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e Satellites instruments do not directly measure the
atmospheric state.

* |nstead they measure radiation emitted by and/or
transmitted by the atmosphere.

* This presentation describes the relationship between the

atmospheric state and the observed radiation. And how
the information contained therein is exploited through
assimilation into the NWP model.

DTC GSI Tutorial 2017 3
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* To effectively assimilate a data type it is important to
understand the measurement system. This means:

— The measurement needs to be accurately simulated from
the model state.

— Where the measurement cannot be simulated accurately,
this needs to be understood so that we can:
* Bias correct, if possible.

* Remove data through quality control.

— The full error budget of the system needs to be understood
too, including:

e (QObservation error
* Forward model error
* Representivity Error

DTC GSI Tutorial 2017



Different Types of Satellite Data
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Different Types of
Satellite Data

e Active (bouncing a signal off something)

0
— Wind Lidar &g.
Rl
— Cloud radar

— Scatterometry

DTC GSI Tutorial 2017 7



Different Types of
Satellite Data

* Occultation (signal passing through
atmosphere)

HALOE
SAGE
SCIAMACHY
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Visible instruments
IR instruments

Microwave instruments
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* This talk will focus on passive infrared and
microwave instruments as they are the most

common and biggest contributors to
Numerical Weather Prediction

DTC GSI Tutorial 2017 10
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* Limb sounding: Viewing the Earth’s §§
atmosphere tangentially «~
— Higher vertical resolution
— Lower horizontal resolution

— Most often used for observing the
stratosphere and above.

— Not often used in NWP

DTC GSI Tutorial 2017 11
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Geometry: 5§%
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Limb vs Nadir Sounding Gy
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* Nadir sounding: Viewing towards the &f
Earth’s surface 2

— Lower vertical resolution
— Higher horizontal resolution
— Most often used in NWP
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Theory of Assimilating Observations
from Passive Nadir Sounders

DTC GSI Tutorial 2017 14
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* Radiance, |, is the radiant energy emitted per unit
time, per unit frequency interval, per unit area,
and per unit solid angle in a specified direction at

a given frequency, v.

— The units for radiance are Wm=2sri(cm)! or equivalent. Radiance
is often expressed as the temperature that would produce the
equivalent black-body radiance: the Brightness Temperature.

* This is not to be confused with Irradiance or Flux
Density which is the total power per unit
frequency interval, crossing perpendicular to a
unit area which has units Wm=?(cm-1)-.

DTC GSI Tutorial 2017 15
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Absorption of radiance in a cZ%
.8

9)

&)
L volume element Vign?
Consider monochromatic | | +d|
radiation of frequency v —_— —_—
passing through a volume \
element of length ds and dA

. < >

cross-sectional area dA. ds

It contains a gas with n
molecules per unit
volume, each with an
absorption coefficient of

K, (I, +dl,) dA=-(nk,ds) I, dA

(n k, ds) is the absorptivity of the
velume element. "

If we ignore scattering, the change in
radiance across the volume due to
absorption is given by:



D ATMOSp,,
(@] P“ £ /0

S '?70 . . \‘QEAT/*l&
@ Radiative Transfer AR,
.. : : z m
v Emission of radiance in a volume element ¢ E
%e%w » S\&o &4’ * Kk 2

If we continue to ignore

scattering, the change in , |, +dl,

radiance across the — —

volume due to emission
from the same volume
element is given by:

(I,+dl,)dA=¢,S, dA

Where g, is the emissivity of the volume and S, is the Source
Function. In regions of local thermodynamic equilibrium (LTE) —

as is usually the case in the troposphere and stratosphere — the
Source Function is the Planck Function, B(T), where T is the
temperature.

AN

dA

ds
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Combining the terms for emission and absorption gives
(I,+dl,) dA=-(nk,ds) |, dA +€,S, dA

Kirchoff’s Law states that the absorptivity and the emissivity are

equal, so (n k,ds) = g,

If we now define the optical depth, t, through dt,
obtain the Schwatzchild Equation of Radiative Transfer:

=-nk,ds, we

dl,/dt, = 1,-S,

As stated above, for LTE, S, = B,(T), so
dl,/dt, =1,-B,(T)

DTC GSI Tutorial 2017
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scattering atmosphere WP

dlv* — I, —~(1-,)B,(T)-w, f I, (Q)P,(Q)dQ
dt

v x '\
Emission term Radiation scattered from all

Extinction term directions, Q, into the beam
(absorption+scattering)

Now the optical depth, t* , is an extinction optical depth and is
defined via dt*, = -n (k +0,) ds, where o, is the the scattering
coefficient.

w, is the single scattering albedo and is given by o /(k +0,).

