the bias correction is applied, the 

probabilities are normalized to sum to unity.  

 In a final step, a model selection process is used to allow the application of Bayesian model combination 

(BMC; Monteith et al. 2011; Roebber 2015a). The model selection starts by ranking each of the 100 members 

from the master list for each of the three HRRR-TLEs, based on Brier Score. Then, proceeding down the ranked 

list, we find the next best ranking algorithm that has a Brier Score Difference (BSD) from the best performing 

member that is above the 25th percentile; the third selection is the next highest ranked algorithm that has a BSD 

greater than the 50th percentile. This selection procedure is repeated for each of the three TLEs to produce a set of 

9 EP algorithms (three from each TLE). When applying BMC to this group, we use 4 raw weights, thus requiring 

that the posterior probability of 49 combinations be evaluated on the cross-validation dataset. The combination 

with the least amount of error is the final selected weighting scheme. 

 For evaluating the performance of the HRRR-TLE forecast member, an individual EP, or the BMC, we 

use the Heidke Skill Score (HSS; Panofsky and Brier 1958) for the full 3x3 deterministic forecasts (where that 

forecast is defined by the maximum individual category probability), and we use the standard 2x2 contingency 

measures (POD, FAR, CSI, bias) for individual precipitation type category forecasts. (note that in this 

formulation, mixed precipitation type is not allowed). As noted above, the algorithm process is not invoked if no 

precipitation is forecast at a given point. Additionally, we use the Brier Score for the probabilities. 

The HSS is corrected for chance such that: 

  

     𝐻𝑆𝑆 =  
𝐻𝑖𝑡𝑠𝑎𝑙𝑙 − 𝐶ℎ𝑎𝑛𝑐𝑒

(𝑁− 𝐶ℎ𝑎𝑛𝑐𝑒)
 

 

 

(3) 

  
𝐶ℎ𝑎𝑛𝑐𝑒 =  

(𝑂𝑍𝑅 ∗ 𝐹𝑍𝑅) + (𝑂𝑆𝑁 ∗ 𝐹𝑆𝑁) + (𝑂𝑅𝑁 ∗ 𝐹𝑅𝑁)

𝑁
 

(4) 
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where N is the total number of forecasts and O and F are the total observed and forecast events for each of the 3 

categories (i.e. OZR and FZR are the observed and forecast number of freezing rain events, respectively, and ZR, 

SN, and RN refer to freezing rain, snow, and rain, respectively). 

 

b. Results 

 The average Brier Score and Heidke Skill Score of HRRR-TLR 3 (the most recent ensemble member) 

across all cyclones that occurred within the testing period (split off from the original training and validation data, 

as noted previously) were 0.289 and 0.625, scores very slightly superior to those of the older TLE members of the 

ensemble. Thus, for further comparison of the BMC to the HRRR, we will consider HRRR-TLE 3. 

 In conducting this analysis, we noted a propensity for the EP ensemble to over forecast freezing rain, 

likely the result of considering relatively balanced samples of freezing rain, snow and rain events for training, 

when the actual occurrence of freezing rain is less frequent than the other two categories.  

To remedy this over forecasting, we randomly select 2,600 rain and snow cases from our validation data 

while using all freezing rain cases that occur within that same dataset (N=348). We then develop a further 

correction to the probabilistic forecasts from the EP BMC by training an artificial neural network (ANN) with a 

single hidden layer and three hidden nodes. This corrected BMC, when applied to the same independent data as 

above, yielded improvements in BIAS, FAR, and CSI for freezing rain with an overall improvement in Brier 

Score (to 0.083, with an HSS of 0.830). Scores for the BMC before and after ANN bias correction and the HRRR-

TLE 3 (Table 2) show these improvements and the superior performance of the EP approach across all 3      
precipitation type categories (see also Fig. 1). 

 

 Score BMC BMC-C HRRR 

TLE 3 

 

Freezing 

Rain 

POD 0.554 0.354 0.248 

FAR 0.848 0.684 0.632 

BIAS 4.490 1.456 0.781 

CSI 0.136 0.189 0.176 

 

Snow 

POD 0.803 0.857 0.679 

FAR 0.061 0.054 0.059 

BIAS 0.838 0.907 0.731 

CSI 0.784 0.830 0.652 

 

Rain 

POD 0.931 0.957 0.773 

FAR 0.055 0.072 0.092 

BIAS 1.002 1.065 0.849 

CSI 0.883 0.895 0.737 

 

Table 2. Average deterministic scores representing measures of success for each precipitation type for the BMC 

before bias correction (BMC), BMC after bias correction (BMC - C), and the third member of the HRRR-TLE. 

The EP BMC is created from an unequal weighting of two algorithms derived from HRRR-TLE 1, two from 

HRRR-TLE 2, and one from HRRR-TLE 3. 

