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1. Background and introduction 
 

Despite their attempts to account for model and initial condition errors, numerical 
weather prediction (NWP) ensembles provide imperfect convection-related forecasts. For 
example, due to small ensemble membership, many ensembles have sub-optimal reliability and 
are under-dispersive for precipitation forecasts (e.g., Schwartz et al. 2014). Ensembles may also 
suffer from precipitation spatial displacement errors if they have imperfect forecasts of 
convective initiation and evolution. Moreover, even convection-allowing ensembles (CAEs) lack 
horizontal grid-spacing fine enough to explicitly simulate severe weather hazards. Thus, 
forecasting severe weather from CAEs typically requires the use of proxies correlated with 
observed severe weather, such as large values of 2-5 km updraft helicity (UH; e.g., Kain et al. 
2008; Sobash et al. 2011, 2016, 2019) and upward vertical velocity (e.g., Roberts et al. 2019).  

Machine learning (ML) techniques offer a promising way to post-process imperfect CAE 
precipitation and severe weather forecasts, since these techniques can learn multi-variate, flow-
dependent, non-linear relationships between ensemble forecast variables and observed 
precipitation or severe weather. The random forest (RF; Breiman 2001) algorithm may be 
particularly well-suited for post-processing because it typically produces reliable output 
probabilities even when input predictors are biased and/or nonlinearly related to the predictands 
(Breiman 2001).  

Several studies have previously demonstrated the promise of RF-based post-processing. 
For example, Gagne et al. (2014) used a RF to forecast probabilistic precipitation from a 19-
member convection-allowing ensemble produced by the Center for Analysis and Prediction of 
Storms (CAPS), but they only analyzed forecasts over the eastern 2/3 of the contiguous United 
States (CONUS) and had to artificially under-sample low-precipitation forecast points during 
training. Meanwhile, Herman and Schumacher (2018) used multiple RFs to post-process 
CONUS-wide day 2 and 3 heavy precipitation forecasts from the Global Ensemble Forecast 
System Reforecast (GEFS/R) system but did not test their methods on a CAE for day 1 (i.e., 12-
36-h) lead times.  

The work done in this visit expanded on Gagne et al. (2014) and Herman and 
Schumacher (2018) to post-process high-resolution ensemble precipitation and severe weather 
forecasts for the CONUS at day 1 (i.e., 1200 UTC – 1200 UTC; 12-36 h) time and space scales. 
The primary goal of this work was to develop and analyze a first-guess RF-based product to 
post-process and summarize ensemble output for operational forecasters. To that end, the RF-
based post-processing was applied to the High-Resolution Ensemble Forecast System version 2 
(HREFv2; Jirak et al. 2018; Roberts et al. 2019) and the Short-Range Ensemble Forecast System 
(SREF; Du et al. 2015) for precipitation prediction and the Storm Scale Ensemble of Opportunity 
(SSEO; Jirak et al. 2012, 2016) for severe weather prediction. RF post-processing was also 
applied to the Warn-on-Forecast Ensemble System (WoFS; formerly the NEWS-e; e.g., 
Wheatley et al. 2015; Jones et al. 2016; Skinner et al. 2018; Flora et al. 2019) for predicting 
springtime severe weather at regional and sub-daily scales.  
 
 
2. Objectives and outcomes 
 

Major objectives of the visit included the following:    
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(a) Create and verify CONUS-wide post-processed, first-guess probabilistic guidance for 
precipitation and severe weather. 
 
(b) Make post-processed forecasts available to operational forecasters via the Storm Prediction 
Center’s (SPC’s) public HREF viewer website (http://www.spc.noaa.gov/exper/href/).  
 
(c) Investigate the impact of training dataset length on RF-based forecast skill to determine the 
feasibility of applying RF-based post-processing operationally.  
 
(d) Transfer expertise to the Developmental Testbed Center (DTC) on the use of publicly-
available, python-based ML codes.  
 
(e) Disseminate results to the research community through peer-reviewed journal articles and 
conference proceedings.  
 

With respect to these objectives, the following outcomes were achieved:   
 

(a) A RF-based post-processing technique was developed and analyzed for next-day (1200 UTC 
– 1200 UTC; 12-36 h) probabilistic precipitation and severe weather forecasts from multiple 
ensembles. Post-processed forecasts were found to be reliable and skillful and tended to compare 
well against common operational baselines (see Summary of results below).  
 
