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Introduction 

A well-known problem in ensembles designed to predict convection on fine grids has been the 

lack of spread often present in the ensembles.  Some prior works have suggested that the use 

of mixed physics or mixed models increases the spread and may lead to better forecasts (e.g., 

Chen et al. 2009, Li et al. 2017).  Clark et al. (2010) suggested the role of mixed physics in an 

ensemble will vary depending on the variables examined.  However, there is a danger of 

clustering with some of these approaches (e.g., all members with the same microphysics 

scheme will look more alike despite using different planetary boundary layer schemes than 

members using different microphysics), and one quality of a good ensemble, that each member 

be equally likely to verify, can be violated (e.g., Stensrud et al. 2000, Johnson et al. 2011).  

Thus, an ideal approach might be one where sufficient spread is present from the techniques 

creating the perturbed initial conditions/lateral boundary conditions (IC/LBCs) while avoiding the 

use of mixed physics. 

The Community Leveraged Unified Ensemble (CLUE) offered a good opportunity to explore the 

impact of using mixed physics in an ensemble, because two of the sub-ensembles, Core and S-

Phys, were identical except for Core also including mixed physics. In addition, a subset of 

members allowed the examination of changes in microphysics scheme alone.  The two goals of 

this particular project were (1) to determine the impact of adding mixed physics to an ensemble 

that already included mixed IC/LBCs, and (2) to determine systematic differences in the use of 

different microphysics.  The original plan was to use the output of CLUE from only 2016.  

However, because the time period of the project extended through March 2018, I was able to 

also look at the same sub-ensembles for 2017 for task 1.  Because a few small changes were 

made in the ensembles between the two years, the use of output from both years allowed some 

extra insight into the impacts of a few other model changes.  In addition to impacts on forecasts 

of reflectivity and rainfall, the project also examined impacts on convective initiation. 

Methodology 

The primary focus of the study was on task 1, the impact of adding mixed physics to an 

ensemble, and to address this question, 9 members of the Core (Table 1) and S-Phys (Table 2) 

ensembles were examined in 2016 with all 10 members used in 2017 for Core (Table 3) and S-

Phys (Table 4). In 2016, since S-Phys was missing member 6, member 2 was also eliminated 

from Core to allow an equal number of members to be compared.  Member 2 was chosen to be 

eliminated so that all nine members used NAM output for IC/LBCs prior to the addition of any 

perturbations. In 2016, the S-Phys ensemble used the Thompson microphysics with the NOAH 

LSM and MYJ PBL schemes. These were also the schemes used in the Control member within 

Core.  In Core, the varied microphysics included the P3, Milbrandt-Yau (MY) and Morrison 

schemes, and PBL scheme variations included MYNN and YSU.  Both ensembles used a 

mixture of initial conditions and lateral boundary conditions with most initialized using the NAM 

and radar data assimilation via the ARPS 3DVAR system, but with variations from the control 

member coming through use of perturbations from the SREF added to the NAM initialization. 

Core member 2 (which was only used in 2017) differed in its IC/LBCs by using RAP analyses 



with GFS supplying the LBCs.   In 2017, the primary changes were in the switch to the MYNN 

PBL scheme and RUC land surface scheme in the control member (1) of Core, and thus as well 

in all S-Phys members.  In addition, ICs in members 7-10 of both Core and S-Phys were 

supplied by the RAP analysis instead of NAM, and the perturbations were applied to different 

members in 2017 than in 2016. 

Member IC LBC Microphysics LSM PBL Model 

1 NAMa+3DVAR NAMf Thmopson NOAH MYJ arw 

3 1+arw-p1_pert arw-p1 P3 NOAH YSU arw 

4 1+arw-n1_pert arw-n1 MY NOAH MYNN arw 

5 1+arw-p2_pert arw-p2 Morrison NOAH MYJ arw 

6 1+arw-n2_pert arw-n2 P3 NOAH YSU arw 

7 1+nnmb-p1_pert nmmb-p1 MY NOAH MYNN arw 

8 1+nmmb-n1_pert nmmb-n1 Morrison NOAH YSU arw 

9 1+nmmb-p2_pert nmmb-p2 P3 NOAH MYJ arw 

10 1+nmmb-n2_pert nmmb-n2 Thompson NOAH MYNN arw 

Table 1: Specifications for the 2016 Core mixed physics ensemble.  NAM refers to 12 km NAM 

output with “a” being analysis and “f” forecast.  3DVAR refers to ARPS3DVAR and cloud 

analysis. Model names appended with “pert” refer to perturbations extracted from a 16 km grid-

spacing SREF member. 

