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GSI Var cost function

! ! - / 1 / ! - ! !
Y iovar (X )=—(x )T Bfl(x ) +E(HX -y )T R 1(HX -Y')

J : Penalty (Fit to background + Fit to observations)

X" : Analysis increment (x? — x°) ; where x? is a background
B; : Background error covariance

H : Observations (forward) operator

R : Observation error covariance (Instrument +
representativeness)

y'= y° - be, where y° are the observations

Cost function (J) is minimized to find solution, x’ [x?=x+x’ ]



GSI hybrid ensemble Var cost function

Jioa (¥) 25 () B (L () B (3 o (X -y) R (HX =)

B, : (Fixed) background-error covariance (estimated offline)

B... : (Flow-dependent) background-error covariance (estimated
from ensemble)

: Weighting factor (0.25 means total B is % ensemble).



What does B, do?

Temperature observation near a warm front

1000 hPa *empem*ur(ehgg)} and Increment (all static) Increment (all ensemble)

surface pressure

-1.25-1.0-.75 -.5 -.25 .25 .5 .75 1.0 1.25
Analysis Increment (K)
—

\




Background 850

What does B

do?

ens

Zonal wind observation near a hurricane (lke)

mb Wind(vectors) & Ensemble

Spread(shaded)

Control 850mb Wind increment
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What does B, do?

Surface pressure observation near an “atmospheric river”

PWAT increment

Precipitable Water Analysis Increment 2004013000
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3Dvar increment would be zero!
(cross-variable covariances hard to model with static B;)
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What does B, do?

Adds flow-dependence to analysis increments.

Sparse observations near coherent dynamical
features used more effectively.

Changes in the observing network can be
captured in background-error variance.

More information extracted from
observations => More skillful forecasts



So what’s the catch?

Need an ensemble (fairly large) that accurately
represents the uncertainty in the first-guess forecast.

“Fairly large” means O(50-100) -- smaller ensembles
with have large sampling errors (and more weight will
have to be given to B;). Expensive to run.

The GSl variational system does not provide the
ensemble — it provides an analysis that can be
interpreted as the ensemble mean, given an ensemble
that represents forecast uncertainty.

In NCEP operations, an “Ensemble Kalman
Filter” (EnKF) is used to generate the background
ensemble.



Data assimilation terminology

y : Observation vector (weather balloons, satellite
radiances, etc.)

X :the state of the atmosphere as represented by the
model

x° : Background state vector (“prior”)
X2 : Analysis state vector (“posterior”)

H : (hopefully linear) operator to convert model state 2
observation location & type

R : Observation - error covariance matrix
PP : Background - error covariance matrix
P2 : Analysis - error covariance matrix



From Bayes theorem to 4DVar and the (Ensemble) Kalman Filter
p(xly) o exp (—(x = x4)TP" "' (x = x3) — (y — Hx)TR"}(y — Hx))

Variational methods maximize the posterior PDF to find the state
trajectory x that best fits the obs y in a least-squares sense. In practice,
this is done by minimizing a cost function, which is what's inside the exp:

J(x) o (x — Xb)TPb_l(X —xp) + (y — HxX)'R™!(y — Hx)

The minimum can be found analytically if H is linear (see Lorenc 1986
QJRMS for the algebra). This gives the equations for the Kalman Filter

X, = Xp, + K(y — Hxp), P* = (I - KH) PP
K = PPHT (HPPHT +R)

» Matrix P® js too big for any computer, covariance update step impractical.

» Instead, represent PDFs of x and'y by an ensemble, compute sample estimate of

P® and x,. Evolve the sample, not the full covariance. EnKF gives same result as
full KF if ensemble size becomes infinite.



Computational shortcuts in EnKF:
(1) Simplifying Kalman gain calculation

K =P°H"(HP'H" +R)
1 m

define be—— Hx!
m A

P°H' = i(x - X XHX — Hx" )

=1

HP°H' = L E (Hx?’ _ Hx® XHx?’ _ Hx® )

The key here is that the huge matrix P° is never explicitly formed



Computational shortcuts in EnKF:
(2) serial processing of observations (requires
observation error covariance R to be diagonal)

Method 1 Observations
1and2
Background K
forecasts EnKF —> Analyses

Method 2
Observation Observation
1 2
Background Analyses
forecasts EnkF after obs 1 EnkF Analyses




The serial EnKF — a recipe

Given a single ob y° with expected error variance R, an ensemble of model forecasts x°
(model priors), and an ensemble of predicted observations y? = Hx® (observation priors):

Step 1: Update observation priors.

(1a) Yo = (1 —K)y, + Ky° update for ob prior means
(1b) y; = /(1 — K)y]/D rescaling of ob prior perturbations

where the scalar K = var(y?)/(var(y®)+ R), overbar denotes means, prime denotes
perturbations, superscript b denotes prior, a denotes analysis.

