GSI| Fundamentals (1):

Setup and Compilation

Mark Potts
Environmental Modeling Center (EMC)
NOAA Center for Environmental Prediction
Tuesday 11 July, 2017

QOutline

* GSI fundamentals (1): Setup and Compilation
* Where to get the code
e Directory structure
e Building with the DTC build system
e Porting build to new platforms

e Using CMake to build GSI

This talk is tailored on Chapter 2 of the GSI User’s Guide
for Community Release V3.5

°

C7

Developmental Testbed Center

Downloading the Source Code

e All of the GSI source code can be obtained from:

e http://www.dtcenter.org/com-GSl/users/downloads/index.php

e This tutorial will use GSI version 3.6-beta, which will be released in final
version in September

e Available via subversion (svn)
* svn checkout https://vlab.ncep.noaa.gov/svn/comgsi/branches/
release_V3.6beta
* NOAA users may also clone the latest EMC version of the GSI source
code using git.

e git clone --recursive https://vlab.ncep.noaa.gov/git/comgsi
(email mark.potts@noaa.gov to be added to the project)

C7

Developmental Testbed Center

DTC

DTC Download website

- — - . " MI advanced
dpoint Statistical In erolatlon 'mf

You are here: DTC e« Community GSI Users Page

SR e Bvenss

GSI/EnKF System

Home

Terms of Use

2017 Joint DTC-EMC-JCSDA GSI/EnKF Tutorial

. . 07.11.2017 to 07.14.2017
You may download the following versions of the GSI/EnKF system Location: NCWCP building, 5830 University Research

Download Annual Release raries, compiling system, fixed files, and Court, College Park, MD 20740

) S site.
Announcements
Code Contributions Internal Info (UCAR only) = .
nd EnKF V1.1: Release on 08/5/2016 MET Version 6.0 Release

Documentation o« Community GSI V3.4 and EnKF V1.0: Release on 07/31/2015 04.03.2017
o Community EnKF V1.0 Beta : Release on 01/31/2015

o Community GSI system V3.3: Release on 06/30/2014 Release v3.8a of the HWRF system
Contact 11.21.2016

: To begin downloading the GSI/EnKF system or become a registered
Related Links GSI/EnKF A ts
GSI/EnKF user (first time only), Please enter your e-mail address: /En AL
The 2017 GSI/EnKF residential tutorial, July
11-14, 2017, NCWCP, College Park, MD, USA.

Observation Resources Plea-s.e cI|cI.(the GS.I/EnKF tutorial page to find
additional information.

User Support «d

Publication

The GSI/EnKF requires specific data formats for observations to be

Developmental Testbed Center

Downloading Source code

GSIVEnKF System

You may download the following versions of the GSI/EnKF system
(including source codes, libraries, compiling system, fixed files, and
sample run script) from this site.

Community GSI V3.5 and EnKF V1.1: Release on 08/5/2016
Community GSI V3.4 and EnKF V1.0: Release on 07/31/2015
Community EnKF V1.0 Beta : Release on 01/31/2015
Community GSI system V3.3: Release on 06/30/2014

To begin downloading the GSI/EnKF system or become a registered
GSI/EnKF user (first time only), Please enter your e-mail address:

DTC

Developmental Testbed Center

GSI/EnKF Downloads

Community GSI Version 3.5 and EnKF Version 1.1

The community GSI Version 3.5 and EnKF Version 1.1 was released on
August 3, 2016.

NOTE: This tarball includes the GSI and EnKF code, libraries, fixed files,
run script, and utilities. It does not include CRTM cofficients. The CRTM
cofficients are available as a separate download. Both tarballs are
necessary to run GSI and EnKF.

e comGSIv3.5 EnKFvl.1 tarball (15 MB)
e CRTM 2.2.3 Big_Endian coefficients tarball (937 MB)

Release notes Check
Known issues Check

2

Developmental Testbed Center

Download GSI Fixed Files

BRI AW IR IS TR WA T TRENWE S
—_—

To reduce the size of release GSI tar file, the following fix files are
released separately from the GSI tar file:

e fix files to run Global GSI (121 MB):

only download and untar it inside the fix directory if run global
GSI.

e Little Endian fix files (117 MB) :
only download and untar it inside the fix directory if needed.

