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1.   Introduction 

Satellite infrared brightness temperatures (BT) provide detailed information about the 

horizontal and vertical distribution of clouds and have therefore been used in prior studies to 

evaluate the accuracy of the cloud field in high-resolution numerical weather prediction model 

forecasts (e.g. Otkin and Greenwald 2008; Otkin et al. 2009; Cintineo et al. 2014; Thompson et 

al. 2016).  Given the fine spatial resolution of the High Resolution Rapid Refresh (HRRR) 

model, qualitatively small differences between the observed and forecast cloud fields may lead to 

large quantitative errors that differ greatly from a subjective forecaster evaluation of the model 

forecast accuracy.  These differences can be quantified using traditional (e.g. root mean square 

error, bias, etc.) or neighborhood-based (e.g. fractions skill score) metrics.  However, though 

these verification methods provide useful information concerning the model accuracy, additional 

information about errors in the spatial distribution of the cloud field can be obtained through the 

use of more sophisticated object-based verification tools such as the Method for Object-Based 

Diagnostic Evaluation (MODE; Davis et al. 2006a, b). 

Few studies have used satellite observations and object-based verification tools such as 

MODE to evaluate the accuracy of the simulated cloud field.  An exception is a recent study by 

Mittermaier and Bullock (2013) that used the MODE system to assess the spatial and temporal 

characteristics of cloud cover forecasts in high-resolution models over the United Kingdom.  

They showed that object-based verification provides a useful way to evaluate different attributes 

of the forecast cloud field.  For example, object-based verification can provide information about 

the simulated cloud structure, such as errors in the location, shape, orientation, and spatial extent 

of the cloud field that is not readily obtained using traditional or neighborhood-based verification 

metrics. Therefore, object-based statistics provide a more advanced assessment of the forecast 



accuracy.  The aim of this project was to learn the intricacies of MODE and to investigate how 

MODE output could be used to analyze the accuracy of the experimental HRRR (HRRRx) model 

through comparison of observed and simulated cloud objects. 

 

2.   Data 

 

a. High Resolution Rapid Refresh model simulated brightness temperatures 

 

This project used simulated Geostationary Observing Environmental Satellite (GOES) 

10.7 µm BTs computed using output from the HRRRx model.  The 10.7 µm BTs are sensitive to 

cloud top properties when clouds are present and to surface skin temperature when clouds are 

absent from a given scene.  The HRRRx is an hourly-updating model that covers the contiguous 

United States (CONUS) with 3-km horizontal grid spacing and 51 vertical levels.  HRRRx 

simulated BTs were available for forecast hours (FHs) 0 to 24 during the study period.  The 

version of the HRRRx model used for this study was implemented at Earth System Research 

Laboratory on 4 May 2015 (Earth System Research Laboratory 2016).  It uses initial conditions 

from the Rapid Refresh (RAP) model and then applies data assimilation at 3-km resolution 

including the assimilation of radar reflectivity.  The HRRRx is a convection-allowing model that 

does not include deep convective parameterization (Benjamin et al. 2016).  The HRRRx uses the 

Thompson-aerosol aware v3.6.1 microphysics scheme, MYNN v3.6+ planetary boundary layer 

scheme, RUC land surface model, and RRTMG shortwave and longwave radiation schemes 

(Earth System Research Laboratory 2016). 



Simulated GOES BTs were computed for each forecast time using HRRRx model output 

and the Community Radiative Transfer Model (CRTM, Han et al. 2006) in the Unified Post 

Processor (UPP).  For clear grid points, simulated BTs are computed using several model-

predicted fields, such as surface skin temperature, 10-m wind speed, and vertical profiles of 

temperature and water vapor. For cloudy grid points, additional information about cloud 

radiative properties is required to calculate simulated BTs.  Vertical profiles of mixing ratio and 

number concentration are used to estimate the properties for each cloud hydrometeor species 

(cloud water, cloud ice, rain water, snow and graupel) predicted by the Thompson-aerosol aware 

microphysics scheme.  In the CRTM, standard look-up tables for cloud absorption and scattering 

properties, such as extinction, single-scatter albedo, and the full scattering phase function are 

used to assign values to each hydrometeor species as a function of the cloud effective diameter 

computed using the particle size distribution assumptions for that scheme (e.g. Otkin et al. 2007).  

Cloud optical properties are then computed for each species and model layer in the vertical 

profile before computing the simulated infrared BTs. 

