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1. Introduction 

Due to the chaotic nature of the atmosphere (e.g., Lorenz 1963, Yuan et al. 2018), 

errors in Numerical Weather Prediction (NWP) originating from the use of imperfect 

initial conditions and numerical models inevitably amplify. In addition to producing a 

single unperturbed or control forecast from the best available initial condition, a 

properly formulated ensemble of forecasts may also offer some value (e.g., Toth and 

Kalnay 1993; Molteni et al. 1996). One benefit is that the mean of an ensemble 

(generally defined as the Arithmetic Mean (AM) of ensemble member forecasts) filters 

out features that are out of phase in the member forecasts. These, typically finer scale 

features have little or no skill, hence AM is characterized with a root-mean-square error 

(RMSE) lower than that in a single unperturbed forecast (e.g. Toth and Kalnay 1997). 

Consequently, in the past two decades ensemble mean forecasts became widely used 

and important products at operational forecast centers across the globe.   

Notwithstanding its popularity and value, the use of AM as an ensemble central 

tendency has its limitations. First, as pointed out for example by Molteni et al. 1996, 

Toth and Kalnay 1997, and Surcel et al. 2014, the filtering out of phase features in AM 

results in reduced variability. In particular, the amplitude of features that are misaligned 

across ensemble members is reduced in AM. In other words, the elimination of less- or 

unpredictable features makes AM unrealistically smooth both in space and time. For 

example, AM renders the sharp low-pressure wave present in all ensemble members at 

various longitudes as a wide and shallow low-pressure system (see solid blue line in 
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Fig. 1(a)). Consequently, the Cumulative Distribution Function (CDF) of AM forecast 

values over a domain is also changed, eliminating extremes and reducing the range of 

values as compared to individual analysis or forecast fields (Ebert 2001). Such 

suboptimal CDF results in a loss of dynamical and physical consistency and spatial 

covariance present in the individual forecast fields and across different variables and 

levels in the conglomerate of features present in AM. For these reasons, AM fields may 

be confusing or misleading, and are notoriously challenging to use (Ebert 2001; Knutti 

et al. 2010; Feng et al. 2019). The disadvantages of AM in many meteorological 

applications stem from its pointwise, univariate definition: xk! 	=	(1/N)∑ xi,k
N
i=1 , where 

xi,k is a single variable at grid point k of the ith ensemble member (totally N members). 

It is apparent that strong spatial and temporal covariances present in AM are ignored.  

Various methods have been proposed to alleviate the disadvantages of AM. The 

ensemble median was introduced as an alternative to AM (Galmarini et al. 2004; Zhou 

and Du 2010). While in the presence of outlier member forecasts the median may have 

some advantages compared to AM (Delle Monache et al. 2006), they are statistically 

nearly identical otherwise. To restore the CDF that the AM procedure distorts, Ebert 

(2001) suggested to relabel the contours in AM in such a way that the CDF in the 

proposed probability-matched mean exactly matches that in the constituent ensemble 

member forecasts. This manipulation, however, restores only the CDF; it will not undo 

the distortion, smoothing, and somewhat arbitrary positioning of the forecast features.  
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In addition, since spatially coherent features among ensemble forecast samples 

contain displacement (or position) and amplitude errors (Hoffman et al. 1995), in recent 

papers, Ravela (coalescence, 2012, 2013, 2014) and Purser (generalized ensemble mean 

or GEM, 2013) considered the generalization of central tendency for covarying 

multivariate variables. Using covariances estimated from the ensemble itself, 

coalescence deforms features in each ensemble field to their mean position using the 

Field Alignment (FA) technique of Ravela (2007a) so that given some general 

constraints, the difference between individual displaced ensemble fields and their mean 

are minimized. In the iterative variational minimization both the mean field and the 

deformation for each member are estimated. GEM is constructed similarly except for a 

slightly different variational minimization algorithm. 

Note that both methods require knowledge of the covariance between forecast 

fields (see Eq. 8 of Ravela 2012 and Eq. 1.5 of Purser 2013), estimation of which 

remains a challenging problem despite decades of efforts in ensemble-based data 

assimilation (Hamill et al. 2001; Houtekamer et al. 2005; Wang et al. 2013). When 

applied to calculate coalesced or generalized ensemble mean fields, for practical 

application to operational ensemble forecasts, the objective would become more 

complex with higher model resolution and more ensemble members, apparently 

increasing the computational expense.  

