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Introduction 
•  Satellites instruments do not directly measure the 

atmospheric state. 
•  Instead they measure radiation emitted by and/or 

transmitted by the atmosphere. 
•  This presentation describes the relationship between the 

atmospheric state and the observed radiation.  And how the 
information contained therein is exploited through 
assimilation into the NWP model. 



Different Types of Satellite Data 



Meterological Satellite 
Constellation 
(from WMO) 



•  Active (bouncing a signal off 
something) 

– Wind Lidar 
– SAR 
– Cloud radar 
– Scatterometry 

Different Types of Satellite Data 



Different Types of Satellite Data 

GPSRO 

•  Occultation (signal passing through 
the atmosphere) 

– HALOE 
– SAGE 
– SCIAMACHY 



Different Types of Satellite Data 
•  Passive (receiving radiative signal 

from source) 

– Visible Instruments 
–  IR Instruments 
– Microwave Instruments 



Passive Instruments 

•  This talk will focus on passive infrared and 
microwave instruments as they are the most 
common and biggest contributors to 
Numerical Weather Prediction 



Geometry: Limb v/s Nadir Sounding 
•  Limb sounding: Viewing the Earth’s 

atmosphere tangentially 
– Higher vertical resolution 
– Lower horizontal resolution 
– Most often used for observing the 

stratosphere and above 
– GPSRO 

•  most commonly used 



•  Nadir sounding: Viewing towards the 
Earth’s surface 
– Lower vertical resolution 
– Higher horizontal resolution 

Geometry: Limb v/s Nadir Sounding 
•  Nadir sounding: Viewing towards the 

Earth’s surface 
– Lower vertical resolution 
– Higher horizontal resolution 
– Most often used in NWP 



Basic Concepts for Assimilating 
Observations from Passive Nadir 

Sounders 



Taking advantage of the frequency 
dependent atmospheric absorption 

•  The atmosphere is variously opaque and 
transparent to electromagnetic radiation depending 
on the wavelength. 

•  We take advantage of this, plus the fact that at 
longer wavelengths we can observe thermal 
emission from the atmosphere itself to infer 
information on the atmosphere’s temperature and 
humidity profile. 



Atmospheric Opacity in the Microwave 
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An IASI Spectrum 
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IASI v/s HIRS: The Thermal Infrared 

HIRS 
Channels 1-10 
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•  The temperature profile is the most important factor for 
determining the radiance observation. The vertical distribution of 
emitting v/s absorbing gases also impacts observations.   

•  First step is to determine temperature profile.  To do this, we need to 
choose frequencies where we know the absorption profiles already. 

•  We choose gases with a constant distribution to do this. 
•  For the infrared we use CO2 

•  For the microwave we use O2 

•  These are hence known as temperature sounding bands. 
•  But all bands are sensitive to temperature, often – as in the case of H2O 

– with sharper Jacobians. 
•  Once we have a good temperature profile we can use that to infer 

molecular abundances of variable species using appropriate 
frequencies. 

–  This is actually performed simultaneously with the temperature estimation when we 
do data assimilation  

 



Illustration of 
Jacobian or 
Weighting 
Function 



MetOp-A HIRS/4 [ dTB/dT ] 



MetOp-A IASI [ dTB/dT ] 
 



MetOp-A AMSU-A [ dTB/dT ] 
 



MetOp-A HIRS/4  [ dTB/dln(H20) ] 



MetOp-A IASI  [ dTB/dln(H20) ] 



MetOp-A AMSU-A  [ dTB/dln(H20) ] 



MetOp-A HIRS/4  [ dTB/dln(O3) ] 



Obtaining vertical profiles 
•  The Jacobian's give the 

sensitivity to the vertical 
profiles of temperature / gases /
clouds  etc. 

 
•  If we sum the contribution of 

each channel, we can get a very 
accurate estimate of the mean 
atmospheric temperature albeit 
with very low vertical 
resolution. 

 
•  If we take differences between 

each of the channels we can 
infer the profile with high 
vertical resolution, but the 
result will be very a noisy 
estimate. 

 

•  When we assimilate the radiance 
observations we are effectively 
producing a minimum variance 
solution to the problem: which is 
a compromise between these 
two extremes    



Forward Models 
•  To exploit these radiances, it is important to have an 

accurate way of simulating them from the atmospheric 
state. 

•  Line-by-line (LBL) models use state-of-the-art 
spectroscopic databases to make these calculations at high 
spectral resolution. 

•  These monochromatic calculations are then combined 
using the instruments’ spectral response functions (ISRFs) 
to simulate what the instrument observes. 

•  This can be very slow.  Too slow for operational radiance 
assimilation. 