(b) 0000 UTC probabilistic precipitation forecasts are running daily on the public SPC HREF 
viewer website (http://www.spc.noaa.gov/exper/href/; accessible by selecting the 00:00 UTC run 
and clicking “RF probs” under the Precipitation tab).  
 
(c) Encouragingly, substantial post-processing skill was noted with approximately 3 months of 
training data (see Summary of results below).  
 
(d) The following steps were taken to transfer ML expertise to the DTC:  
  

1. A beginner-level machine learning tutorial was developed to teach the basics of Scikit-
Learn and Keras to scientists interested in applying ML to their own work. While the 
tutorial was presented to DTC scientists at the end of the visit (i.e., January 2020), the 
presentation and relevant codes from the tutorial remain accessible on Cheyenne in the 
following directory: “/glade/work/eloken/ML_tutorial_final/files”. The tutorial covers 
Scikit-Learn random forests and neural networks as well as deep learning with Keras.  
 
2. It is intended that the tutorial materials and other relevant codes will be uploaded to a 
Github repository (eloken-weather/NCAR_ML) to allow more permanent access by DTC 
scientists.  

 
(e) The following peer-reviewed journal article was published in Weather and Forecasting 
during the visit: 
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Loken, E. D., A. J. Clark, A. McGovern, M. Flora, and K. Knopfmeier, 2019: Post-processing 
next-day ensemble probabilistic precipitation forecasts using random forests. Weather 
and Forecasting, 34, 2017-2044.  

 
The following article has also been submitted to Weather and Forecasting and is currently 
undergoing peer-review:  
 
Loken, E. D., A. J. Clark, and C. D. Karstens, in review: Generating probabilistic next-day 

severe weather forecasts from convection-allowing ensembles using random forests. 
Submitted to Weather and Forecasting. 

 
The submission of an additional Weather and Forecasting article is planned by mid-2020 on the 
application of RF post-processing to the WoFS.  
 
The following conference proceedings were also given on work done in the visit:  
 
Loken, E. D., A. J. Clark, A. McGovern, and K. Knopfmeier, 2019: Post-processing 12-36 hour 

multi-model ensemble PQPFs using a random forest. 1st NOAA Workshop on Leveraging 
AI in the Exploitation of Satellite Earth Observations & Numerical Weather Prediction, 
College Park, Maryland, NOAA.  

 
Loken, E. D., and A. J. Clark, 2020: Generating ensemble-derived next-day probabilistic severe 

weather forecasts with machine learning. 19th Conf. on Artificial Intelligence for 
Environmental Science, Boston, MA.  

 
Clark, A. J., E. D. Loken, P. S. Skinner, and K. H. Knopfmeier, 2020: Machine-learning-derived 

severe weather probabilities from a Warn-on-Forecast System. 10th Conf. on Transition 
of Research to Operations, Boston, MA.  

 
 
3. Summary of results 
 
 A RF-based method was designed to post-process next-day (12 – 36 h) precipitation and 
severe weather forecasts. The basic approach for both precipitation and severe weather 
applications is as follows: first, take a temporal aggregation (e.g., 24-h mean or maximum) of the 
predictors on the native grid; then remap all variables (predictors and observations) to a coarser 
grid (20-km for precipitation, 80-km for severe weather) for verification; next, take ensemble 
statistics (e.g., an ensemble mean) on the coarse grid for use as predictors; and, if necessary, 
randomly sample points in the domain to reduce the dimensionality of the dataset. The final set 
of predictors for each point includes forecast variables from the point of prediction as well as the 
24 closest grid points. This general procedure is summarized, as it applies to the precipitation 
forecasts, in Fig. 1.  
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Figure 1 Schematic illustrating the RF preprocessing for the HREFv2 
for precipitation prediction. (a) The temporal mean is taken over 24-h 
at each native grid point for each ensemble member. (b) The 
temporally-averaged data is remapped to an approximately 20-km 
grid. (c) An ensemble mean is taken at each 20-km grid point. (d) 
10% of the domain is randomly sampled for training. (e) Training 
data consists of the predictor variables at each sampled point 
(yellow) and the 24 closest 20-km points. 
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a. Precipitation post-processing  
 