In this paper we introduce a simplified and computationally efficient method for 

the direct, vector-based calculation of generalized mean fields (Section 2). The non-
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variational method called Feature-oriented Mean (FM) requires no use of explicit 

covariance information; instead, it exploits such information implicit in the ensemble 

forecasts. FM will be tested and evaluated using operational ensemble forecasts 

(Section 3). Evaluation of results including a comparison with AM will be shown in 

section 4 while a summary and discussion are offered in Section 5.     

2. Methodology 
a. Field Alignment  

Atmospheric motions manifest in spatiotemporally coherent features. Features 

can be characterized, for example, by their geographical position, amplitude, or other 

characteristics (Hoffman et al. 1995; Ravela et al. 2007a; Beezley and Mandel 2008). 

Notwithstanding, a large body of traditional meteorological research and operational 

applications use an observational, or gridded point-wise approach when comparing 

states of the atmosphere, disregarding spatiotemporally organized structures. In general, 

differences between atmospheric states (e.g., forecast and verifying analysis – 2D 

forecast error, or unperturbed and perturbed ensemble forecasts – 2D perturbation fields) 

can be, with some assumptions decomposed into a positional and a residual (or 

amplitude) error (e.g., Hoffman et al. 1995; Ravela et al. 2007a; Peña et al. 2019).  

The FA technique is designed for such a decomposition of forecast error or 

difference fields. For easy access by the community, FA was ported into the 

Developmental Testbed Center (DTC) Code Repository in a previous study funded by 

the DTC Visit Program (PI: Said Ravela).  
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If Y is a 2D field similar to X except its features are somewhat displaced, FA 

defines, and variationally estimates a smooth 2D displacement vector field D$$⃗  that if 

applied as a translation operation to each point of Y (Y adjusted to Y’), will minimize 

the remaining (henceforth called amplitude) RMS difference between X and Y’. The 

smoothing of the displacement vector is conducted by a spectrum truncation algorithm 

(Ravela 2012). It has a unique tunable wavenumber parameter l to determine those 

larger scale spatial coherent “features” to be transposed, such as a collection of cold 

front cases, while those finer scale structures that are less predictable or unpredictable 

will not be particularly adjusted but move along with the larger scales. Unlike other 

error decomposition techniques developed by Hoffman et al. (1995), Du et al. (2000), 

and Nehrkorn et al. (2003, 2014), FA uses less tunable parameters (i.e. the unique 

smoothing parameter l) and does not rely on the posterior (i.e. after alignment) forecast 

error covariance information. FA has been applied in a wide range of application areas 

including data assimilation (Ravela 2007b), verification (Ravela 2007a, 2014; Peña et 

al. 2019), nowcasting (Ravela 2012), and spatiotemporal error propagation (Feng et al. 

2017).  

b. Feature-oriented Mean 

The FA technique provides a fundamental tool for the FM scheme. The key 

concept of FM is to align the features of fields with spatial coherence to the mean 

position. The finer scales that are unpredictable are not considered features but rather 

they are termed noises. Assume that xj is a randomly selected member of an N-member 
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ensemble xi (i=1, 2, 3, …, N). The working definition of FM consists of the following 

five steps: 

(1) Compute the displacement vector Dji$$$$$⃗  between xj and each of the other N-1 

members xi by using the FA technique.  

(2) Calculate the average of displacement vectors Dj$$$$⃗  = (1/N)∑ Dji$$$$$⃗N
i=1 . Dj$$$$⃗  

represents the displacement of features in xj compared to the mean of the 

position of features in all ensemble members.  

(3) Adjust member xj by transposing its 2D field in space by the displacement 

vector Dj$$$$⃗ : xj’ = xj + Dj$$$$⃗ . This adjustment will align the position of features in 

member xj to the mean of their position in the entire ensemble. 

(4) Repeat steps (1) - (3) for each member of the ensemble. The aligned members 

(see green lines in Fig. 1(b)) will differ only in the amplitude of their features, along 

with the incoherent small-scale noises unaffected by the FA procedure. 

(5) Feature-oriented Mean (FM) is defined as the arithmetic mean of all aligned 

ensemble members: x& = (1/N)∑ xi
'N

i=1  ( see red solid line in Fig. 1(c)).  