Fast Forward Models 
•  To allow radiances to be operationally assimilated, fast 

radiative transfer models, which use regression schemes to 
simulate the output from LBL models, have been 
produced. 

•  The two main fast models used operationally in NWP 
centers are RTTOV (developed by the EUMETSAT 
NWPSAF) and CRTM (JCSDA). 

•  The errors in the fast model are not usually a significant 
component of the total error budget (at least for clear 
atmosphere). 

•  Most importantly, fast models allow the Jacobians (and the 
model adjoint) to be calculated efficiently. 



Radiative Transfer models also need 
to know the surface emissivity 

•  Over ocean we usually have models, e.g. 
–  ISEM (infrared) 
– FASTEM (microwave) 

•  Over land we often use atlases, either of the 
emissivity's themselves or of the land type. 

•  Emissivity's can also be retrieved from the 
observations themselves. 



Surface Emissivity : Infrared     



Emissivity over the 
ocean are very low in the  
microwave. 

Surface Emissivity : Microwave 
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Data Assimilation Equation 



Basic analysis problem 
J = Jb + Jo + Jc

J = 1
2
x − xb[ ]T B−1 x − xb[ ]+ 1

2
H x( )− y"# $%

T
R−1 H x( )− y"# $%+ Jc

x =Analysis ; xb = Background
δx = x − xb =Analysis increment
B = Background Error Covariance
H  = (Nonlinear) Forward Model ; H =  Linearized about xb
y = Observations ; d = y−Hxb =Observation Innovation
R = E +F = Instrument Error +Representativeness Error =Observation Error
Jc =Constraint terms

Penalty = Fit to background + Fit to observations + Constraints 



Penalty = Fit to background + Fit to observations + Constraints 

Basic analysis problem 
J = Jb + Jo + Jc

J = 1
2
x − xb[ ]T B−1 x − xb[ ]+ 1

2
H x( )− y"# $%

T
R−1 H x( )− y"# $%+ Jc

x =Analysis ; xb = Background
δx = x − xb =Analysis increment
B = Background Error Covariance
H  = (Nonlinear) Forward Model ; H =  Linearized about xb
y = Observations ; d = y−Hxb =Observation Innovation
R = E +F = Instrument Error +Representativeness Error =Observation Error
Jc =Constraint terms

The difference between the observations 
and the background transformed into 
model space, the first guess departure, is 
an important measure.  It is often the 
basis of quality control procedures. 
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Quality Control 



Quality Control Procedures 
•  The quality control step may be the most 

important aspect of satellite data assimilation. 
•  Data which has gross errors or which cannot be 

properly simulated by forward model must be 
removed. 

•  Most problems with satellite data come from 4 
sources: 
–  Instrument problems. 
–  Clouds and precipitation simulation errors. 
–  Surface emissivity simulation errors. 
–  Processing errors (e.g., wrong height assignment, 

incorrect tracking, etc…). 



Quality Control Procedures 
•  IR cannot see through most clouds. 

–  Cloud height difficult to determine – especially with mixed FOVs. 
–  Since deep layers not many channels completely above clouds. 

•  Microwave impacted by clouds and precipitation but signal 
is smaller from thinner clouds. 

•  Poor knowledge of surface emissivity and temperature 
characteristics for land / snow / ice. 
–  Also makes detection of clouds / precipitation more difficult over these 

surfaces. 

•  Asymmetric error distribution due to clouds and 
processing errors. 

 



Effect of Cloud on IR Spectrum 
No Cloud 

Mid-Level Cloud 

High Opaque Cloud 

Noise 

H2O 
CO2 

O3 



Cloud Detection in the GSI 
•  Assume the cloud is a single layer at 

pressure Pc and with unit emissivity 
and coverage within the FOV, Nc. 

•  Cloud fraction: 0 ≤ Nc ≤ 1 
•  Pc is below the tropopause and above 

the ground 
•  Find Pc and Nc so that the RMS 

deviation, J(Nc,Pc), of the calculated 
cloud from the model (over a number 
of channels) is minimized. 

•  Remove all channels that would be 
radiatively affected by this cloud. 

Nc 1-Nc 

Rovercast(ν,Pc) Rclear(ν,Pc) 

Eyre and Menzel, 
1989 

Rcld ν ,Pc( ) = NcRovercast ν ,Pc( )+ 1− Nc( )Rclear ν ,Pc( )

J Nc,Pc( ) =
Rcld ν ,Pc( )− Robs ν( )

σ ν( )

"

#
$$

%

&
''

ν

∑
2

•  σ(ν) is the assumed observation error 
for channel ν. This calculation should 
be done in radiance space, and not in 
brightness temperature space. 