 The above RF-based method was applied to 0.1-, 0.5-, 1.0-, and 3.0-inch precipitation 
exceedance forecasts from the HREFv2—a 7-member, 3-km horizontal grid-spacing CAE—and 
the SREF–a 26-member, 16-km horizontal grid-spacing convection parameterizing ensemble. 
RF-based forecasts from each ensemble were compared against the simple fraction of ensemble 
members exceeding the threshold (hereafter referred to as raw baseline probabilities) and raw 
baseline probabilities smoothed spatially using an isotropic 2-dimensional Gaussian kernel 
density function (hereafter referred to as smoothed baseline probabilities). Forecast and 
observation data over 496 days from April 2017 – November 2018 were considered. 16-fold 
cross-validation with 31 days per fold was used to verify all forecasts. Predictors included 18 
(16) forecast variables from the HREFv2 (SREF; Table 1), while the NCEP Stage IV 
Precipitation dataset was used for the observations.  
 

Skill benefits [i.e., greater area under the relative operating characteristics curve (AUC), 
higher Brier Skill Scores (BSSs), lower Brier Score (BS) reliability values, and higher BS 
resolution values] tended to be greater for the smaller precipitation thresholds (Fig. 2a-p), likely 
since the smaller precipitation thresholds provided more positive exceedance cases from which 
the RF could learn. Additionally, the SREF benefited more from the RF post-processing, since 
the SREF had more biases and less initial skill compared to the HREFv2.  

A 1-sided paired permutation test (e.g., Good 2006) was used to test whether the AUC 
and BSS values from one set of forecasts was significantly greater than those from another set of 
forecasts. The procedure is explained in depth in Loken et al. (2019), and results are summarized 
in Fig. 3. Overall, compared to corresponding raw and smoothed ensemble probabilities, the RF-
based forecasts tended to have significantly greater AUCs (Fig. 3a,c,e,g) and BSSs (Fig. 
3b,d,f,h). The RF forecasts also had better reliability (Fig. 2i-l) and resolution (Fig. 2m-p) and 
fewer spatial biases (not shown), although statistical significance was not assessed for those 
metrics.  

Predictor Variable Atmospheric Level 
Temperature 500-, 700-, 850-hPa, and 2-m AGL 

Dewpoint Temperature 500-, 700-, 850-hPa, and 2-m AGL 
Max. Hourly Simulated Reflectivity* 1 km AGL 

CAPE Surface-based 
CIN Surface-based 

PWAT Entire Column 
Max. Hourly Simulated UH* 2-5 km AGL 

Max. Hourly U, V Wind 10 m AGL 
Max. Hourly Upward Vertical Velocity 

(UVV), Downward Vertical Velocity (DVV) 
100-1000 hPa (400-1000 hPa for NAM 

members of HREFv2) 
Forecast 24-h Precipitation Surface 

Lat., Lon. N/A 

Table 1 Predictor variables from the HREFv2 and SREF for precipitation prediction. Asterisks 
denote variables only used for the HREFv2.  
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Figure 2 AUC for SREF and HREFv2 raw (purple), smooth (blue), and RF forecasts (red) for the 0.1-
in. threshold. (b)-(d) As in (a) but for the 0.5-, 1-, and 3-in. thresholds, respectively. (e)-(h) As in (a)-
(d) but for BSS. (i)-(l) As in (a)-(d) but for the reliability component of the BS. (m)-(p) As in (a)-(d) 
but for the resolution component of the BS. Note the different y-axes for (m)-(p), and note that lower 
values of BS reliability are better.   
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Figure 3 (a) P-values from the 1-sided AUC permutation tests for the 0.1-inch threshold. (b) As 
in (a) but for BSS. (c)-(d), (e)-(f), (g)-(h) As in (a)-(b) but for the 0.5-, 1-, and 3-inch thresholds, 
respectively. Each square shows the p-value from testing whether the forecast in the top row 
has a significantly greater metric than the forecast in the left column.  
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To test the impact of dataset length on RF skill, RFs were re-trained and re-evaluated 
using a dataset containing the first 62, 124, 248, and 372 days (i.e., the first 1/8, 1/4, 1/2, and 3/4) 
of the full dataset, respectively. Big gains in AUC and BSS were noted by increasing the dataset 
from 62 to 124 days, especially for the higher exceedance thresholds (Fig. 4). Large gains in skill 
were also seen by increasing the dataset to 248 days, but further increases did not noticeably 
impact skill. Because the dataset size in Fig. 4 includes a 31-day testing set, the results suggest 
adequate AUCs and BSSs with only about 3 months (93 days) of training data and substantial 
skill with only about 7 months (217 days) of training data.   
 Ultimately, the full dataset (496 days) was used to train 4 RFs (i.e., RFs predicting 0.1-, 
0.5-, 1.0-, and 3.0-inch exceedances, respectively) for real-time prediction. Real-time RF 
exceedance forecasts are currently produced daily from the 0000 UTC HREFv2 forecasts and are 
publicly available via the HREF viewer (http://www.spc.noaa.gov/exper/href/). 