3. Experimental setup 

The FM algorithm described in section 2.b is evaluated and compared to AM using 

forecasts from the National Center for Environmental Prediction (NCEP) Global 

Ensemble Forecasting System (GEFS, Toth and Kalnay 1993, 1997; Zhu et al. 2012; 

Zhou et al. 2016, 2017). 20-member 500 hPa Geopotential Height (GH) 00Z GEFS 

forecasts from a 25-day sample period (01 Oct – 25 Oct 2013) are compared to 
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corresponding verifying analysis fields from the Global Forecast System (GFS) on a 

common 1-degree horizontal resolution grid. Ensemble forecasts offer an ideal testing 

ground for the use of FM as the larger scale; more predictable features possess a 

coherence among ensemble members that FM can readily detect. The smoothing 

parameter l is set to be 128 which is recommended by Ravela, the author of the FA code 

(personal communication).  

An important comparison will be the level of smoothing imposed by AM vs. FM, 

as revealed by a comparison of the ensemble mean energy spectrum with those of 

analyses. A better forecast should have more consistent and less smoothed power 

spectrum compared to analyses. The overall forecast skill will also be evaluated by 

traditional metrics like Pattern Anomaly Correlation (PAC) and RMSE. With these 

metrics the performance of AM and FM will be compared for a selected case and 

sample mean results.  

4. Results 
a. A Case Study 

The transposition of features in an individual ensemble member to the mean 

position of features in all members for a case of a 7-day Northern Hemisphere (NH, 

20°-80°) forecast initialized at 0000 UTC 12 Oct is shown in Fig. 3. The original 

forecast (blue) is transposed (red, step 3 in FM algorithm, cf. Fig 2) with the 

displacement vector field (black arrows, step 2). As seen from the small displacement 

vectors and correspondingly small displacement of contour lines over the Atlantic, 
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features in the selected ensemble member (member 10) align well with the mean 

position of features in the rest of the ensemble members in this geographic area. On the 

contrary, the selected ensemble member (member 10) appears to be an outlier over the 

Pacific, as manifested by the large displacement vectors and correspondingly large 

displacement of contour lines around 160W. This is confirmed by Fig 4a where the 

heavy copper color spaghetti line for member 10 is seen as an outlier among the other 

members. 

As seen in Fig 4b, the FM algorithm aligns the features in member 10, along with 

those in the rest of the members, with the mean of the features’ position in the original 

members. As seen in Fig. 4c, this results in an FM field that when compared with AM, 

better reflects the consensus in the position, and especially in the amplitude of features 

in the original ensemble. In other words, FM better preserves the consensus in the 

features among the averaged fields, a potential advantage in either synoptic forecast or 

climatological applications.  

b. Amplitude as a function of lead time and scales 

In Fig. 5 we quantify how much more total amplitude (defined against the 

climatological mean) FM retains over AM as a function of lead time, averaged over the 

global domain and all 25 cases. Results are stratified according to the AM anomaly 

forecast at any point in time and space being below 1, between 1-2, and above 2 

climatological standard deviations. For all categories, FM retains up to 14% more 

amplitude compared to AM. 
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The spectral distribution of analysis and various lead time AM and FM forecast 

anomalies is displayed in Fig. 6. As perturbation evolution at the early 2-day lead time 

is mostly linear (Gilmour et al. 2001), only minor differences are seen between the two 

types of mean forecasts and only at the finest scales. As with increasing lead time 

nonlinearities emerge on larger scales, the variance in AM falls below that of natural 

variability in the analysis at progressively larger scales. FM, meanwhile, retains more 

natural variability on those scales, due to the alignment of features before the mean of 

the member forecasts is taken. 

c. Error metrics 

It is well understood that the RMSE in sample-based statistical estimates of the 

expected value of a quantity is minimized by AM (Li et al. 2018; Feng et al. 2019) due 

to its (sample size dependent) reduction of the variance (i.e., noise) in the sample. Any 

deviation from the AM formula in Eq 1 can only increase RMSE. It is evident that the 

retention of more variance in FM increases RMSE (Fig. 7a) and reduces the positively 

oriented forecast performance measure of Pattern Anomaly Correlation (PAC, Fig.7b) 

only slightly (cf. solid black and red curves) for NH. The results for SH are similar (not 

shown). As expected, Fig. 7 also shows that the skill of the members whose features are 

aligned with the mean of the position of features in the original members (dotted red) 

is much better than that of the original members (dotted blue), with a much narrower 

range of variability in skill (cf. red vs. blue vertical bars). This is because the alignment 

eliminates much of the position related error introduced by the addition of initial 
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ensemble perturbations. A related study (Peña et al 2019) explores the decomposition 

of forecast errors into positional and amplitude/structural errors in more depth. 