 

b. Observed brightness temperatures 

 

The satellite validation data used during this study is from the GOES 13 imager.  The 

10.7 µm GOES BTs have a 4-km spatial resolution at nadir and are remapped to the 3-km 

HRRRx grid using a weighted average of all the observed pixels overlapping a given HRRRx 

model grid box.  The GOES imager typically completes a scan over CONUS every 15 minutes 

except for every 3 hours (00, 03 UTC, etc.) when the scan at the top of the hour is skipped in 

order to complete a full disk scan.  Thus, simulated HRRR BTs will be compared to the 0 minute 



scan for most hours, but will be compared to the scan starting 15 minutes prior to the HRRRx 

forecast time for cases when the 0 minute CONUS scan is skipped.  This occurs at 3-h intervals. 

While this may introduce some uncertainty in the analysis, it is expected to be minor. 

 

c. Seasonal comparison 

 

 To assess the HRRRx forecast accuracy, simulated and observed GOES 10.7 µm BTs 

from two one-month long periods, including 01-31 August 2015 and 01-31 January 2016, were 

evaluated.  These time periods were chosen so that the HRRRx model forecast accuracy could be 

assessed during both warm and cool seasons given potential differences in cloud characteristics.  

Representative snapshots of the GOES 10.7 µm BT are shown in Figure 1.  The image on the left 

is from 02 August 2015, while the image on the right is from 22 January 2016.  Cloud objects in 

the upper troposphere associated with the coldest BTs were generally smaller in August than in 

January, though both large and small objects occurred during both months. 

 
 
Figure 1.  Observed GOES 10.7 µm BT images valid at 1900 UTC on 02 August 2015 (left 
image) and 1900 UTC on 22 January 2016 (right image). 



 
3.   Method for Object-Based Diagnostic Evaluation 

 

MODE is used to analyze the accuracy of the HRRRx forecast cloud field.  MODE is a 

technique for identifying and matching objects in two different fields (Davis et al. 2006a, b, 

2009).  Objects are meant to represent “regions of interest”, which for this project were chosen to 

be upper-level cloud features containing the coldest infrared BTs.  The MODE process is fully 

described in Davis et al. (2006a); however, a short outline of the process as applied to the 

infrared BT datasets is provided here for context: 

1. Spatially smooth the forecast and observed BT fields using a process called convolution 

thresholding to identify objects. 

2. Calculate various object attributes for each observed and forecast cloud object. 

3. Match the forecast and observed cloud objects using a fuzzy logic algorithm and then 

calculate various attributes of the paired objects, such as intersection area and distance. 

4. Write out attributes for individual objects and matched object pairs for assessment. 

The convolution radius used for both the observed and forecast fields in step one was chosen to 

be 5 grid points.  This allows for the analysis of small-scale storms, as a range of 2 to 8 grid 

points is stated by Cai and Dumais (2015) as identifying convective storm objects in ~4-km 

resolution radar imagery.  Object merging in the individual observed and forecast fields was not 

performed during this study. 

 Step one of the above process also requires choosing a BT threshold to define the edges 

of the cloud objects.  However, as seen in Fig. 1, cloud objects can contain different BTs 

depending upon the season, weather regime, and location.  In addition, Griffin et al. (2016) 

identified a cold bias in the HRRRx forecast BTs that varies as a function of forecast hour.  To 



illustrate these differences, probability distributions for the observed and simulated 10.7 µm BT 

from August 2015 and January 2016 at forecast hours 0 and 3 are shown in Fig. 2.  Although the 

coldest BTs occurred during August, the entire BT distribution is overall colder in January than it 

was during August.  In addition, the coldest HRRRx simulated BTs were colder in the 3-h 

forecast than in the 0-h forecast and moreover the sign of the bias for BTs < 260 K changes from 

the initialization to the 3-h forecast.  Thus, to account for these seasonal and forecast hour 

differences, the 10th percentile of the BT distributions was chosen to define the cloud edges 

instead of an arbitrary BT threshold.  The 10th percentile is used so that the analysis focuses on 

the coldest cloud objects occurring in the upper troposphere.  Ten days, including the current 

time, are used to determine the 10th percentile BT threshold for upper level clouds because it is 

possible that no upper level clouds are 

present if a shorter time period is used. 

The observed BT threshold is 

calculated using observations valid at 

the same time of day to account for 

differences in the cloud characteristics 

during the diurnal cycle.  The forecast 

BT threshold is calculated using the 

HRRRx simulated BT from the same 

initialization time and forecast hour to 

account for any potential variations between different HRRRx initialization times. 