Observational Errors 
•  Observation errors specified based on instrument 

errors and statistics  
•  Generally for satellite data, variances are specified 

a bit large since the correlated errors (from RT and 
instrument errors) are not well known. 

•  Observation errors are also generally specified as 
being uncorrelated spectrally, but efforts are being 
made to determine the off-diagonal components of 
the observation error covariance matrix. 

 



satinfo File 

Use Channel? Assigned  
Observation Error 

Maximum allowed FG Departure  
(after bias correction) 
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Bias Correction 



Bias Correction 
•  The differences between simulated and observed 

observations can show significant biases. 
•  The source of the bias can come from: 

–  Inadequacies in the characterization of the instruments. 
–  Deficiencies in the forward models. 
–  Errors in processing data. 
–  Biases in the background. 

•  Except when the bias is due to the background, we 
would like to remove these biases. 



Bias Correction 
•  Currently bias correction only applied to a few data sets: 

–  Radiances 
–  Radiosonde data (radiation correction and moisture) 
–  Aircraft data 

•  For radiances, biases can be much larger than signal 
•  Essential to bias correct the data 
•  NCEP uses a variational bias correction scheme (other 

centers are similar) using atmospheric air mass and scan 
angle predictors 



Scan dependent biases for AMSU 



•  Air mass prediction equation for bias – variational bias 
correction 
–  Add to control vector (analysis variables xn+i)  
     where   

–  Predictors (pi ) for each channel 

•  mean 
•  path length (local zenith angle determined) 
•  integrated lapse rate 
•  (integrated lapse rate) 2 

•  cloud liquid water 
•  Fourth-order polynomial of scan-angle 
•  Surface emissivity predictor 
•  Latitude dependent bias for SSMI/S 

Satellite radiance observations 
Bias correction 

Total bias correction = xn+i pi
i=1

np

∑



NOAA 18 AMSU-A 
No Bias Correction 



NOAA 18 AMSU-A 
With Bias Corrected 
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Observation - Background Histogram 
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Application of NWP  
Bias Correction for SSMIS F18 
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Bias Correction and QC Interact 

Bias Correction 
Observations are bias-corrected 

after quality control 

Quality Control 
Quality control usually uses  
bias-corrected observations 
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Thinning 



Thinning or Superobbing 
•  Thinning  

–  Reducing spatial or spectral resolution by selecting a reduced set of 
locations or channels. 

–  Can include “intelligent thinning” to use better observation. 
•  Superobbing 

–  Reducing spatial or spectral resolution by combining locations or 
channels. 

–  Can reduce noise. 
–  Includes reconstructed radiances. 
–  Can include higher moments contained in data Purser et al., 2010. 
–  Can be done with obs or departures, but should be done after QC. 

•  Both can be used to address 3 problems: 
–  Redundancy in data. 
–  Reduce correlated error. 
–  Reduce computational expense. 



Five Order of Magnitude Increases in Satellite 
Data Over Fifteen Years (2000-2015) 
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Received = All observations received operationally from providers 
Selected = Observations selected as suitable for use 
Assimilated = Observations actually used by models 
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Data Monitoring 



Data Monitoring 
•  It is essential to have good data monitoring.  
•  Usually the NWP centers see problems with instruments 

prior to notification by provider (Met Office especially). 
•  The data monitoring can also show problems with 

assimilation systems. 
•  Needs to be ongoing/real time. 
•  Monitoring reports from most major NWP centers at: 
http://research.metoffice.gov.uk/research/interproj/nwpsaf/monitoring.html 



Quality Monitoring of Satellite Data 
AIRS Channel 453 26 March 2007 

Increase in SD 
Fits to Guess 



NOAA-19 HIRS July 2nd 2013 – Filter Wheel Motor Problems  
Initial Problem 
When we stopped assimilating 
Initial “fix” to instrument 

Quality Monitoring of Satellite Data 



Some Comments on  
Cloudy Radiances 



Cloudy Radiances 
•  Most of the above discussion concerns the 

assimilation of radiances unaffected by cloud. 
•  Currently we are not operationally assimilating 

cloudy radiances but the GSI contains 
experimental code for assimilating such radiances 
in the microwave. 

•  The next few slides discuss why clouds are both 
important and difficult for data assimilation… 

•  …and discusses one aspect of the modifications 
we are making to assimilate them 



Why are clouds important? 
•  A decade ago almost all assimilation of satellite radiances 

assumed the scene was clear of clouds. 
•  Clouds were considered a source of noise that needed to be 

removed or corrected for. 
•  This is not because clouds were not important but because 

they were difficult. 
•  By ignoring regions affected by cloud we are not 

considering some meteorological very important areas 
•  By selectively assimilating clear radiances we may be 

biasing the model (representivity issues). 