P(Q) is the phase function and describes the angular distribution of
how incident radiance is scattered.

DTC GSI Tutorial 2017 19
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The general solution to the Schwartzchild equation is:
—(Tn— %) —(1-
I(t)=1,(t,)e ™™ +ft S(t)e"dr
A

Radiation at
observer

Emission of radiation from the
| atmosphere itself including
Radiation at lower reabsorption of this radiation

Boundary (usually the
surface for terrestrial

planets) ... |
... attenuated by the .

intervening atmosphere e G5l Tutorial 2017 Iv(TZZ)
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The general solution to the Schwarzchild equation is:

I(t)=1(t,)e" ™™ + frz S(t)e"dr

The transmission, between optical depths tand t;, 7(t,t,) is €% and hence
dT=-e*%dr = —T(1,T;) dt. So now the solution is:

T2
h
Iv(r1)=lv(1'2)T(7:2,T1)+fT S(t)dT where o
1 K(p) = (p.p1)
Which we can transform into pressure, p, coordinates: dp
is the historical definition

of the weighting function
as it is the weight given to
the source function at each

level in the solution.
DTC GSI Tutorial 2017 21
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This definition of the weighting function was used in many
early retrieval schemes. But in modern data assimilation, the
weighting often refers to (e.g., Rogers, 2000) the derivative of
the observation (which we now designate y) with respect to
the state vector , x. This is the Jacobian matrix, K=dy(x)/dx

Here x is typically a vector of temperatures, molecular
abundances (including major absorbers such as H,0, CO,, O,,
CH,) for many layers throughout the atmosphere, surface
properties and often cloud and aerosol properties.

DTC GSI Tutorial 2017 22
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So where does atmospheric s
absorption come from? %
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 Molecules in the atmosphere have
energy stored as rotational, vibrational
and electronic components

 The energy states are quantised and
may be transformed through emission
or absorption of electromagnetic
radiation. This results in discrete
spectral emission/absorption features
in the spectrum.

Vi

Vibrational Modes for CO,

* Inthe microwave these are due to rotational transitions
 Intheinfrared these are rotational and vibrational transitions
 Electronic transitions manifest themselves in the visible and ultraviolet

DTC GSI Tutorial 2017 23



Vibration-Rotation Spectrum:
Ground->v, transition for CO,
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An example of a vibration-rotation band in the infrared CO, spectrum. Only
changes in the rotational quantum number, J, of -1,0 or 1 are optically active,
producing the characteristic three branch structure to the band (some linear
molecules have the Q-branch missing).utorial 2017 24
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* Spectral lines will be broadened through one of the
following three processes:
— Natural broadening: The finite time of the quantum transition

corresponds to an uncertainty in the energy through the
uncertainty principle.

— Doppler broadening: Thermal motion of the molecules along the

line of sight result in apparent uncertainty in the frequency
through the Doppler effect.

— Collisional (or pressure) broadening: Collisions between
molecules during emission and absorption results in modification
of energy levels and hence broadening of the spectral line.

* Inthe lower atmosphere, collisional broadening

dominates, while Doppler broadening is more important
in the upper atmosphere.

DTC GSI Tutorial 2017 25
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 Continuum absorption: Mostly the combined effect of the far
wings of lines from collisional broadening or collisionally induced
absorption bands (O,, N,, CO, on Venus!). Possible effect from
dimers of H,0. In the 8-12m infrared window, the H,O continuum
is the dominant source of opacity (except for clouds).

* Absorption and scattering from cloud particles. Mie theory
describes liquid water cloud RT well. Ice crystals are more
complicated. Particle size distributions can be important to
characterize.

* Absorption and scattering from aerosols. Similar problem to cloud
with added complication of varying compositions.

All the above tend to have much broader spectral features than
gaseous absorpt—ion- DTC GS Tutorial 2017 -
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Sensitivity to
cloud and/or
precipitation
increases as
frequency
increases
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lllustration of
Jacobian or Weighting Function
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Radiation observed at the top
of the atmosphere will
originate predominantly from
layers where the emission is
high and is not obscured by
overlying layers.

Contribution

Layer

Atmosphere

DTC GSI Tutorial 2017
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Moderate absorption
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More overlying atmosphere

High absorption

Many molecules: High emission

Surface ”
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We also need to know the
surface emissivity

* Over ocean we usually have models, e.g.:
— ISEM (infrared)
— FASTEM (microwave)

 Over land we often use atlases, either of
the emissivities themselves or of the land

type.

* Emissivities can also be retrieved from the
observations themselves.