S,

Developmental Testbed Center

Unpack Downloads

* Two tar files
e comGSIv3.5 EnKFvl.1.tar.gz
* CRTM_Coefficients-2.2.3.tar.gz

e Unpack source code & CRTM coefficients

e tar —xvfz comGSIv3.5 EnKFvl.1.tar.gz
e Tar -xvfz CRTM_Coefficients-2.2.3.tar.gz

C7

Developmental Testbed Center

Tour of the Directory Structure

If you download from DTC or use svn to obtain the source
code, you will find the following scripts and directories
inside the top level of the GSI directory :

e arch/

e clean

e compile

e configure

o fix/

e makefile_ DTC
e run/

e src/

o util/

2

Developmental Testbed Center

DTC Build Infrastructure

e Using the DTC Build system

e [arch directory contains rules & scripts for build.

o [arch/Config.pl perl script for parsing system info &
combining together configure.gsi file.

o [arch/preamble: uniform requirements for the code, such as
word size, etc.

» [arch/configure.defaults default platform settings
o [arch/postamble: standard make rules & dependencies

e ./clean script to clean the build.

» .[configure script to create configuration file configure.gsi;
contains info on compiler, MPI, & paths.

» ./compile script to compile executable.
» ./makefile top level makefile for build.

°

C7

Developmental Testbed Center

The rest

* fix/ directory containing fixed parameter files
e Background error covariance and observation errors
e Observation data control files
e BUFR tables for Prepbufr files
* run/
* Run scripts and namelists
e gsi.exe executable

» src/ source directory

¢ libs/ supplemental library source code
* main/ main GSI source code
e main/enkf EnKF source code

e util/ additional community tools

C7

Developmental Testbed Center

Supplemental Libraries (libs/)

* bacio/ NCEP BACIO library

* bufr/ NCEP BUFR library

e crtm_2.2.3/ JCSDA Commuity Radiative Transfer Model

» gsdcloud/ GSD Cloud Analysis

e misc/ Misc additional libraries

* nemsio/ Support for NEMS I/O

o sfcio/ NCEP GFS surface file I/0 module

» sigio/ NCEP GFS atmospheric file I/O module

» sp/ NCEP spectral-grid transforms (global application only)

e W3emc_v2.0.5/ NCEP W3 library (date/time manipulation,
GRIB)

* W3nco_v2.0.6/ NCEP W3 library (date/time manipulation, GRIB)

©

C7

Developmental Testbed Center

Building GSI

System Requirements/Libraries

* FORTRAN 90+ compiler
* C compiler

* Perl

* GNU Make

* NetCDF V4+

e HDF5

e Linear algebra library (ESSL, MKL or LAPACK/
BLAS)

* MPIV1.2+ & OpenMP
* WRF V3.5+

16 o

Developmental Testbed Center

Supported Platforms/Compilers

Platform _|F90 compiler |C compiler

IBM* xIf xlc

Linux Intel (ifort) Intel (icc)
Intel (ifort) Gnu (gcc)
PGl (pgf90) PGl (pgcc)
PGl (pgf90) Gnu (gcc)
Gnu (gfortran) Gnu (gcc)

Mac* PGl (pgf90) PGl (pgcc)

‘ DTC ’ * Legacy support provided on platforms no longer available for testing

Developmental Testbed Center

%

Building GSI using DTC build

* Build sequence
e ./clean —a
e Set library paths

setenv WRF_DIR Location_of_WRF _directory

setenv LAPACK_PATH (typically only needed for Linux w/ ifort or
gfortran).

e ./configure
Customize file configure.gsi if necessary

o ./compile

e Successful compilation will produce:
e comGSIv3.5 EnKFv1.1/run/gsi.exe

Developmental Testbed Center

2

Clean Compilation

* To remove all object files and executables, type:
clean

* To remove all built files, including the configure
file, type: clean —a
e A clean all needed if:
Compilation failed
Want to change configuration file

C7

Developmental Testbed Center

Diagnosing Build Issues

« How the build system works
« What to do when the build fails

How the build works

* Running ./configure creates file
configure.gsi by:
* Running the Perl script /arch/Config.pl

e Script Config.pl queries the system &
selects the appropriate entry from /arch/
configure.defaults

* Results are saved to configure.gsi.