 

 One of the advantages of the EP design as implemented by Roebber (2015a) is the interpretability of the 

forecast logic. Analysis of the final algorithms revealed that the temperature anomaly was the most frequently 

used input for generating a probability, a not surprising result given physical considerations. Secondarily 

important variables in that respect were precipitable water anomalies and low cloud coverage. For the conditional 

part of the algorithm, the HRRR TLE forecast probability for snow and high cloud coverage were most 

commonly invoked. For further insight into the algorithm performance, two case studies were analyzed (below). 
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Figure 1: Performance diagram (Roebber 2009) for precipitation phase forecasts for the HRRR-TLE3 (black) and 

the EP BMC (red). Shown are freezing rain (triangles), snow (asterisks), and rain (circles). 

 

i. Case Study: 17 February 2015 

 To place the overall results in specific context, we have chosen for analysis a major winter storm (16-17 

February 2015). This storm produced up to 0.50-0.75 inches of freezing rain in portions of Tennessee, Georgia, 

North Carolina, and South Carolina, and widespread snowfall with impacts in New England and also some 

municipalities in Kentucky and Tennessee that struggled to keep up with the accumulating snow (NBC 2015; 

NOAA 2015). There was disruption to both ground and air transportation (e.g., 1200 flights were canceled), and 

widespread power outages causing five states to declare a state of emergency (NBC 2015). This case is an 

example where the EP BMC performed well. 

At 1200 UTC 15 February 2015, an upper-level trough propagated across the Pacific NW region into the 

intermountain west of the United States (Figs. 2-3) with developing surface low-pressure on the leeward side of 

the Rocky Mountains near the Panhandle of Texas. By 1200 UTC the following day, the digging trough and 

strengthening divergence aloft over the Ohio Valley region resulted in a surface cyclone positioned over east 



6 
 

Texas with a stationary front extending into the area of strong divergence aloft. Over the next 24 hours, the 

cyclone continues towards the east with a surface low redevelopment off the coast of Virginia and North Carolina. 

 

 
 

 

 
 

Figure 2. 300 hPa analysis for (a) 1200 UTC 15 February 2015 and (b) 1200 UTC 16 February. These analyses 

were obtained from https://www.spc.noaa.gov/obswx/maps/  

(a) 

(b) 
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Figure 3. Observed surface conditions for (a) 1200 UTC 15 February 2015 and (b) 1200 UTC 16 February. These 

analyses were obtained from https://www.wpc.ncep.noaa.gov/archives/web_pages/sfc/sfc_archive_maps.php? 

 

Figures 4-5 shows the observations (marker types) and forecasts (colors; blue, snow; red, freezing rain; green, 

rain) from the calibrated BMC and the latest member of the HRRR-TLE at 0000 and 0300 UTC on 17 February 

2015, which is at the beginning and in the middle of the period of focus owing to the occurrence of freezing rain.  

At 0000 UTC, there is snow to the north of the warm front rain to the south, and a transitional zone in between. 

This pattern persists through 0500 UTC, but the number of freezing rain observations are somewhat variable at 

each time. 



8 
 

 For the 0000-0500 UTC period, the EP BMC outperformed the most recent member of the HRRR-TLE 

(Table 3). Of note, the BMC’s POD for freezing rain is 0.616 compared to 0.306 for the HRRR. On the other 

hand, there is still a prominent over-forecast bias in the BMC such that the CSI is somewhat less than the more 

conservative HRRR (however, the Brier Skill Score for the BMC, computed relative to the HRRR, is 0.224 

indicating better probabilistic performance). Overall, the BMC is clearly superior for this period. 

 

 Metric 
17 February 2015 

0000 – 0500 UTC 

 EP BMC HRRR 

TLE 3 

 

ALL 

Types 

 

HSS 0.819 0.691 

CSI 0.826 0.772 

FAR 0.096 0.080 

POD 0.904 0.828 

 

Freezing Rain 

CSI 0.327 0.418 

FAR 0.590 0.433 

POD 0.616 0.306 

 

Snow 

CSI 0.879 0.821 

FAR 0.021 0.045 

POD 0.896 0.855 

 

Rain 

CSI 0.899 0.811 

FAR 0.077 0.084 

POD 0.972 0.876 

 

Table 3. Average deterministic and probabilistic forecasting scores for both the bias corrected BMC and HRRR 

TLE-3 from 0000-0500 UTC 17 February 2015. 

 

At 0000 UTC, the BMC forecast (Fig. 4a) correctly indicates a precipitation phase transition zone over 

North Carolina, Tennessee, South Carolina, and Georgia. However, in the area north of the warm front, the BMC 

indicates freezing rain rather than the snow that was observed. Though incorrect, this is near the location of 

precipitation transition along the warm front, whereas at the same valid time, the HRRR-TLE3 does not predict 

widespread freezing rain in the area. In contrast, along the cold front (extending southwest over Alabama and 

Mississippi), there is no transitional precipitation zone despite indications of such in the BMC forecast. 