Interestingly, we find that for gridpoints over NH with large (i.e., larger than 1.5 

standard deviation) observed (based on analysis data) anomalies, the error in FM 

forecasts, on average, is up to 10% lower than that in AM, with favorable FM 

performance in up to 70 % of the cases at about day 7 (Fig. 8). The results for SH are 

similar (not shown). What is behind this behavior and whether and how it could be 

exploited in prognostic applications remain to be explored in future studies.  

5. Conclusions and discussion 

Arithmetic mean (AM), when applied to an ensemble, reduces forecast error by 

filtering out part of the unpredictable variance present in individual members (i.e., 

waves completely out of phase). For this reason, AM gained widespread use in weather 

forecasting. On the other hand, when applied in a traditional, univariate sense, AM may 

reduce the amplitude, and distort the structure of partly predictable features that are 

present at somewhat different locations and with somewhat varying structures in the 

perturbed ensemble forecasts. Recognizing the spatiotemporal coherence of partly 

predictable features across ensemble members, we propose to spatially co-locate such 

features before their mean is taken. In the new ensemble central tendency that we call 

feature-oriented mean (FM), all forecast features appear at the mean of their position in 

the individual members, represented with an amplitude that is the mean amplitude of 

features aligned in all members to their mean position. Instead of averaging a collection 
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of assumedly uncorrelated variables like in AM, FM estimates the expected state of a 

multivariate system, composed of features with covarying elements. 

The concept of central tendency generalized for multivariate systems with co-

varying variables has been previously suggested by Ravela (2012, Coalescence) and 

Purser (2013, generalized mean, GM). The algorithmic implementation of the concept 

in these studies, however, is computationally expensive while meteorological 

applications are lacking. In the current study, we present a more efficient and readily 

parallelizable algorithm with an application to ensemble averaging. Both FM and 

Ravela’s (2012) Coalescence method (a) calculate the mean amplitude field by (b) 

aligning features in each ensemble field to the mean of their position in the individual 

fields, using (c) the field alignment (FA) technique of Ravela (2007a) as a core 

technique. Coalescence, however, solves a more complex variational minimization 

problem to estimate the (i) mean amplitude field and (ii) displacement fields for each 

member at once, while FM solves a set of similar FA minimization problems followed 

by a simplified vector calculation to derive the estimation of mean position, after which 

it transposes each member with their corresponding displacement vector field. Note that 

unlike FM, both Coalescence and the GM algorithm assume the use of covariance 

information about the system being estimated which is usually difficult to, and poorly 

estimated (Hamill et al. 2001; Houtekamer et al. 2005; Wang et al. 2013), making their 

use more problematic.  
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On the computational side, the bulk of the FM algorithm (Steps 1-4 in Section 2.b) 

pertains to single ensemble members, perfectly suited for parallel processing on 

individual single cores. A further speed-up can be achieved if data are processed 

sequentially by lead time where the displacement vector solution from the previous lead 

time can be used as a first guess in the FA calculations. 

Results from preliminary tests using operational NWP forecasts from the NCEP 

GEFS indicate that by the alignment of coherent larger scale, partly predictable features, 

FM retains up to 14% more variability than AM, particularly on partly and less 

predictable scales, resulting in features with more realistic amplitude. Meanwhile, 

forecast performance is not compromised as FM RMSE and PAC is hardly changed 

compared to AM. Interestingly, FM outperforms AM under extreme observed 

conditions, particularly for medium-range forecasts (e.g., 3-8 days lead time for 

synoptic scale). At earlier lead times characterized with quasi-linear evolution of 

ensemble perturbations, FM and AM have small differences, while at extended ranges 

where nonlinear saturation has a strong influence on the evolution of perturbations (e.g., 

10 days and beyond for synoptic scales) FM may no longer be applicable. The latter is 

because at these longer lead times the features in different members become less similar, 

potentially preventing the variational FA algorithm in step (1) of the FM algorithm to 

converge to a displacement vector field solution. As the prediction of extreme events is 

more influential and critical than normal ones, and remains as a weakness of AM, FM 
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offers a potentially more useful tool for predicting such type of events than AM. A 

potential benefit needs to be further explored in future studies.   