1S ©

Developmental Testbed Center

ldentifying Build Errors

e Most build or run problems must be diagnosed by use of
the log files.

e For build errors pipe the standard out and standard error
into a log file with a command such as (for csh)
.Jcompile >& build.log

e Search the log file for any instance of the word "Error." Its
presence indicates a build error. Be certain to use the exact
spelling with a capital "E."

e If the build fails, but the word "Error" is not present in the
log file, it typically indicates a failure in link the phase.
Information on the failed linking phase will be present at
the very end of the log file.

°

&,

Developmental Testbed Center

Fixing Build Issues

e Most build problems are due to non-standard
installation of one of the following:

e compiler,
* mpi,
e or support libraries.

e Edit paths in the file configure.gsi to correctly reflect
your system.

* When the build succeeds, modify file arch/
configure.defaults to include new settings.

e Please report issues to gsi-help so they can be
addressed in next release.

°

C7

Developmental Testbed Center

./configure

Please select from among the following supported platforms.

Linux x86_64, PGI compilers (pgf90 & pgcc)

Linux x86_64, PGI compilers (pgf90 & gcc)

Linux x86_64, GNU compilers (gfortran & gcc)

Linux x86_64, Intel/gnu compiler (ifort & gcc)
Linux x86_64, Intel compiler (ifort & icc)

Linux x86_64, Intel compiler (ifort & icc) IBM POE
Linux x86_64, Intel compiler (ifort & icc) SGI MPT

N OO B WWN R

Enter selection [1-7]

C7

~

Developmental Testbed Center

J/configure

Please select from among the following supported platforms.

Linux x86_64, PGI compilers (pgf90 & pgcc)

Linux x86_64, PGI compilers (pgf90 & gcc)

Linux x86_64, GNU compilers (gfortran & gcc)

Linux x86_64, Intel/gnu compiler (ifort & gcc)
Linux x86_64, Intel compiler (ifort & icc)

Linux x86_64, Intel compiler (ifort & icc) IBM POE
Linux x86_64, Intel compiler (ifort & icc) SGI MPT

N O o A WN R

Enter selection [1-7]

C7

~

Developmental Testbed Center

SHELL = /bin/sh configure.gsi
Listing of options that are usually independent of machine type.

When necessary, these are over-ridden by each architecture.
Architecture specific settings

Settings for Linux x86_64, Intel compiler (ifort & icc) (dmpar,optimize)#

LDFLAGS = -WI,-rpath,/glade/apps/opt/netcdf/4.3.0/intel/12.1.5/lib -openmp
COREDIR = /glade/scratch/stark/GSI/src/intel/release V3.3 intel12.1.5
INC_DIR = $(COREDIR)/include

SFC = ifort

SF90 = ifort -free

SCC = icc

INC_FLAGS = -module S(INC_DIR) -I S(INC_DIR) -I /glade/apps/opt/netcdf/4.3.0/

intel/12.1.5/include

C7

Developmental Testbed Center

°

SHELL = /bin/sh configure.gsi
Listing of options that are usually independent of machine type.

When necessary, these are over-ridden by each architecture.
Architecture specific settings

Settings for Linux x86_64, Intel compiler (ifort & icc) (dmpar,optimize)#

LDFLAGS = -WI,-rpath,/glade/apps/opt/netcdf/4.3.0/intel/12.1.5/lib -openmp
COREDIR = /glade/scratch/stark/GSI/src/intel/release V3.3 intel12.1.5
INC_DIR = $(COREDIR)/include

SFC = ifort

SF90 = ifort -free

SCC = icc

INC_FLAGS = -module S(INC_DIR) -I S(INC_DIR) -I /glade/apps/opt/netcdf/4.3.0/

intel/12.1.5/include

C7

Developmental Testbed Center

©

4 N
SHELL = /bin/sh configure.gsi
Listing of options that are usually independent of machine type.
When necessary, these are over-ridden by each architecture.
Architecture specific settings
Settings for Linux x86_64, Intel compiler (ifort & icc) (dmpar,optimize)#
LDFLAGS = -WI,-rpath,/glade/apps/opt/netcdf/4.3.0/intel/12.1.5/lib -openmp
COREDIR = /glade/scratch/stark/GSI/src/intel/release V3.3 intel12.1.5
INC_DIR = S(COREDIR)/include
SFC = ifort
SFA0 = ifort -free
SCC = icc
INC_FLAGS = -module S(INC_DIR) -I S(INC_DIR) -I /glade/apps/opt/netcdf/4.3.0/
intel/12.1.5/include

C7

°

Developmental Testbed Center

SHELL = /bin/sh configure.gsi
Listing of options that are usually independent of machine type.