Sample MODE objects defined using the observed and simulated BT thresholds from the 

0-h HRRRx forecasts are shown in Figure 3.  For each object pair, MODE computes an interest 

Figure 2.  Observed (solid) and forecast GOES 10.7-
µm BT probability distributions for August 2015 
(red) and January 2015 (blue) for the 0-hr HRRRx 
initialization (dashed) and the 3-hr HRRRx forecast 
(dotted).  



value portraying the correspondence between the two objects.  The interest value is a weighted 

combination of the object pair attributes.  Interest values range from 0 to 1, with a perfect match 

having an interest value of 1.  When calculating the interest value, MODE uses various object 

pair attributes whose weights are defined by the user.  The attributes and user-defined weights 

used for this project are shown in Table 1.  Overall, this analysis prioritizes the distance and size 

comparison between the objects.  Two distance attributes are highly weighted relative to other 

attributes, with the minimum distance (boundary_dist) between objects having a slightly lower 

weight than the centroid distance (centroid_dist).  This was done to put more emphasis on the 

displacement between the objects’ centers of mass rather than object overlapping because large 

objects can have a sizeable center displacement but still overlap.  However, it should be noted 

that because the MODE centroid distance weight is the user-defined weight multiplied by the 

ratio of the objects’ areas, the boundary distance between objects has greater weight when the 

ratio between the observed and forecast area is less than 0.75.  The area attributes receive the 

same user-defined weight as the distance attributes.  The ratio of the objects’ areas (area_ratio) is 

higher than the ratio of the intersection area of objects to the observation/forecast object’s area 

(int_area_ratio) because the int_area_ratio value can be artificially high when a small object is 

fully enclosed within a larger object. 



 
 
Figure 3.  MODE identified observed cloud objects (left panels) and HRRR-x 0-h analysis cloud 
objects (right panels) valid at 1900 UTC on 02 August 2015 (top row) and at 1900 UTC on 22 
January 2016 (bottom row). 
 

Object Pair 
Attribute 

User-Defined 
Weight (%) 

Description 

centroid_dist 4 (25.0) Distance between objects’ “centers of mass” 
boundary_dist 3 (18.75) Minimum distance between the objects 
convex_hull_dist 1 (6.25) Minimum distance between the polygons surrounding the 

objects 
angle_diff 1 (6.25) Orientation angle difference 
area_ratio 4 (25.0) Ratio of the forecast and observed object areas 

(whichever yields a lower value) 
int_area_ratio 3 (18.75) Ratio of observed (forecast) object to the objects' 

intersection area (whichever yields a higher value) 
 
Table 1.  User-defined MODE object attribute weights used to compute the MODE interest score 
and brief a description of the object pair attributes used in this analysis. 
 

 



4.   Mode Skill Score 

 

Because MODE generates extensive output, we explored methods to condense its output 

into a single value that still preserves unique information provided via object-based verification.  

To do this, we developed a new verification metric named the MODE Skill Score (MSS).  The 

MSS is defined in Griffin et al. (2016) as an area-weighted calculation using the interest values 

computed by MODE.  It includes two components, one for cloud clusters and the other for cloud 

objects.  It is computed as follows: 

MSS= AreaObserved Cluster(i)
Total Area

*Interest Value i + AreaObserved Object(j)

Total Area
*Interest Value(j)O

j=1
C
i=1 	       (1)  

The Total Area in the denominator is defined as the area of all observed cloud objects plus the 

area of all forecast cloud objects that are unmatched to the observed cloud objects.   A cluster is 

defined as any set of one or more objects in one field that matches any one or more objects in the 

other field (Developmental Testbed Center 2014).  For this project, object matches are defined as 

clusters if the interest value exceeds 0.65.  Individual objects can be components of the same 

cluster if two or more observed (forecast) cloud objects match the same forecast (observed) 

object.  Because the maximum centroid distance in this analysis is 200 km, this means that any 

object in the observed field will be matched, and therefore have a non-zero interest value, with a 

forecast object that is within 200 km.  The MSS has a range from 0 to 1, with 1 representing a 

perfect forecast.  A MSS equal to 0 indicates that there were no forecast cloud objects with a 

centroid distance within 200 km of every observed cloud objects; however, this is unlikely to 

occur. 

The MSS calculation first considers clusters to account for multiple objects in the 

observed (forecast) field that may correspond to a single object in the forecast (observed) field. 



Once the MSS accounts for the clusters, only matching object pairs where both the observed and 

forecast objects are not already considered in a matched cluster will be used in the MSS 

calculation.  Because each observed and forecast object can only be used once, object matches 

are analyzed from the highest interest value to the lowest to calculate the highest possible MSS.  

Object matches with an area ratio less than 5% are not included in the MSS calculation so that 

large forecast objects are not matched to much smaller observed objects and vice versa. 