Member IC LBC Microphysics LSM PBL Model 

1 NAMa+3DVAR NAMf Thompson NOAH MYJ arw 

2 1+arw-p1_pert arw-p1 Thompson NOAH MYJ arw 

3 1+arw-n1_pert arw-n1 Thompson NOAH MYJ arw 

4 1+arw-p2_pert arw-p2 Thompson NOAH MYJ arw 

5 1+arw-n2_pert arw-n2 Thompson NOAH MYJ arw 

7 1+nnmb-p1_pert nmmb-p1 Thompson NOAH MYJ arw 

8 1+nmmb-n1_pert nmmb-n1 Thompson NOAH MYJ arw 

9 1+nmmb-p2_pert nmmb-p2 Thompson NOAH MYJ arw 

10 1+nmmb-n2_pert nmmb-n2 Thompson NOAH MYJ arw 

Table 2: Specifications for the 2016 S-Phys single physics ensemble.  Notations as in Table 1.  

Member IC LBC Microphysics LSM PBL Model 

1 NAMa+3DVAR NAMf Thompson NOAH MYJ arw 

2 RAPa+3DVAR GFSf Thompson RUC MYNN arw 

3 1+arw-p1_pert arw-p1 P3 NOAH YSU arw 

4 1+arw-n1_pert arw-n1 MY NOAH MYNN arw 

5 1+nmmb-p1_pert nmmb-p1 Morrison NOAH MYJ arw 

6 1+nmmb-n1_pert nmmb-n1 P3 NOAH YSU arw 

7 2+arw-p2_pert arw-p2 MY NOAH MYNN arw 

8 2+arw-n2_pert arw-n2 Morrison NOAH YSU arw 

9 2+nmmb-p2_pert nmmb-p2 P3 NOAH MYJ arw 

10 2+nmmb-n2_pert nmmb-n2 Thompson NOAH MYNN arw 

Table 3: Specifications for the 2017 Core mixed physics ensemble.  Notation as in Table 1, with 

RAPa referring to 13 km RAP analysis, and GFSf referring to 18 UTC initialized GFS forecasts.  

  



Member IC LBC Microphysics LSM PBL Model 

1 RAPa+3DVAR GFSf Thmopson RUC MYNN arw 

2 NAMa+3DVAR NAMf Thompson RUC MYNN arw 

3 1+arw-p1_pert arw-p1 Thompson RUC MYNN arw 

4 1+arw-n1_pert arw-n1 Thompson RUC MYNN arw 

5 1+nmmb-p1_pert nmmb-p1 Thompson RUC MYNN arw 

6 1+nmmb-n1_pert nmmb-n1 Thompson RUC MYNN arw 

7 2+arw-p2_pert arw-p2 Thompson RUC MYNN arw 

8 2+arw-n2_pert arw-n2 Thompson RUC MYNN arw 

9 2+nmmb-p2_pert nmmb-p2 Thompson RUC MYNN arw 

10 2+nmmb-n2_pert nmmb-n2 Thompson RUC MYNN arw 

Table 4: Specifications for the 2017 S-Phys single physics ensemble.  Notations as in Table 3.  

To evaluate the impacts of using mixed physics, MET (Model Evaluation Tools) and METviewer 

were used to verify the ensembles.  Verification was performed using MRMS observations.  

Three fields were evaluated, 1-hour precipitation, 3-hour precipitation, and composite reflectivity 

(CREF).  Several types of verification were performed.  Traditional point-to-point measures such 

as Gilbert Skill Score and Bias were computed for each member of the two ensembles, and 

averages were taken of the members to evaluate how the mixed physics might be impacting 

general skill and areal coverage within its members compared to the S-Phys members. In 

addition, object-based spatial verification was performed on each member through the Method 

for Object-based Diagnostic Evaluation (MODE; Davis et al. 2006a, 2006b, 2009), and averages 

of MODE system parameters were computed for each ensemble, loosely following Gallus 

(2010).  These parameters included area of the objects, median and 90th percentile values, 

intensity sum, and counts of objects.  Finally, standard ensemble verification was performed on 

the probabilistic forecasts using measures such as ROC areas, reliability, and Brier skill scores.  