Over time, the warm frontal boundary and the precipitation phase transition zone shifts northward. At 

0300 UTC, the BMC continues its over-forecast for freezing rain (rather than snow) along this frontal boundary, 

but also captures those locations where freezing rain was occurring (Fig. 4b). The HRRR, however, does not start 

predicting more widespread freezing rain until 0400 UTC (not shown).  

 Since the BMC provides probabilistic forecasts, we next examine these for this case. At 0000 UTC, the 

freezing rain probabilities are the highest right along the warm front (0.50 to 0.75) and cold front boundaries with 

rapidly decreasing probabilities with distance away from the boundaries (not shown). The probabilities indicate 

diminishing chances for freezing rain to the north (e.g., near the northern state lines of Tennessee and North 

Carolina) with rapid drop-offs thereafter. This drop-off is even sharper to the south of the warm front. 
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As with the warm front, the freezing rain probabilities are highest along the cold front (04.0-0.60), with 

much higher rain probabilities with distance from the boundary. These characteristics continue throughout the 

period and could represent useful information to forecasters looking for the location of a precipitation phase 

transition line. 

 

 
 

 
 

Figure 4. Observations from stations reporting freezing rain (plus), snow (star), rain (circle), or freezing rain and 

snow (square) and BMC forecast of freezing rain (red), snow (blue), and rain (green) on 17 February 2015 at (a) 

0000 UTC and (b) 0300 UTC. 
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Figure 5. Observations from stations reporting freezing rain (plus), snow (star), rain (circle), or freezing rain and 

snow (square) and HRRR TLE-3 forecast of freezing rain (red), snow (blue), and rain (green) on 17 February 

2015 at (a) 0000 UTC and (b) 0300 UTC. If the symbol is black then that precipitation phase was observed but no 

precipitation was forecast at that time and location. 

 

 

ii. Case Study: 24 February 2016 



11 
 

Here, we present aspects of a poor BMC forecast, which occurred for the winter storm of 23-25 February 

2016 (for this case, we focus on the period from 1200-1700 UTC 24 February). The synoptic pattern was set with 

an upper level trough propagating over the midwestern states on 23 February and consequent surface low pressure 

development over southeastern Texas (Fig. 6). By 1200 UTC 24 February, the maturing low-pressure system is 

undergoing occlusion, but with a secondary boundary forming along a line from the center over Kentucky to 

Vermont (this boundary is subsequently classified as a warm front). This set-up provided a favorable snow band 

environment over Indiana and Illinois, and over the ensuing 24 hours the system continues eastward to the 

Atlantic Ocean. 

Although not widespread, freezing rain did occur over portions of the northeastern United States (Fig. 7). 

Rain was observed across most of the midwestern and southeastern states, and over much of the northeast. This 

storm also produced steep gradients in accumulated snowfall, with ranges of a few inches to 15 inches in some 

tightly located areas (NOAA 2016). (notably, severe thunderstorms including a tornadic outbreak occurred with 

this storm) 

Based on Brier Skill Score relative to the HRRR-TLE, the BMC was less skillful during 1200-1700 UTC 

24 February for freezing rain (-0.119), although overall, its probabilistic forecasts are superior (0.133). This result 

is reflected in the deterministic forecasts as well, with overall high FAR, largely resulting from over forecasts of 

freezing rain (Table 4). 

 At 1200 UTC, most areas are experiencing rain with some transition to snow over Illinois, northern 

Indiana and southern Michigan and a second area over New York and New England (Fig. 7). The transitional area 

in the Great Lakes region is largely direct from rain to snow, whereas the northeastern region experiences more 

freezing rain in the transition. Over time, there is an increase in snow observations in the midwest and more 

rain/snow and less freezing rain in the northeast. At 1200 UTC, the BMC highlights both transition areas but with 

a substantial over-forecast of freezing rain. By 1500 UTC, more snow is forecast (as observed) but there is also an 

offset in the position of the rain-to-snow transition line. Over the northeast, there continue to be problems both in 

the number of freezing rain locations and the location of the transition.  

 
 Metric 

24 February 2016 

1200 – 1700 UTC 

 EP BMC HRRR 

TLE 3 

 

ALL 

Types 

 

HSS 0.653 0.680 

CSI 0.770 0.806 

FAR 0.131 0.077 

POD 0.869 0.863 

 

Freezing Rain 

CSI 0.145 0.120 

FAR 0.472 0.104 

POD 0.243 0.138 

 

Snow 

CSI 0.566 0.709 

FAR 0.124 0.116 

POD 0.613 0.779 

 

Rain 

CSI 0.864 0.862 

FAR 0.115 0.067 

POD 0.974 0.919 
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Table 4. Average deterministic and probabilistic forecasting scores for both the bias corrected BMC and HRRR 

TLE-3 from 1200-1700 UTC 24 February 2016. 