 

 
 
b. Severe weather post-processing 
 
 A similar RF-based post-processing technique was applied to two CAEs for severe 
weather prediction. These CAEs include the 7-member SSEO and the 18-member WoFS. SSEO 
members each have 4-km horizontal grid-spacing but have different initial and lateral boundary 
conditions, initialization times, and microphysics and turbulence parameterizations. Meanwhile, 
the WoFS, which is run experimentally during annual Hazardous Weather Testbed Spring 
Forecasting Experiments (HWTSFEs; e.g., Clark et al. 2012; Gallo et al. 2017), uses 3-km 

Figure 4 (a) AUC as a function of dataset length for the SREF. (b)-(c) As in (a) but for the BSS 
and uncertainty component of the BS, respectively. (d)-(f) As in (a)-(c) but for the HREFv2.  
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horizontal grid-spacing and covers a moveable 900 x 900 km domain. It is run every 30 minutes 
out to 6-h and assimilates radar, satellite, and surface observation data every 15 minutes.  
 
i) Post-processing SSEO data 
 

Eight RFs were trained to provide probabilistic severe weather guidance based on SSEO 
forecast output and observed Storm Prediction Center (SPC) storm reports. RFs respectively 
predict: tornadoes, significant tornadoes (i.e., those with an Enhanced Fujita rating ≥ 2), severe 
wind [i.e., wind speed ≥ 50 kts (58 mph)], significant severe wind [i.e., wind speed ≥ 65 kts (75 
mph)], severe hail (i.e., hailstone diameter ≥ 1 inch), significant severe hail (i.e., hailstone 
diameter ≥ 2 inches), all-hazards severe weather, and all-hazards significant severe weather. 
Predictors include storm attribute and environmental fields as well as latitude and longitude and 
spatially smoothed UH probabilities (Table 2).  

 

 

Probabilistic individual-hazard predictions were then used to construct categorical day 1 
outlooks using the same criteria as the SPC. Continuous RF probabilities were compared against: 
continuous probabilities based on spatially smoothing the fraction of members exceeding a 2-5 
km updraft helicity (UH) threshold (calibrated for each hazard), discrete and continuous 
(Karstens et al. 2019) SPC probabilities from the 0600 UTC day 1 convective outlook, and 
discrete RF probabilities truncated at the same probability levels used by the discrete SPC 
forecasts. The dataset contained 629 days, from April 2015 – July 2017. 17-fold cross-validation 
(with 37 days per fold) was used to verify the forecasts. 95% BSS confidence intervals (CIs) 
were determined by resampling each forecast’s individual-day BS score with replacement (i.e., 
bootstrapping; e.g., Wilks 2011). 10,000 bootstrapping iterations were performed for each set of 
forecasts. The 95% CIs were recorded by noting the 2.5- and 97.5 percentile BSS values from all 
iterations for each type of forecast.  

Overall, the continuous RF probabilities produced the best BSS for each hazard, 
drastically outperforming the UH forecasts for almost all hazards and the SPC forecasts for 
severe wind and hail (Fig. 5a). While the truncated RF did not convincingly outperform the 
discrete SPC forecasts for significant severe hazards, the continuous RF did for significant severe 
wind and hail (Fig. 5a) due to its superior resolution (Fig. 5b) and reliability (Fig. 5c), resulting 
from its ability to forecast continuous probabilities below 10%.  