Statistical significance testing was performed for some average comparisons using the 

bootstrapping approach available in METviewer.  

Originally, verification was performed on a subset of the full CLUE domain for 2016 alone to 

accelerate the running of MET.  Later, however, the full domain MET output became available 

through the efforts of DTC personnel, and verification was then performed over the full domain 

for both 2016 and 2017. 

To accomplish task (2), five CLUE member configurations that used different microphysics but 

were otherwise the same were examined for 2016 alone.  These members were all initialized 

with the NAM model and radar data assimilation via the ARPS3DVAR system, with no 

perturbations, and used the NOAH LSM and MYJ PBL.  The different microphysics among the 

five configurations were the Thompson, Morrison, MY, P3, and WSM6 schemes.   

The SFE2016 ran from May 2 through June 3, with model output only available from the 

weekday portions of that period.  Similarly in 2017, the project ran from May 1 through June 2.  

During the project, I discovered that a problem existed in some of the composite reflectivity data 

from runs using the MY microphysics scheme in 2016, and this reduced the size of the dataset.  

Likewise, in 2017, a problem prevented S-Phys from being run during the first part of the 

project.  In the end, a total of 24 cases were available for comparisons of precipitation data in 

2016, 17 cases for comparison of CREF, and only 11 cases in 2017 for both fields (the case 

size represents events for which output was available from both ensembles). 



In additional to the comparisons that could be performed using MET, two other comparisons 

were made for the 2016 ensembles.  First, since it was discovered that the Factor Separation 

Approach could not be performed because of the design of the members, impacts were isolated 

using configurations where only a single change had been made in the physics schemes, with 

no differences in the IC/LBCs.  Fourteen such comparisons were possible and made using 

domain total 3 hour precipitation.  In addition, a subset of 10 cases with relatively pristine 

convective initiation were examined to evaluate differences in the ensemble prediction of this 

initiation.  Location and timing were studied using each member of both ensembles. 

Results 

The impacts of the use of mixed physics were determined using multiple verification strategies 

including point-to-point measures applied to individual members, the same metrics averaged for 

all ensemble members, MODE attributes, and traditional ensemble metrics making use of 

probability values.  In the discussion below, emphasis will be on 1 hour precipitation and CREF.  

In general, 3 hour precipitation behaved similarly to 1 hour precipitation, except results exhibited 

more skill as would be expected for a longer time period. 

a) Point-to-point metrics 

Gilbert Skill Score (GSS) applied to both a threshold of 0.254 mm for 1 hour precipitation and 20 

dBZ for CREF for the 2016 output reveals some interesting trends (Fig. 1).  First, for 

precipitation, the spread is slightly larger in Core than in S-Phys, and the control member 

usually has the highest skill at all times (red curve).  Ideally, each member of an ensemble 

should be equally likely to verify, so there should be very little spread in a parameter like GSS.  

However, for CREF, the spread is noticeably larger in Core, and this increased spread comes 

about by having several members that are performing much more poorly than any member of S-

Phys.  Again the control member usually has the highest skill. In 2017 (not shown) the 

differences in spread for CREF were greatly reduced. 

Bias (not shown) for 1 hour precipitation thresholds of 2.54 and 6.35 mm shows more noticeably 

an increase in spread in the Core ensemble, along with all members of both ensembles usually 

having too large of areal coverage.  The same trends occur in both 2016 and 2017.  Bias for 

CREF clearly indicates more spread among the members of Core than S-Phys, with some 

differences between the 2016 output (Fig. 2) and 2017 output (Fig. 3).  For a 20 dBZ threshold, 

P3 members all have a low bias while all other members of Core have biases greater than 1.0 

with the control member usually having the highest bias.  At this same threshold, all S-Phy 

members are more consistent with the control members.  For a 40 dBZ threshold in 2016, the 

MY members have a very large bias and behave very differently from the other members, many 

of which have low biases at most times.   

In 2017, Core again has a much larger spread among members than S-Phys, and for 20 dBZ, 

the control member is no longer usually the highest, implying a reduction in areal coverage due 

to the use of the different land surface and PBL scheme.  The P3 members also do not have the 

low bias problem that was present in 2016, and all S-Phys members have lower bias values 

than in 2016.  For 40 dBZ, the MY members still have a very high bias, and are joined by the P3 

members.  A large change is evident in S-Phys at 40 dBZ where a high bias is now present in 

most members at most times. 