 

The superior performance of the HRRR-TLE can be attributed in part to its under-forecasting bias, which 

for this particular case proved to be largely correct (few freezing rain locations; Fig. 8). As with the BMC, the 

HRRR transition line is offset and there are misforecasts of rain in southern and central Michigan. 

In this case, both the BMC and the HRRR-TLE provided poor forecasts failing to capture two regions of 

interest where a transition to rain and snow is expected and freezing rain is possible. One possible reason for this 

failure could be due to the complexity of the mid-latitude cyclone. During this time the cyclone is nearing the end 

of rapid intensification and is responsible for multiple frontal boundaries in addition to intense snow bands on the 

northeast side of the cyclone. Over the Great Lakes region, the HRRR-TLE largely forecast anomalously warm 

temperatures (also reflected in the categorical temperatures). The BMC post-processor is not designed to correct 

for problems with the HRRR-TLE’s variables – rather the “matching” is of inputs (HRRR-TLE variables) to 

outputs (probability of three precipitation phase types). Given this matching, it is possible to partially correct for 

bias in the HRRR, as with Model Output Statistics. Surface temperatures have a large influence on the BMC 

probabilities, however, and thus high level performance requires better forecasts for variables like temperature. In 

other words, improvements in HRRR forecasts can be further leveraged through post-processing of this kind. 
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Figure 6. Observed surface conditions for 1200 UTC (a) 23 February 2016 and (b) 24 February 2016. These 

analyses were obtained from https://www.wpc.ncep.noaa.gov/archives/web_pages/sfc/sfc_archive_maps.php? 

 

 

 

https://www.wpc.ncep.noaa.gov/archives/web_pages/sfc/sfc_archive_maps.php
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Figure 7. Observations from stations reporting freezing rain (plus), snow (star), rain (circle), or freezing rain and 

snow (square) and BMC forecast of freezing rain (red), snow (blue), and rain (green) on 24 February 2016 at (a) 

1200 UTC and (b) 1500 UTC. 
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Figure 8. Observations from stations reporting freezing rain (plus), snow (star), rain (circle), or freezing rain and 

snow (square) and HRRR TLE-3 forecast of freezing rain (red), snow (blue), and rain (green) on 24 February 

2016 at (a) 1200 UTC and (b) 1500 UTC. If the symbol is black then that precipitation phase was observed but no 

precipitation was forecast at that time and location. 

 

 

3. Future Directions 
 Freezing rain continues to be a major forecast challenge. In this study, with the HRRR as input, 

Evolutionary Programming is used to generate algorithms that produce probabilistic forecasts for wintertime 
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precipitation phase (rain, freezing rain, and snow). Further adjustments based on bias correction and Bayesian 

Model Combination provide additional improvements. 

 The algorithms outperform the HRRR on independent test data, but nevertheless, there are forecast 

failures, as illustrated by the second test case. The approach used here is readily applicable to any HRRR forecast, 

not simply the time-lagged ensemble. By considering the details of the individual forecast algorithms, we have 

been able to illustrate the sensitivity of the forecast to particular inputs – this information may be used by 

forecasters to adjust their own view of the likelihood of freezing rain events, based upon their assessment of the 

reliability of a particular HRRR input in a particular situation. 

 Future work includes answering the following questions and concerns, some specific to this work and 

others of a more general interest. Some of the former include: What are the major sensitivities that limit 

precipitation phase predictions when employing this method? Effective machine learning requires ample data for 

training, validation, and testing. For this work, we have used a relatively limited sample and intentionally 

restricted it to cases associated with winter cyclones. Thus, more data and data applicable to broader 

circumstances would likely improve performance and provide better generalization to a variety of scenarios.  
Issues arising in this work which are broadly applicable to machine learning efforts include the following. 

What is the best procedure for selecting a set of algorithms to be used in the BMC process, to insure both 

accuracy and precision? We have employed one reasonable and defensible approach here but there may be better 

ways. In training, one must employ a measure of success, but experimentation is needed to determine which 

measure (or combinations) will produce the best performance. A general problem in machine learning is training 

with imbalanced data – the situation where one or more categories of interest are infrequent owing to their 

inherent climatologies. This situation is generally managed using over- or under-sampling, but in either case, 

some data are lost. Adaptive EP modes have been developed but not fully explored. Clearly in operational 

situations, a machine learning approach that takes advantage of adaptation would be preferred and requires further 

development. Finally, the EP mode used in this study is only one of several developed by PI Roebber, and others 

are under active development (e.g., Roebber and Crockett 2019). Further development of these approaches is 

needed. 
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