When necessary, these are over-ridden by each architecture.
Architecture specific settings

Settings for Linux x86_64, GNU compilers (gfortran & gcc) (dmpar,optimize)#
LDFLAGS = -WI,-noinhibit-exec

COREDIR = /d1/stark/GSl/src/intel/V3.2/release V3.2
INC_DIR = S(COREDIR)/include

SFC = ifort

SF90 = ifort —free

SCC = icc

INC_FLAGS = -I S(INC_DIR) -I /usr/local/netcdf3-ifort/include

2

Developmental Testbed Center

4 .)
Fortran Build Flags: configure.gsi

FFLAGS i4r4 = -integer-size 32 -real-size 32
FFLAGS i4r8 = -integer-size 32 -real-size 64
FFLAGS i8r8

FFLAGS_DEFAULT = -fp-model precise -assume byterecl -fpe0 -ftz -convert
big_endian

FFLAGS_DEBUG = -00 -g -traceback -check bounds -warn errors -fpstkchk -mp
FFLAGS OPT = -03
FFLAGS = -03 S(FFLAGS_DEFAULT) S(INC_FLAGS) S(LDFLAGS) -DLINUX

-integer-size 64 -real-size 64

1S ©

Developmental Testbed Center

4 . C)
configure.gsi

CPP = cpp
CPP_FLAGS = -P-D_REAL8_-DWRF -DLINUX

CPP_F90FLAGS = -traditional-cpp

MPI compiler wrappers

DM FC = mpif90 -f90=$(SFC)
DM_F90 = mpif90 -free -f90=S(SFC)
DM_CC = ICC

2

Developmental Testbed Center

4 . C)
configure.gsi

CPP = Ccpp
CPP_FLAGS = -P-D_REAL8_-DWRF -DLINUX

CPP_F90FLAGS = -traditional-cpp

MPI compiler wrappers

DM_FC = mpif90
DM_F90 = mpif90 -free
DM_CC = ICC

2

Developmental Testbed Center

4 .)
, configure.gsi
Library Paths

NETCDFPATH = /usr/local/netcdf3-ifort
NETCDFLIBS = -LS(NETCDFPATH) -Inetcdff -Inetcdf
WRF_DIR = /d1/stark/WRF/intel/release 3-5-1

Check that your system has libraries in the specified path
and with the specified names.

°

C7

Developmental Testbed Center

Getting Help

e For more detailed information on installation
see: GS| User’s Guide, chapter 2
o www.dtcenter.org/com-GSl/users/docs/index.php

* Check the FAQ

e www.dtcenter.org/com-GSIl/users/support/fags/index.php

e Check the Known Issues

e www.dtcenter.org/com-GSl/users/support/known issues/

e For further assistance contact:
gsi-help@ucar.edu

C7

Developmental Testbed Center

Building GSI with CMake

C7

Developmental Testbed Center

Overview

Cross platform builds
Open source and generally already installed on most platforms

Out of source builds ensure that the source tree is not modified and allow for simple changes

to build and link options.

Provides an easily editable Cache file (text editor or cCMake) to tweak build options and
provide a full description of final build

Automatically finds libraries, files and executables based on environment variables, system

settings, command-line definitions, hard coded paths based on hostname or other variable.
Connects seamlessly to continuous build packages like Hudson/ Jenkins

Provides a built in unit and regression testing framework

s easily extensible and modular.

Automatically determines dependencies and allows for parallel builds

Allows for easy adaptation to various compilers and even works well with TAU profiling

compiler scripts

Building with CMake

e (CMake command is somewhat analogous to “configure”

® Run prior to building in order to identify compilers, locate packages and libraries

needed for the build
* Allows for command line options, but basic command is
“cmake path-to-GSI_ROOT”
* Note that the path is not to GSI_ROOT/src, but rather to GSI_ROOT

* After completion, run “make —j N” to build in parallel
® Unlike ordinary make, all objects and module files are contained in the build

directory, not in the src directory.
® Modules are moved to build/include
® Binaries are in build/bin
® Libraries are in build/lib