Storm Attribute Fields Environment-related 
Fields Other 

Max. Hourly Simulated 
Reflectivity 2-m Temperature Latitude 

Accumulated 1-h 
Precipitation 

2-m Dewpoint 
Temperature Longitude 

Max. Hourly Updraft Speed 2-m Relative Humidity Smoothed UH probabilities 
Max. Hourly UH MUCAPE  

 CIN  
 0-6 km Shear  
 CAPE ´ Shear  

Table 2 SSEO-based predictors for obtaining severe weather probabilities. 
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The categorical outlooks produced by the RF (e.g., Fig. 6a) generally compared favorably 
to those produced by the SPC at 0600 UTC (e.g., Fig. 6b). Thus, it is envisioned that these CAE-
derived categorical outlooks could be used by forecasters as a skillful automated “first-guess” 
upon which forecasters could improve.  
 
 
  

Figure 5 (a) BSS for the continuous RF-based probabilities (dark red), truncated RF-based 
probabilities (yellow), original SPC probabilities (light blue), full/continuous SPC probabilities 
(dark blue), and calibrated UH-based probabilities (gray). (b)-(c) As in (a) but for the resolution 
and reliability components of the BS, respectively. Black bars denote 95% confidence intervals 
in (a). The abbreviations “sig.” and “tor.” refer to “significant” and “tornado,” respectively.  
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RF individual-hazard probabilities also demonstrated considerable skill (e.g., Fig. 7a-f). 
For example, for the 24-h period ending on 27 May 2015, the RF correctly shifted the 2% 
tornado probabilities farther west in the Upper Midwest to better capture the tornado reports 
there compared to the SPC (Fig. 7a-b). Relative to the SPC forecast, the RF also had higher 
severe wind probabilities in the Ohio Valley and Southeast, where numerous severe wind reports 
occurred (Fig. 7c-d), and better highlighted the threat for significant severe wind and hail in the 
Southern Plains (Fig. 7c-f). However, the RF also had a relatively large area of false alarm in the 
eastern U.S. for severe hail (Fig. 7e).  

RF forecasts also improved on UH-based forecasts for the prediction of all-hazards 
severe and significant severe weather (e.g., Fig. 8a-d). For example, the RF has higher severe 
probabilities in the East and Southeast U.S., where numerous severe wind reports occurred, as 
well as higher probabilities near the tornado reports in northwestern Illinois (Fig. 8a-b). The RF 
significant severe probabilities are much more similar to the UH-based probabilities (Fig. 8c-d), 
although the RF indicates non-zero significant severe probabilities in the Upper Midwest and 
slightly changes the orientation of the higher probabilities in the Southern Plains to more closely 
align with the observed significant severe reports. 

 
 

Figure 6 Day 1 categorical outlook from the (a) RF approach and (b) SPC 0600 UTC forecast, 
valid for the 24-h period ending at 1200 UTC on 27 May 2015. Observed SPC storm reports are 
overlaid. Reports of tornadoes, severe wind, and severe hail are denoted by red, blue, and green 
circles, respectively, while significant tornado, wind, and hail reports are respectively 
represented by white-outlined red circles, black squares, and black triangles.  



 13 

 
 
 
 
 
 
 
 
 
 
 
  

Figure 7 (a) RF-based tornado probabilities (shaded) and significant tornado probabilities 
(contoured every 2% with ≥ 10% probabilities hatched), valid for the 24-h period ending at 
1200 UTC on 27 May 2015. (b) As in (a) but for SPC forecasts issued at 0600 UTC. (c)-(d) As 
in (a)-(b) but for severe wind forecasts. (e)-(f) As in (a)-(b) but for severe hail forecasts. 
Observed SPC storm reports are overlaid, using the same representations as in Fig. 6. 
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ii) Post-processing WoFS data 
  
 WoFS-derived RF severe weather forecasts were produced for hourly initializations from 
19-03 UTC for 24 cases from May of 2018. Predictors included point-based WoFS environment 
and hourly maximum storm forecast variables (Table 3). SPC local storm reports (all-hazards) 
were used as the observational dataset.  
 