DTC GSI Tutorial 2017 34
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Surface emissivity is high,
particularly for water
surfaces

o8 o

ch. 8 hirs surface emissivity
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Clouds generally have lower brightness

temperatures than the relatively warm
DTC GSI Tutorial 2017
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Surface emissivity is high
for land and ice/snow, but
very low for water surfaces
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* To exploit these radiances, it is important to have an

accurate way of simulating them from the atmospheric
state.

e Line-by-line (LBL) models use state-of-the-art

spectroscopic databases to make these calcuations at high
spectral resolution.

* These monochromatic calculations are then combined

using the instruments’ spectral response functions (ISRFs)
to simulate what the instrument observes.

e This can be very slow. Too slow for operational radiance
assimilation.

DTC GSI Tutorial 2017 37
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To allow radiances to be operationally assimilated, fast
radiative transfer models, which use regression schemes
to simulate the output from LBL models, have been
produced.

The two main fastmodels used operationally in NWP
centers are RTTOV (developed by the EUMETSAT NWPSAF)
and CRTM (JCSDA).

The errors in the fastmodel are not usually a significant
component of the total error budget.

Most importantly, fastmodels allow the Jacobians (and the
model adjoint) to be calculated efficiently.

DTC GSI Tutorial 2017 38



EATY
WEATHe

v
<
<
O@
7
0

.3
4’***3

Basic theory of satellite observations

Basic Concept of a Retrieval
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Retrievals

* So we have observations of the radiation
emitted from the atmosphere at various
frequencies corresponding to:

— Emission and absorption at various levels

— Emission and absorption by various gases/
clouds/aerosols

e Now what?

DTC GSI Tutorial 2017 40
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Unless we can infer the temperature profile we won’t be able to do
much else.

To do this we need to choose frequencies where we know the
absorption profiles already

We choose gases with a constant distribution to do this.
For the infrared we use CO,

For the microwave we use O,

These are hence known as temperature sounding bands.

But all bands are sensitive to temperature, often — as in the case of
H,O — with sharper Jacobians.

Once we have a good temperature profile we can use that to infer
molecular abundances of variable species using appropriate
frequencies.

— This is actually performed simultaneously with the temperature estimation when
we do data assimilation

DTC GSI Tutorial 2017 41
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Obtaining vertical profiles

The Jacobians give the sensitivity
to the vertical profiles of
temperature/gases/clouds etc.

If we sum the contribution of each
channel, we can get a very
accurate

estimate of the mean atmospheric
temperature (with very low
vertical) resolution.

If we take differences between
each of the channels we can infer
the profile with high vertical
resolution, but the result will be

Pressure hPa

VR
Vi
by 7
I y

- i L 1 I L I 1 1 1 1
0.00 0.02 0.04 0.06 0.08 0.10
Jacobian (dBT/dT)

When we assimilate the radiance observations

we are effectively producing a minimum
variance solution to the problem: which is a

Very noisy. bTC GsI Teempromise between these two extremesa»



EATY &

()
Nyas

Assimilating satellite radiances

Data Assimilation Equation
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J=J,+]), +]
J = (x-x,,) "B, 1(x-x,)) + (y-K(x))T(E+F)(y-K(x)) + J
J = Fit to background + Fit to observations + constraints

X = Analysis
X, = Background
(usually a short-range forecast from the previous cycle)
B, =Background error covariance
K = Forward model (nonlinear)
O =O0Observations
E+F =R =Instrument error + Representativeness error
Jc =Constraint term

DTC GSI Tutorial 2017 44
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J = (x-x,,) "B, 1(x-x,) + (y-K(x))T(E+F)(y-K(x)) + I

The difference between the observations and the
background transformed into model space, the first
guess departure, is an important measure. It is often
the basis of quality control procedures.

DTC GSI Tutorial 2017 45
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Assimilating satellite radiances

Quality Control
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* The quality control step may be the most important
aspect of satellite data assimilation.

e Data which has gross errors or which cannot be

properly simulated by forward model must be
removed.

* Most problems with satellite data come from 4
sources:
— Instrument problems.
— Clouds and precipitation simulation errors.
— Surface emissivity simulation errors.

— Processing errors (e.g., wrong height assignment, incorrect
tracking, etc).

DTC GSI Tutorial 2017 47
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* |R cannot see through most clouds.
— Cloud height difficult to determine — especially with mixed FOVs.
— Since deep layers not many channels completely above clouds.

* Microwave impacted by clouds and precipitation but
signal is smaller from thinner clouds.

e Surface emissivity and temperature characteristics

not well known for land/snow/ice.

— Also makes detection of clouds/precip. more difficult over these
surfaces.

* Error distribution may be asymmetric due to clouds
and processing errors.
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GSI Cloud Detection

(based on Eyre and Menzel, 1989)
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 Assume the cloud is a single layer at
pressure P_and with unit emissivity
and coverage within the FOV, N_.