Clouds can be spatially complex 
Often we assume a  
cloud looks like this… …when they can really look like this  

Spatial structure can be below the resolution 
of the observation, the model or both 



Clouds can be radiatively complex 

•  The complexity of the impact of clouds on 
observed spectra varies greatly with type of cloud 
and spectral region. 

•  If clouds are transmissive they will tend to have 
spectrally varying absorbtion – and hence 
emission – which depends on phase (water or ice), 
crystal habit and particle size distribution 

•  Scattering from cloud and precipitation particles 
can by very significant – tends to lower the 
observed brightness temperature. 



Clouds can introduce non-linearities 

•  The radiative signal from clouds is often large and 
very non-linear so the tangent-linear assumption 
used in variational data assimilation may not hold. 

•  Quality control that minimizes the impact of this 
non-linearity is required. 



Clouds need to be consistent with 
temperature and humidity fields 

•  Adding clouds to the analysis without ensuring a 
consistent humidity and temperature profile can be 
problematic. 
–  For example a cloud added into a dry atmosphere will 

tend to be removed by the model. 



Final Comments 



Overall Comments 

•  Satellite data must be treated carefully. 
•  Important to be aware of instrument 

characteristics before attempting to use data. 
•  No current component of observing system 

is used “perfectly” or “as well as possible”. 
•  Computational expense plays important role 

in design of system. 



Useful References 
Auligne T.; McNally A. P.; Dee D. P., 207: Adaptive bias correction for satellite data in a 
numerical weather prediction system, QJRMS, 133, 631-642. 
Bormann, N., A. Collard,  and P. Bauer, Observation Errors and their error correlations for satellite 
radiances, ECMWF Newsletter No. 128, p17-22. available at 
http://www.ecmwf.int/publications/newsletters/pdf/128.pdf. 
Collard, A., F. Hilton, M. Forsythe and B. Candy (2011).  From Observations to Forecasts – Part 8: 
The use of satellite observations in numerical weather prediction. Weather, 66: 31–36.  
CRTM ftp site: ftp://ftp.emc.ncep.noaa.gov/jcsda/CRTM/  
Dee, D. P. , Uppala S., 2009: Variational Bias correction of satellite radiance data in the ERA-
Interim reanalysis, QJRMS, 135, 1830-1841. 
Derber, J. C. and W.-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI 
analysis system. Mon. Wea. Rev., 126, 2287 - 2299.  
Desroziers, G., L. Berre, B. Chapnik & P. Poli, 2005: Diagnosis of observation background and 
analysis-error statistics in observation space. QJRMS., 131, 3385–3396. 
McNally, A.P., J.C. Derber, W.-S. Wu and B.B. Katz, 2000: The use of TOVS level-1B radiances 
in the NCEP SSI analysis system.  Q.J.R.M.S., 126, 689-724.  
RTTOV homepage.:http://research.metoffice.gov.uk/research/interproj/nwpsaf/rtm/ 
Rizzi, R., and R.W. Saunders. Principles of remote sensing of atmospheric parameters from space.  
ECMWF Training Course.  
http://www.ecmwf.int/newsevents/training/rcourse_notes/DATA_ASSIMILATION/
REMOTE_SENSING 
Rodgers, C.D. (2000). Inverse Methods for Atmospheric Sounding: Theory and Practice. World 
Scientific Pub Co Inc. 
 



Bauer, P., A. Geer, P. Lopez and D. Salmond (2010).  Direct 4D-Var assimilation of all-sky 
radiances.  Part 1: Implementation.  QJRMS 136, 1868-1885. 
Eyre, J, and P. Menzel (1989).  Retrieval of cloud parameters from satellite sounder data: A 
simulation study.  J. Appl. Meteorol., 28, 267-275. 
Geer, A., P. Bauer and P. Lopez (2008).  Lessons learnt from the operational 1D + 4D-Var 
assimilation of rain- and cloud-affected SSM/I observations at ECMWF.  QJRMS 134, 1513-1525. 
McNally, A. (2006).  A note on the occurrence of cloud in meteorologically sensitive areas and the 
implications for advanced infrared sounders.  QJRMS 128 2551-2556. 
McNally, A. (2009).  The direct assimilation of cloud-affected satellite infrared radiances in the 
ECMWF 4D-Var.  QJRMS 135 642. 
McNally, A., and P. Watts (2006).  A cloud detection algorithm for high-spectral-resolution 
infrared sounders.  QJRMS, 129, 3411-3423. 
Joiner, J., and L. Rokke (2000).  Variational cloud clearing with TOVS data.  QJRMS 126 725-748. 

References – Cloud Assimilation 