For simplicity, the smoothing coefficient in the reported FA experiments was fixed 

over all lead times. Ideally, one would allow the smoothing parameter l to decrease as 

a function of lead time, allowing the displacement vector field to initially contain most 

of the scales, while later only coarser scales, reflecting the upscale propagation of 

spatial scales dominating quasi-linear error growth. At long lead times when all 

predictability is lost and ensemble members constitute a random draw from climatology 

(i.e., no coherency in structures across ensemble members), smoothing can approach 

its maximum level (i.e., only a single, or no spatial adjustment over the entire domain), 

so FM asymptotes to AM.  

Though FM here was demonstrated with 500 hPa height data, FM can be applied 

to any variable of interest, including non-continuous variables such as precipitation. 

Besides dynamically generated ensembles like the GEFS, FM can also be used to derive 

a consensus forecast from any set of NWP or other products like the multimodel 

superensemble forecasting (Ebert 2001; Krishnamurti et al. 2016). FM is expected to 

provide the most likely position and amplitude of severe weather events such as the 

evolution of a tropical storm prior to landfall, or a frontal zone with precipitation 

approaching a metropolitan area. Looking beyond weather forecasting, FM may be 

applicable in a wide array of synoptic and other type of climatology studies where a 

sample-based estimate of the typical behavior of various phenomena such as landfalling 
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hurricanes is sought. Once cases with the targeted phenomena present anywhere over a 

common domain are selected, with an appropriate level of smoothing, FM can be used 

to co-locate and then average the feature of interest. 
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FIG. 1. (a) Schematic of a low-pressure wave (with arbitrary units of amplitude and 

position) represented in 3 members of an ensemble forecast (solid black lines) and their 

traditional arithmetic mean (AM, solid blue line). The position of the minimum value 

of the low-pressure system in AM is marked by a dotted blue vertical line. (b) Schematic 

of the ensemble members aligned (solid green lines) to the mean of their original 

position (marked with a dotted red line). (c) The feature-oriented mean (FM, red solid 

line) is the arithmetic mean of the aligned members. The unit on x and y axises are 

dimensionless.    
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FIG. 2. Flow chart of the FM algorithm.  
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FIG. 3. 500-hPa geopotential height (GH) of a randomly selected 7-day ensemble 

forecast member (blue contour), its displacement vector (black arrows; unit: km), and 

the aligned field (red contour) over NH in the case initialized at 0000 UTC 12 Oct 2013.  
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FIG. 4. Spaghetti plot of 500-hPa GH at 5800m of 20 (a) raw and (b) aligned ensemble 

members in the same case as Fig. 3, and (c) the arithmetic mean of the original (blue, 

AM) and aligned members (red, FM). For reference, the contour for the verifying 

analysis is also shown (black). 
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FIG. 5. The temporal and grid mean amplitude of 500-hPa GH between AM (blue) and 

FM (red) for different categories of events, (a) normal (<1 climatological standard 

deviation, Std, 80% of cases), (b) medium (1-2 Std, 18% of cases), and (c) extreme (>2 

Std, 2% of cases). The categories are divided according to the AM forecast values at 

each grid point. (d)-(f) are their relative differences, respectively.   
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FIG. 6. The spherical harmonic power spectrum of 500-hPa GH for AM (blue), FM 

(red), and analyses (black) at different lead times.          
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FIG. 7 Temporal mean (a) root-mean-square error (RMSE) and (b) pattern anomaly 

correlation (PAC) of AM (blue solid line) and FM (red solid line) for 500-hPa GH over 

the NH extratropic. The mean RMSE and PAC of the original (blue dashed line) and 

aligned perturbed ensemble forecasts (red dotted line) are also shown, along with 

vertical bars representing the range of the ensemble values.  
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FIG. 8 Temporal and grid mean forecast error of AM (blue) and FM (red) for medium 

to extreme events of 500-hPa GH over NH. These events are selected for individual 

grid points with a true value beyond its own 1.5 Std. (b) shows the percentage statistic 

of grid numbers with a lower error of FM than AM for NH.  