® Object files are in build/src/ CMakeFiles/*.dir

C7

Developmental Testbed Center

DTC

Sample
output

Developmental Testbed Center

[JOX) mpotts@yslogin6:build — ssh -Y -K zin — 125x39
emc—lw-mpotts:~/data/comgsi/build 226; cmake -DBUILD_CORELIBS=ON ..
—— The C compiler identification is GNU 5.2.0
The CXX compiler identification is GNU 5.2.0
Check for working C compiler: /export/emc-lw-mpotts/mpotts/data/bin/gcc
Check for working C compiler: /export/emc—lw-mpotts/mpotts/data/bin/gcc —— works
Detecting C compiler ABI info
Detecting C compiler ABI info - done
Detecting C compile features
Detecting C compile features - done
Check for working CXX compiler: /export/emc-lw-mpotts/mpotts/data/bin/g++
Check for working CXX compiler: /export/emc—lw-mpotts/mpotts/data/bin/g++ —— works
Detecting CXX compiler ABI info
Detecting CXX compiler ABI info - done
Detecting CXX compile features
Detecting CXX compile features - done
The Fortran compiler identification is GNU 5.2.0
Check for working Fortran compiler: /export/emc—lw-mpotts/mpotts/data/bin/gfortran
Check for working Fortran compiler: /export/emc-lw-mpotts/mpotts/data/bin/gfortran -- works
Detecting Fortran compiler ABI info
Detecting Fortran compiler ABI info - done
Checking whether /export/emc—lw-mpotts/mpotts/data/bin/gfortran supports Fortran 90
Checking whether /export/emc-lw-mpotts/mpotts/data/bin/gfortran supports Fortran 90 —- yes
Setting paths for Generic System
/export/emc—lw-mpotts/mpotts/data/comgsi
Setting GNU flags
Setting GNU Compiler Flags
—— Found MPI_C: /export/emc—lw-mpotts/mpotts/lib/libmpi.so
—— Found MPI_CXX: /export/emc—lw-mpotts/mpotts/lib/libmpi_cxx.so;/export/emc—lw-mpotts/mpotts/1lib/1libmpi.so
—— Found MPI_Fortran: /export/emc—lw-mpotts/mpotts/lib/libmpi_usempif@8.so0;/export/emc-lw-mpotts/mpotts/lib/libmpi_usempi_ign
ore_tkr.so;/export/emc—lw-mpotts/mpotts/lib/libmpi_mpifh.so;/export/emc-lw-mpotts/mpotts/lib/libmpi.so
—— Found NetCDF: /export/emc-lw-mpotts/mpotts/data/lib64/libnetcdff.a;/export/emc-lw-mpotts/mpotts/data/lib/libnetcdf.a
—— HDF5: Using hdf5 compiler wrapper to determine C configuration
—— HDF5: Using hdf5 compiler wrapper to determine Fortran configuration
—— Found HDF5: /export/emc—lw-mpotts/mpotts/data/lib/libhdf5_fortran.so;/export/emc—-lw-mpotts/mpotts/data/1ib/libhdf5.s0;/usr
/1ib64/librt.so;/export/emc-lw-mpotts/mpotts/data/lib/libsz.so;/export/emc-lw-mpotts/mpotts/data/lib/libz.so;/usr/1ib64/1ibd1l
.S0;/usr/1ib64/1ibm.so (found version "1.8.15.1") found components: C HL
—— Could NOT find CURL (missing: CURL_LIBRARY CURL_INCLUDE_DIR)
trying to find lapack
—— Looking for Fortran sgemm

CMake options

® Build in debug mode—

cmake —DCMAKE BUILD TYPE=DEBUG Path-to-GSI
® Build core libraries

cmake —-DBUILD CORELIBS=ON Path-to-GSI

® Build Global without WRF dependencies (regional with WRF is

detault)
cmake —-DBUILD GLOBAL=ON -DUSE WREF=OFF Path-to-GSI

C7

Developmental Testbed Center

Current configurations

® (CMake is currently configured to fully support the following machines—
e WCOSS
® Theia
o $4
® Cheyenne

export HDF5 ROOT=/glade/u/apps/ch/opt/netcdf/4.4.1.1/intel//16.0.3

export WRFPATH=/glade/p/work/wrfhelp/PRE COMPILED CODE CHEYENNE/WRFV3.9 intel dmpar large-file
module load intel/16.0.3 netcdf/4.4.1.1 impi/5.1.3.210 mkl/11.3.3 cmake/3.7.2

mkdir build; cd build
cmake -DHDF5 dl LIBRARY RELEASE:FILEPATH=/usr/l1ib64/1libdl.so -DBUILD CORELIBS=ON \