 

5.   Results 

 

a. Object number comparison 

 

The first step in assessing the accuracy of the HRRRx model forecasts is to determine if it 

accurately represents the number of upper level cloud objects present in the GOES observations.  

Figure 4 shows the number of individual observed and forecast objects plotted as a function of 

time of day using all data from August 2015 and January 2016.  Overall, there are more cloud 

objects in August than in January.  Because the total cloud object area in both datasets is equal to 

10% of the grid because we are using the 10th percentile of the BT distribution to define the 

edges of the cloud objects, this means that the median cloud object size is smaller during August.  

The diurnal cycle is also more prominent in August compared to January.  Both of these 

characteristics are consistent with the more predominant small-scale convective cloud features 

found during the summer compared to the larger synoptic-scale cloud systems more frequently 

observed during the winter. 



Though the different characteristics of the diurnal cycle are accurately captured in both the 

August and January forecasts, there are typically not enough HRRRx forecast objects in both 

months.  For example, the median number of HRRRx forecast objects is smaller compared to the 

observed objects for each time of day and season in Fig. 4, with exceptions occurring near 00 

and 04 UTC during August.  However, even though the median number of forecast objects is 

smaller, it can also be seen in the box whiskers that the largest number of HRRRx forecast 

objects is typically larger than the largest number of observed objects.  As can be seen in Fig. 5, 

which shows the number of objects plotted as a function of forecast hour, these occurrences are 

mostly associated with the 0-h HRRRx initializations when there are typically too many cloud 

objects.  This is due to there being multiple small convective cores in the model analyses versus 

larger clouds in the observations.  In later forecast hours there are generally fewer HRRRx 

forecast objects than observed in the GOES imagery.  The median number of forecast objects 

  

Figure 4.  Box plot diagram depicting the range of the number of observed (lighter colors) and 
forecast (darker colors) upper level cloud objects identified by MODE for August 2015 (red) and 
January 2016 (blue) plotted as a function of time of day.  Data from all forecast cycles and hours 
were used to produce the box plot diagram. 
 



reaches a minimum around FH 4 during August before then slowly increasing with time.  During 

January, however, there is a steady drift toward fewer HRRRx forecast objects at longer forecast 

lead times. 

  
 
Figure 5.  Box plot diagram depicting the range of the number of observed (lighter colors) and 
forecast (darker colors) upper level cloud objects identified by MODE for August 2015 (red) and 
January 2016 (blue) plotted as a function of forecast hour.  Data from all forecast cycles were 
used to produce the box plot diagram. 

 

b. MODE Skill Score 

 

The HRRRx forecast accuracy was also assessed using the MSS.  Because the MSS is 

computed using the MODE interest scores, and our study assigns equal weight to the object 

displacement and area attributes, the MSS can be used to assess the accuracy of these object 

characteristics.  Figure 7 shows the mean MSS plotted as a function of forecast hour for August 

2015 and January 2016, with the grey indicating the 95% confidence interval around the mean.  

Overall, the 1-h forecast is the most accurate for both months, with a steady decrease thereafter 



as predictability decreases.  While forecast hours 2 and beyond have similar accuracy for each 

season, the 0-h and 1-h HRRRx forecasts are more accurate for August. 

 

       

Figure 6.  Mean MODE Skill Score values plotted as a function of forecast hour for August 2015 
(red line) and January 2016 (blue line). 

 

c. Why is the 1-h forecast the most accurate? 

 

As shown by the MSS, the 1-h HRRRx forecast is the most accurate forecast for both 

August and January.  To identify why the 1-h forecast is more accurate than the 0-h analysis, the 

MODE interest scores for the distance and area attributes from the 1-h HRRRx forecasts were 

compared to those from the 0-h HRRRx initialization.  The attribute interest scores for matched 

objects were arranged based on the size of the matching observed object.  To account for the 

difference in the number of matches based on observed cloud object size, which can be caused 



when the same observed object only has a match in either the 0-h or 1-h forecast, the percent of 

occurrences is calculated. The difference in percent occurrences is then defined as: 

Difference in Percent of Occurrences = 
Number(score, obs_size)FH 00

Total(obs_size)FH 00
		-  

Number(score, obs_size)FH 01
Total(obs_size)FH 01

 

where obs_size is the size of the observation object in the matched object pair and “score” is the 

attribute’s interest score. 

 The difference in percent occurrences for the centroid distance attribute is shown in Fig. 