   

  

Figure 1: GSS for each member of Core (left) and S-Phys (right) for 2016 for 1 hour precipitation 

exceeding 0.254 mm (top) and CREF greater than 20 dBZ (bottom).  In Core, red indicates 

member 1, orange 3, light green 4, medium green 5, dark green 6, cyan 7, blue 8, dark blue 9, 

and purple 10 (see Table 1 for configuration details). In S-Phys, red is member 1, orange 2, light 

green 3, medium green 4, dark green 5, cyan 7, blue 8, dark blue 9, and purple 10 (see Table 2 

for configuration details).  

 



  

  

Figure 2: Bias for 2016 output for Core (left) and S-Phys (right) for 20 dBZ CREF threshold (top) 

and 40 dBZ threshold (bottom). Individual Core member physics schemes as indicated in Fig. 1. 

 

 

 

 



  

  

Figure 3: As in Fig. 2 except for 2017 

b) MODE verification  

Several different system attributes were compared using MODE for the two ensembles in both 

years.  For 1 hour precipitation, the median value based on a threshold of 2.54 mm to define the 

object areas (Fig. 4) shows spread is greater for Core than S-Phys. Of note, for 1 hour 

precipitation, almost all members in both ensembles in 2016 are greater than the observations 

(black curve).  The same is true in 2017 (not shown).  In both years, the increased spread in 

Core does not translate into a better capture of the observations within the envelope.  For 

heavier precipitation, the 90th percentile values behaved similarly in both years (not shown).  

When averaged together (not shown), the median value for both ensembles was too high 

compared to observations, with Core at most times having a worse error of roughly 0.1 mm.  

The 90th percentile values were also high at most times compared to the observations, with 

Core continuing to have a worse error.  As can be inferred from Fig. 4, the problem was less 

severe for median precipitation during the afternoon and evening hours when convection was 

usually most intense (forecast hours 21-25).   

A similar trend is apparent in averaged values for median and 90th percentile for CREF in Core 

(Fig. 5) with the average being too high compared to observations.  However, for S-Phys, the 

median value is now often less than observations.  Errors are therefore of comparable 



magnitude but opposite sign at most times for the two ensembles.  Both ensembles in both their 

median and 90th percentile values show an afternoon peak in values that really does not show 

up in observations for median.  It does show up for the 90th percentile, but the models are too 

intense with the maximum. 

  

Figure 4: Median 1 hour precipitation value (mm) for both ensembles in 2016 (Core left, S-Phys 

right), with the observed value shown in black. 

  

Figure 5: Median (left) and 90th percentile (right) values of CREF (dBZ) averaged among the 9 

ensemble members for the Core (orange) and S-Phys (purple) ensembles in 2016.  Observed 

value shown in black. 

The median CREF values for each member of both ensembles are displayed in Fig. 6.  The 

increased spread in Core is apparent in these plots for both 2016 and 2017, and unlike with 1 

hour precipitation, the increased spread results in a much better capturing of the observations 

within the envelope of Core.  In fact, in both years the observations fell outside any member 

prediction in S-Phys nearly all (2016) or all (2017) of the time. It should be noted, however, that 

although the observations are better captured in Core, some of its members greatly 

overestimate the reflectivity values.  It can be seen that the median values are especially high in 

the MY members during the afternoon. Of note, for S-Phys, the members were usually less than 

observations in 2016 but greater than observations in 2017.  This might indicate that the use of 

the MYNN PBL scheme and the RUC land surface scheme resulted in more intense reflectivity, 



but further work is needed to be sure.  Similar results were obtained for the 90th percentile 

values except that S-Phys members in both years were usually too high compared to 

observations.   

  

  

Figure 6: Median CREF value (dBZ) for all members of Core (left) and S-Phys (right) for 2016 

(top) and 2017 (bottom).  Observations are shown in black. 

Areas within the MODE objects for CREF (greater than 30 dBZ) are shown in Fig. 7.  As would 

be expected, these results should be somewhat similar to the point-to-point metric of bias.  