-DHDF5 m LIBRARY RELEASE:FILEPATH=/usr/lib64/libm.so

® Yellowstone
setenv HDF5 ROOT /glade/apps/opt/hdf5/1.8.16/intel/16.0.2

setenv WRFPATH /glade/p/work/wrfhelp/PRE COMPILED CODE/WRFV3.9 intel dmpar large-file
module load intel/16.0.3 netcdf/4.4.1 mk1/10.3.11 cmake/3.3.1

mkdir build; cd build
cmake -DBUILD_ CORELIBS=ON —DHDF5_m_LIBRARY_RELEASE :FILEPATH=/usr/1ib64/libm.so \

-DHDF5 rt LIBRARY RELEASE:FILEPATH=/usr/lib64/librt.so \
-DHDF5 dl LIBRARY RELEASE:FILEPATH=/usr/1ib64/libdl.so -DCMAKE EXE LINKER FLAGS:STRING="-parallel"

DTC

Developmental Testbed Center

Building on a new system

® Specity desired compiler using Environment variables CC,

CXX, EC

® Specity WRF location with environment variable WRFPATH
* Specity -DBUILD_CORELIBS=ON if you do not have pre-
compiled libraries (bacio, sp, nemsio, etc.)

* Using git --recursive to clone the repository from VLab will

automatically pull all required library source code

o Manually specify location of NetCDF and HDF?5 files if they

are not in standard install locations

C7

Developmental Testbed Center

Tweaking CMake settings and dealing
with errors

® Cmake creates a CMakeCache.txt file in the build directory

® can be edited with any text editor (e.g. vim, emacs, etc.)

* Fill in missing/NOT FOUND variables with correct paths/filenames
® Use the ccmake gui to edit and test changes on the fly

® run “ccmake .”in the build directory

* Type “t” to toggle advanced setting "on”

® use ”/” to search for variable names

® Hit enter and then edit

* Type ”c” to run cmake

® If no errors are encountered, type “g” to generate a new

CMakeCache.txt file

C7

Developmental Testbed Center

ccmake
sample

DTC

Developmental Testbed Center

FRAMEMODULE

FRAMEPACK

GITCOMMAND

GSICONTROL
HDF5_CXX_COMPILER_EXECUTABLE
HDF5_C_COMPILER_EXECUTABLE
HDF5_C_INCLUDE_DIR
HDF5_DIFF_EXECUTABLE

HDF5_DIR
HDF5_Fortran_COMPILER_EXECUTAB
HDF5_Fortran_HL_INCLUDE_DIR
HDF5_HL_INCLUDE_DIR
HDF5_IS_PARALLEL
HDF5_d1_LIBRARY_DEBUG
HDF5_d1_LIBRARY_RELEASE
HDF5_hdf5_LIBRARY_DEBUG
HDF5_hdf5_LIBRARY_RELEASE
HDF5_hdf5_fortran_LIBRARY_DEBU
HDF5_hdf5_fortran_LIBRARY_RELE
HDF5_hdf5_h1_LIBRARY_DEBUG
HDF5_hdf5_h1_LIBRARY_RELEASE
HDF5_hdf5h1_fortran_LIBRARY_DE
HDF5_hdf5h1_fortran_LIBRARY_RE
HDF5_m_LIBRARY_DEBUG
HDF5_m_LIBRARY_RELEASE
HDF5_rt_LIBRARY_DEBUG
HDF5_rt_LIBRARY_RELEASE
HDF5_sz_LIBRARY_DEBUG
HDF5_sz_LIBRARY_RELEASE
HDF5_z_LIBRARY_DEBUG
HDF5_z_LIBRARY_RELEASE
HGCOMMAND

HOSTNAME

mpotts@yslogin2:build-y2 — ssh -Y -K -X yellowstone.ucar.edu — 131x40

/glade/p/work/wrfhelp/PRE_COMPILED_CODE_CHEYENNE/WRFV3.9_intel_dmpar_large-file/frame/module_mac
/glade/p/work/wrfhelp/PRE_COMPILED_CODE_CHEYENNE/WRFV3.9_intel_dmpar_large-file/frame/pack_utils