Figure 8 (a) RF- and (b) UH-based probabilities of all-hazards severe weather, valid for the 24-
h period ending at 1200 UTC on 27 May 2015. (c)-(d) As in (a)-(b) but all-hazards significant 
severe weather probabilities are plotted. Relevant observed SPC storm reports are overlaid, 
using the same representations as in Fig. 6. 
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Environment (Ensemble 
Mean) 

Hourly Max. Storm Fields 
(Max., 90th Percentile, 

Smoothed Mean) 
Miscellaneous 

CAPE (0-3 km AGL) Updraft Helicity (2-5 km 
AGL) Initialization Time 

Temperature (2-m) Updraft Helicity (0-2 km 
AGL)  

Dewpoint (2-m) Vertical Vorticity (0-2 km 
AGL)  

Specific Humidity (2-m) Max. Updraft Speed  
Lifted Condensation Level 

(mixed layer) Hail Size (HAILCAST)  

Virtual Potential Temperature 
(2-m) Wind Speed (80-m)  

CAPE (mixed layer)   
CIN (mixed layer)   

SRH (0-1 km AGL)   
SRH (0-3 km AGL)   

Sig. Tornado Parameter 
(mixed layer)   

 
 

RF-based severe weather forecasts were compared against baseline severe weather 
probabilities, derived from WoFS UH. Baseline probabilities were created by spatially 
smoothing the fraction of ensemble members with UH exceeding 120 m2s-2 with an isotropic, 2-
dimensional Gaussian kernel density function (standard deviation of 48 km). The UH threshold 
and density function standard deviation were chosen to optimize the BS.  

6-fold cross validation was used to create/verify the RF forecasts. Preliminary results 
suggest that the RF forecasts had better AUCs, BSs, and BS reliability values compared to the 
baseline forecasts (not shown). RF probabilities also had finer-scale details and tighter gradients 
relative to the baseline; however, RF probabilities were also occasionally high in areas without 
reports (not shown).  

To assess variable importance, new RFs were trained with subsets of predictors. The 
following three experiments were run:  
 1. Storm fields vs. Environmental fields (2 RFs)  
 2. Individual storm fields (6 RFs)  

3. Type of storm field (i.e., smoothed ensemble mean, 90th percentile, ensemble max; 3 
RFs) 

 
Overall, it was found that storm fields added more skill than environmental fields, with UH and 
maximum updraft speed as the best storm field predictors (Table 4). However, at times, the 
environment fields provided large positive contributions to RF skill (not shown). The smoothed 
ensemble mean was found to be the best type of storm field predictor (Table 4).  
 

Table 3 WoFS-based predictors for obtaining severe weather probabilities.  
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 RF Predictors AUC BS BSrely x 103 
Control Full Set of Predictors 0.8897 0.0451 0.139 

Experiment 1: Storm vs. 
Environmental Fields 

Hourly Max. Storm Fields 0.8813 0.0454 0.176 
Environmental Fields 0.7434 0.0578 2.061 

Experiment 2: 
Individual Storm Fields 

2-5 km UH 0.8803 0.0462 0.156 
Max. Updraft Speed 0.8843 0.0463 0.253 

0-2km UH 0.8735 0.0474 0.207 
0-2 km Vertical Vorticity 0.8662 0.0475 0.118 
Hail Size (HAILCAST) 0.8529 0.0475 0.437 

80 m Wind Speed 0.8228 0.0527 1.562 

Expeirment 3: Type of 
Storm Field 

Smoothed Mean 0.8864 0.0455 0.234 
90th Percentile 0.8731 0.0472 0.081 

Max 0.8657 0.0482 0.084 
Table 4 Results from the WoFS variable importance experiments. BSrely denotes the reliability 
component of the Brier Score. 

 
4. Future work 
 
 Future work will focus on interpreting RF output probabilities to identify when and why 
they differ from UH- and human-based probabilities. Interpretability information may not only 
aid human forecasters in making better predictions but could also alert model developers of 
ensemble biases.   

Future work may also apply similar RF techniques for post-processing forecasts on finer 
spatiotemporal scales (e.g., sub-daily time and/or sub-regional space scales). Finally, efforts are 
underway to apply RF-based post-processing to the operational HREFv2 and test real-time RF 
severe weather probabilities in upcoming HWTSFEs.  
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