Much more spread exists in the Core ensemble compared to S-Phys.  In 2016, the control 

member (in red) lies closest to the observed value (black) at nearly all times.  In 2017, this is not 

the case, implying a worsening in the forecasts of areal coverage when the PBL scheme and 

land surface schemes are switched to MYNN and RUC, respectively.  The Core ensemble does 

a better job of capturing the observed value within the envelope of members.  This is especially 

true in 2017 when Core always had the observations within the envelope, usually around the 

median value, while the observations were almost always outside the envelope of S-Phys, as 

nearly all members overestimated the areal coverage, in contrast to 2016 when nearly all 

members (except the control) underestimated areal coverage.  Again, this implies a potentially 

large impact from the change made in the PBL and land surface scheme in 2017.  It should be 

noted in both years that a distinct clustering occurs in Core with curves rarely crossing each 



other.  This suggests that different physics combinations have very systematic differences in the 

amount of echo above 30 dBZ with limited variability over time (i.e., one member will always 

have broader areas of echo; another member will always have much less). Such behavior again 

is concerning and implies the ensemble is not well-designed as each member would not be 

equally likely to verify. 

  

  

Figure 7: Areas (grid points) within the MODE objects for Core (left) and S-Phys (right) 

members in 2016 (top) and 2017 (bottom).  Observations are in black. 

Similar plots for 1 hour precipitation areas (not shown) indicate more spread in Core as well, but 

the differences are far less than for CREF, with a roughly 60-100% variation from the median in 

Core for CREF but only a 10-20% variation in Core for 1 hour precipitation.  For S-Phys at most 

times, variations are only roughly 10% for both CREF and 1 hour precipitation (the one 

exception is in 2016 where the control run deviated more from the other 8 members).  

Nonetheless, Core still does a better job of capturing the observations within its envelope. 

c) Traditional Ensemble Verification 

ROC curves, areas under the curves, reliability diagrams, and Brier skill scores were examined 

for both ensembles, and generally indicated only a slight advantage at best for the Core 

ensemble.  ROC curves for both years can be seen in Fig. 8 for two rainfall thresholds.  In 2016, 

the two curves are very similar for 2.54 mm, but Core has a noticeable advantage for 6.35 mm.  



Although not shown, Core had a bigger advantage in area under the ROC curve at most times 

for 0.254 mm.  The improvement of Core over S-Phys is more obvious in 2017.  In both years, 

skill (area under the ROC curve > 0.7) only existed at the majority of times through 2.54 mm.  

Skill was only present for the first 6-12 hours of the forecast for the 6.35 mm threshold (not 

shown). 

  

  

Figure 8: ROC curves for Core (red) and S-Phys (purple) in 2016 (top) and 2017 (bottom) for 

2.54 mm (left) and 6.35 mm (right) 1 hour rainfall thresholds. 

Reliability diagrams suggested a similar small advantage for the Core ensemble (not shown), 

but both ensembles overestimated the probabilities except for 0%, with curves lying well to the 

right of the diagonals.  Skill relative to climatology only existed in 2016 for both ensembles for 1 

hour precipitation above 0.254 mm.  Some skill was present for 3 hour rainfall at the 2.54 mm 

threshold.  The Core ensemble performed better in 2017 and showed some skill for 1 hour 

precipitation at the 2.54 mm threshold.  For 3 hour precipitation, the Core ensemble was 

relatively reliable with its curve close to the diagonal.  The difference in performance between 

Core and S-Phys was much greater in 2017 than in 2016, perhaps suggesting again that the 

change in PBL scheme and land surface scheme harmed the S-Phys ensemble in 2017. 

d) Other Comparisons 



The analysis of 14 comparisons when only a single change was made to a member 

configuration revealed a few items of note.  A change in the microphysics scheme alone from 

Thompson to Morrison had a 27% larger impact on domain total 3 hour precipitation than a 

change made to the IC/LBCs alone.  A change from Thompson to P3 microphysics had a 9% 

larger impact than changes in IC/LBCs alone.  A change in PBL scheme in addition to a change 

in IC/LBCs resulted in a 9% increase in the impacts on precipitation.  A change in microphysics 

in addition to a change in IC/LBCs increased the impacts on precipitation amount by 26%. 

The investigation of convective initiation found there was less spread in the location of the 

initiation in S-Phys than in Core, but also smaller peak errors on average among the members 

for the 10 cases (Fig. 9).  Both ensembles had the observed location within the envelope of 

member solutions in 6 of the 10 cases.  