7.  Blue (red) colors indicate that the centroid distance interest score and observed object size 

combination occurs more frequently in the FH1 (FH0) object pairs.  For small objects, there are 

more with lower interest scores in the FH1 forecasts than in the FH0 initialization. This is not 

unexpected because displacement errors tend to increase with increasing forecast hour (Griffin et 

al. 2016) and lower interest values are associated with greater displacement errors between the 

objects’ “centers of mass”.  However, higher interest scores are also observed more frequently in 

the FH1 forecast for the largest cloud objects, which indicates that these objects have centers of 

mass that are closer to their matched forecast objects in the FH1 forecast.  Because this 

improvement in the centroid distance interest score occurs for the largest objects, it has a greater 

impact on the MSS because the MSS is an area-weighted calculation. 

 Differences in the percent of occurrences in the boundary distance interest scores are 

shown in Fig. 8.  Overall, the highest interest values are associated with FH0, which indicates 

that the model initialization is more accurate than the FH1 forecast for this particular attribute.  

As was seen in the centroid distance scores in Fig. 7, lower interest values are more common for 

the small cloud objects in the FH1 forecasts.  This is due to greater displacement between the 



small cloud objects.  However, unlike the centroid distance interest scores, there are only very 

small differences for the larger cloud objects.  Because the boundary distance is the minimum 

distance between the edges of the observed and forecast cloud objects, larger objects need larger 

displacement between cloud objects for no overlapping of objects to occur.  The difference in 

percent of occurrences for the intersection area ratio interest score (Fig. 9) is very similar to the 

boundary distance interest scores for this same reason.  As the displacement between objects 

increases, the size of the overlapping area, and thus the intersection area ratio interest score, 

decreases.  However, matched pairs with larger observed objects are still overlapping, and no 

changes are evident between FH0 and FH1 for the larger objects. 

 
 
Figure 7.  Percent difference in the occurrence of MODE centroid distance interest scores 
between FH0 and FH1 during August 2015 plotted as a function of MODE interest score along 
the x-axis and observed object size along the y-axis.  Blue (red) colors indicate that the given 
centroid distance interest score and observed object size combination occurs more (less) 
frequently in the FH1 forecast than in the FH0 initialization. 
 



 
 
Figure 8.  Same as Fig. 7 except for the MODE boundary distance attribute. 
 

 
 
Figure 9.  Same as Fig. 7 except for the MODE intersection area ratio attribute. 



 Finally, the difference in the percent of occurrence for the area ratio attribute is shown in 

Fig. 10.  Overall, the differences between FH0 and FH1 are relatively small for this attribute. An 

important exception, however, is the largest observed objects, where higher area ratio interest 

scores are more associated with the FH1 forecast than the FH0 initialization.  Because the MSS 

is an area-weighted calculation, the much better representation of larger cloud objects in the FH1 

forecast will have a larger impact than the smaller objects.  This increase in the area ratio interest 

score for FH1 indicates that the size of the cloud objects in the 1-h forecast better represents the 

observed cloud objects than the 0-h initialization.  Because the observed object sizes remain 

unchanged, it is assumed this better representation of large observed objects is a result of their 

matched forecast object increasing in size.  This would explain how the intersection area ratio 

remains unchanged between FH0 and FH1 for larger cloud objects.  In addition, the center of 

mass between the objects could decrease even though displacement occurs because forecast 

objects are larger. 

 

6.  Summary 

 

The primary goal of this project was to learn how to use MODE to assess the accuracy of 

HRRRx forecasts through comparisons of observed and forecast cloud objects occurring in the 

upper troposphere.  Emphasis was placed not only on using MODE output, but also manipulating 

the MODE output to provide new insights into forecast accuracy.  One outcome of our work with 

the DTC is the creation of the MSS.  The MSS uses the MODE interest values to create a single 

value representing forecast accuracy, which promotes a quicker comparison between multiple 

forecasts valid at the same time.  In addition, MODE output is used to regenerate the attribute 



interest scores (which are not readily available in the current MODE output) to investigate why 

the 1-h HRRRx forecast is more accurate than the 0-h initialization.  It is found that, even though 

displacement errors between the forecast and observed cloud objects increase between FH0 and 

FH1, that the sizes of the 1-h forecast objects better represent the observed cloud objects.  This 

improvement for the largest cloud objects has a more positive impact on the MSS and forecast 

accuracy than did the degradations that occurred for the smaller cloud objects.  Finally, these 

results were also shared with HRRR model developers at ESRL and the EMC at the end of the 

project.  These trips provided valuable opportunities to interact with the model developers and to 

contribute to their model assessment and development activities. 

 

 
 
Figure 10.  Same as Fig. 7 except for the MODE area ratio attribute. 
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