Linear interpolation between observation and observation prior mean with weight K
(0<=K<=1), rescaling of observation prior ensemble so posterior variance is consistent with
Kalman filter, i.e. var(y?2)=(1-K) var(y®)= var(y®)R/(var(y°)+R).

when var(y®) << R, all weight given to prior.
when var(y®) >> R, all weight given to observation.
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The serial EnKF — a recipe (2)

Step 2: Update model priors.

Let AX= X?-XP be analysis increment for model priors, Ay= Y-y is analysis
increment for observation priors.

(2) Ax=GAy computation of increments to model prior

where G = cov(xP?, y°T)/var(y®)
Linear regression of model priors on observation priors.
Only changes model priors when x? and y® are correlated within the ensemble.

If there is more than one ob to be assimilated, the observation priors for other (not
yet assimilated) obs (Y?) should be also be updated using (2) with Ax replaced by AY.
Next iteration, replace y® with next column of Y?, removing that column from Y. After
each iteration the model priors and observation priors are set to the latest analysis
values (x2 replaces x°, Y@ replaces YP). Continue iterating until Y? is empty.



Factors limiting EnKF performance
1) Treatment of model error

Must account for the background error covariance associated with
“model error” (any difference between simulated and true
environment). Methods used so far:

1) multiplicative inflation (mult. ens perts by a factor > 1).

2) additive inflation (random perts added to each member —
e.g. differences between 24 and 48-h forecasts valid at the
same time).

3) model-based schemes (e.g. stochastic kinetic energy
backscatter for representing unresolved processes,
stochastically perturbed physics tendecies for representing
parameterization uncertainty).

Opnl NCEP system uses a combination all three.



Relaxation To Prior Spread (RTPS) Inflation
Described in DOI: 10.1175/MWR-D-11-00276.1

Inflate posterior spread (std. dev) 0@ back toward prior
spread o®: 0?2 € ao?+ (1-0)02

Equivalent to: x? € x?[1+a(0”-0%)/0?]

2.8
2.5
2.2
1.9
1.6
1.3
1.0




Factors limiting EnKF performance
2) Treatment of sampling error (localization)

e All EnKF implementations localize the spatial impact of
observations on the model state.

e Done by spatially modulating covariance between obs. prior

and model state, or by only using observations ‘close’ to a model
state variable to update that variable.

e Needed to account for low rank of ensemble (compared to
model state).

e Methods used currently are not flow dependent, and assume
there is no sampling error at ob location.



A simple example of covariance

localization
1 0 T p T 1 O T T
A — 50 sample cov — localized cov
08l - localization 1 0sl — true cov
— true cov
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Estimates of covariances from a small ensemble will be noisy,
with signal-to-noise small especially when covariance is small
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Covariance localization

raw gain ens size = 40
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Covariance Localization
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localized gain ens size = 80
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Why combine EnKF and Var?

Features from EnKF Features from Var

Can propagate PP from across  Treatment of sampling error in

assimilation windows ensemble P? estimate does not
depend on H.

More flexible treatment of Dual-resolution capability — can

model error (can be treated in  produce a high-res “control”

ensemble) analysis.

Automatic initialization of Ease of adding extra constraints

ensemble forecasts. to cost function, including a

static PP component.
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Ensemble-Var workflow

member 1 - D
member 1
forecast )
\ _ analysis
W 4 )
member 2 EnKF member 2
forecast member update _ analysis
4 I
member 3
member 3 T
forecast N~ o

high res GSI Ens/Var high res
forecast analysis

Previous Cycle Current Update Cycle 2



Summary

 The EnKF uses an ensemble of first-guess forecasts to
estimate the background-error covariance. Every
ensemble member is updated at each analysis time.
— Parallel code, scalable out to O(1000’s) of processors as
long as number of obs << number of state vars.
— Requires state vector in model and ob space, plus obs, as
input.
— GSl used to compute forward observation operator
(separate step run before EnKF).

* Need to carefully tune localization length scales
(depends on model resolution, observing network).

 Ensemble (co)variances must be representative of
control forecast error. Treatment of model and
sampling error is crucial.



GSI ensemble 3DVar cost function
(with localization)

Jhybrid (X')=E(X')T B;'(x')H+ %(x’)T (BoS), (x')k %(Hx' -y') R (Hx'-y')

B, : (Fixed) background-error covariance (estimated offline)

B, : (Flow-dependent) background-error covariance (estimated
from ensemble). Schur product with correlation matrix S
implies localization.

: Weighting factor (0.25 means total B is % ensemble).
Extra parameters control horizontal and vertical scales in S.
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