     

Figure 9: Variation in average spread (left) among the 9 ensemble members for the 10 cases 

(blue 1 represents latitude spread in Core, blue 2 longitude in Core, orange 3 is latitude for S-

Phys, 4 is longitude for S-Phys), with box and whisker plots (right) of maximum errors in latitude 

(degrees) (leftmost 2 bars) and longitude (rightmost 2 bars) among the 9 members for the 10 

cases.  Boxes 1 and 3 are for Core, 2 and 4 are for S-Phys. 

e) Microphysical Run Comparison 

The comparison of the impacts of microphysics alone were consistent with the results shown 

earlier for the impacts of mixed physics, with MY always having the greatest areas above 30 

dBZ, largest median and 90th percentile reflectivity values.  P3 had the smallest areas, but was 

above average on the median and 90th percentile values, implying small but relatively intense 

cores of reflectivity.  Thompson usually had an area most closely matching that observed.  At 

most times, all schemes were too intense with the median reflectivity, and thus the schemes 

that had relatively lower values performed better (Thompson, Morrison).  The same was 

generally true for the 90th percentile, except that Morrison often was lower than observations, 

while other schemes were higher.  Morrison and WSM6 were often best for this parameter.  

Of note, when convective initiation was examined for this 5-member microphysical ensemble, 

initiation was captured only one time in 6 cases (due to some missing data for these members, 

only 6 of the full set of 10 cases could be examined), whereas the Core and S-Phys ensembles 

captured it 4 times out of the 6 cases.   This implies despite microphysical scheme choice 

having the single biggest impact on the model solutions, either a larger ensemble member size, 

or the added impacts of mixed IC/LBCs and other physics nonetheless were important.  

Summary and Discussion 



Two CLUE sub-ensembles were examined in detail to study the impact of including mixed 

physics in an ensemble that already used mixed IC/LBCs.  In addition, a 5 member sub-

ensemble consisting only of mixed microphysics was studied to understand systematic 

differences in these schemes.  Comparisons were made using 24 cases of 1 and 3 hour 

precipitation from 2016 CLUE output, 17 cases of CREF in 2016, and 11 cases of both 

precipitation and CREF from 2017 CLUE output.  Multiple verification metrics were examined. 

In most cases, the mixed physics ensemble (Core) had noticeably more spread than the Single 

physics (S-Phys) ensemble.  Differences in spread were surprisingly large when using CREF 

instead of precipitation, with much more spread showing up in the reflectivity fields.  In most 

cases, but not all, the increased spread in Core better captured the observed value, and S-Phys 

appeared to be substantially underdispersive at most times.  The average value of all members 

agreed better with observations a small amount for Core compared to S-Phys.  However, 

especially for reflectivity, this average value came about from members like those that used MY 

microphysics that had large positive errors in intensity and areal coverage, which tended to 

balance many negative errors found in many of the other configurations.  A summing of the 

errors from individual members would reveal Core to be worse.  Traditional ensemble measures 

gave a slight advantage to the mixed physics ensemble, but suggested very little skill for 1 hour 

precipitation.  More skill was present for 3 hour precipitation. 

A similar increase in spread was shown in an evaluation of 10 cases of pristine convective 

initiation from the 2016 sample of cases.  However, despite the increased spread in latitude and 

longitude positioning of initiation in Core, both ensembles correctly captured the observed 

location within their envelope of solutions in 60% of the cases.  Thus, the performance of the 

two ensembles might be regarded as equal.   

Finally, a comparison of 5 members of an ensemble using only mixed microphysics showed that 

MY was systematically too intense with high reflectivity values and too extensive with areal 

coverage above 30 dBZ.  P3 had the smallest areas of all schemes but was often second most 

intense at the 90th percentile value, suggesting it creates small but intense cores.  Despite 

evidence that changes in the microphysics schemes lead to the biggest changes among the 

mixed physics members, an examination of 6 cases of convective initiation suggests that an 

ensemble made up only of members with different microphysics schemes performs much more 

poorly at capturing the location of observed initiation within its envelope of solutions.  This result 

implies that variations in PBL schemes are also important and/or variations in IC/LBCs. 

Deliverables 

In addition to a seminar given at NCAR during August 2017, research results were presented at 

the European General Assembly in Vienna, Austria in April 2018, and at the American 

Meteorological Society Numerical Weather Prediction Conference held in Denver, CO in June 

2018.  The PI is continuing to work with scientists at the DTC to develop a manuscript to be 

submitted to a refereed journal in the coming months.   
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