DF5_CXX_COMPILER_EXECUTABLE-NOTFOUND
/glade/apps/opt/netcdf/4.4.1/intel/16.0.3/bin/h5cc
/glade/apps/opt/netcdf/4.4.1/intel/16.0.3/include
/glade/apps/opt/netcdf/4.4.1/intel/16.0.3/bin/h5diff
HDF5_DIR-NOTFOUND
HDF5_Fortran_COMPILER_EXECUTABLE-NOTFOUND
/glade/apps/opt/hdf5/1.8.16/intel/16.0.2/include
/glade/apps/opt/netcdf/4.4.1/intel/16.0.3/include
OFF
HDF5_d1_LIBRARY_DEBUG-NOTFOUND
/usr/1ib64/1ibdl.so
HDF5_hdf5_LIBRARY_DEBUG-NOTFOUND
/glade/apps/opt/netcdf/4.4.1/intel/16.0.3/1ib/libhdf5.s0
HDF5_hdf5_fortran_LIBRARY_DEBUG-NOTFOUND
/glade/apps/opt/hdf5/1.8.16/intel/16.0.2/1ib/1ibhdf5_fortran.so
HDF5_hdf5_h1_LIBRARY_DEBUG-NOTFOUND
/glade/apps/opt/hdf5/1.8.16/intel/16.0.2/1ib/1ibhdf5_hl.so
HDF5_hdf5h1_fortran_LIBRARY_DEBUG-NOTFOUND
/glade/apps/opt/hdf5/1.8.16/intel/16.0.2/1ib/1ibhdf5h1_fortran.so
HDF5_m_LIBRARY_DEBUG-NOTFOUND
/usr/1ib64/1ibm.so
HDF5_rt_LIBRARY_DEBUG-NOTFOUND
/usr/1ib64/1librt.so
HDF5_sz_LIBRARY_DEBUG-NOTFOUND
/glade/apps/opt/netcdf/4.4.1/intel/16.0.3/1ib/1libsz.so
HDF5_z_LIBRARY_DEBUG-NOTFOUND
/glade/apps/opt/netcdf/4.4.1/intel/16.0.3/1ib/libz.so0
/usr/bin/hg

slogin2

HDF5_CXX_COMPILER_EXECUTABLE: HDF5 C++ Wrapper compiler. Used only to detect HDF5 compile flags.

Press [enter] to edit option
Press [c] to configure
Press [h] for help

Press [g] to quit without generating

Press [t] to toggle advanced mode (Currently On)

(Make Version 3.3.1

Regression testing with CMAke

® CMake includes the CTest module by default

® GSI has been configured to run the EMC regression testing suite via CTest
* Currently only supported on WCOSS, Theia, and S4 (Univ. Wisconsin)
® Regression test cases need to be downloaded
* Control experiment using trunk/master may need to be built/run

® Run using either ctest directly or “make test” with or without arguments
* “make test ARGS="...”is the same as “ctest ARGS....”
* To launch all 15 tests at once, run in parallel with “ctest —j 15”

* To run individual tests, use “ctest —I start,stop,stride,testX, testY,....

C7

Developmental Testbed Center

Regression testing results

® Results will be run in a scratch directory where available
° /ptmppl /$SLOGNAME on WCOSS
* /scratch/NCEPDEV/stmp3/$LOGNAME on Theia
e /scratch/short/$LOGNAME on S4

® Test directory will be based on the location of your build
directory (e.g. _global_save_ $ LOGNAME_comgsi_build)

® 15 subdirectories containing 4 directories each (loproc-exp,
hiproc-exp, loproc-control, hiproc-control) + one more directory
with comparison of results

Developmental Testbed Center

C7

Developmental Testbed Center

C7

Conclusions

e CMake is designed to make codes more portable

* Should run out of the box on EMC platforms and with slight
tweaks on NCAR machines

* If libraries are not available, use in conjuction with git clone —
recursive to pull src for library dependencies and then build

libraries along with GSI

® Use ccmake or edit CMakeCache.txt file directly to identity
any missing pieces to build (e.g. HDF5 libraries)

¢ Configure global o‘l)tion without WRF dependencies with

cmake —DBUILD CORELIBS=ON —DUSE WRF=OFF —DBUILD GLOBAL=ON path-to-GSI