 O0<N.<1

* P_is below the tropopause and
above the ground R

* Find P_and N, so that the RMS
deviation, J(N_,P.), of the calculated
cloud from the model (over a
number of channels) is minimized.

* Remove all channels that would be
radiatively affected by this cloud.

Cloudy radiance, R4, is calculated from:

Ruous=N R + (1-N )R, = N(R ) + R

DTC GSI Tutorial 2017 50
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The height and fraction of the cloud is found by minimizing the cost function:

c™ z (Rcloud i '‘observed, i)z/o-i2 )

zi (NC[Rovercastl Rclear,i)] T (Rclear,i_Robserved,))z/oiz

i=channel index; o,= assigned observation error for channel

DTC GSI Tutorial 2017
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Assimilating satellite radiances

Bias Correction
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e The differences between simulated and observed
observations can show significant biases.

* The source of the bias can come from:
— Inadequacies in the characterization of the instruments.
— Deficiencies in the forward models.
— Errors in processing data.
— Biases in the background.

* Except when the bias is due to the background, we
would like to remove these biases.

DTC GSI Tutorial 2017
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e Currently bias correction only applied to a few data sets:

— Radiances.
— Radiosonde data (radiation correction and moisture).

— Aircraft data.
* Forradiances, biases can be much larger than signal. Essential
to bias correct the data.

e NCEP uses variational bias correction:

J(x,/s>=%<x—xb>TB;1<x—xb>+%</3—ﬁb>TB;1<ﬁ—/3b>

A= ]e -]

B is the vector of bias-

DTC GSI Tutorial 2017 _ .
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* Air mass prediction equation for bias — variational bias

correction
— Add to control vector (analysis variables x,,,;)

np
where total bias correction = Elxnw'pi

— Predictors (p, ) for each channel
* mean
» path length (local zenith angle determined)
* integrated lapse rate
* (integrated lapse rate) 2
e cloud liquid water
» Surface emissivity sensitivity (O over ocean, dTB/de elsewhere)
* Fourth-order polynomial of scan angle
* Ascending/descending node * latitude (SSMIS only)
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MetOp-A AMSU-A Ch 6 5@
Mean of Departures vs Scan %4,***30

Number of Observations

amsua_metop-a, 2017070500 O bserved_G uess
8E+2 —— ges, 30day, .
global Observed-Analysis
—— anl, 30day,

6 ee2 global
5 K J &= Before
Bias Correction

O OE+0
-30 -15 0 15 30

Scan Position

Avg Ges|Anl (with bias correction) - Obs
amsua_metop-a, 2017070500

O . 08 8E-2 —— ges, 30day,

After - N\ |
Bias Correction ’\/ yﬂ \//

-0.08 e

-30 -1 15 30
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- Std Dev of Departures %%***ﬁ

Sdv Ges|Anl (w/o Bias Correction) - Obs(K)
amsua_metop-a, 2017070500
o Observed-Guess

—— ges, global

— anl, global Observed-Analysis

— Before
Bias Correction

May 2017 Jun 2017 Jul 2017
Cycle Time

UV GES|ANI (W/ DIAs Lorrecton) - vos\n)
amsua_metop-a, 2017070500

0.2 —— ges, global

y —— anl, global
After ) SRR f

0.1

Bias Correction

0.05

May 2017 Jun 2017 Jul 2017
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channel 7
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avg: =0.022
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Bias Correction “

* An important consideration in calculating bias
correction coefficients is the data sample used.

— A certain subset of the data may have model error that
should not be bias corrected

e Strategies could include:

— Only using observations close to uncorrected observations
(radiosondes) that “anchor” the analysis

— Only use infrared radiances that are considered clear
based on sub-FOV imagery

— Only use observations where the observation and the
model agree on whether it is cloudy or not (next slide).
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All-sky Radiance Bias
Correction (Zhu et al. 2014)

Data count

omgbc amsua_noaal9 chl15

o Using all observations
oo ¢ |
o0 e Normalized OmF w/ BC
fzzz .‘...-' .".,::.-“::.:::.’“‘.' :::EEE-.“:’"_ 2000 omgbe amsua_noaal9 chi15
—moZ- - = N - 11000 oclr_felr
2000 - — . ool reld
- - N _2 N;:'mclli;ed 0:111F ’ ’ ' #0001 ocld_feld
T oo
Using observations where g oo
cloudiness inferred from > o Pt Ay
. 0 ‘Mlh'émww:“". e, "“":.;:Eimu................
observations and model
—2000 T T T T T T T r
-5 —4 -3 -2 1 1 2 3 4

agree
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Calibration Shift of ATMS 2, &g
Yoy rr >
Avg Ges|Anl (w/ Bias Correction) - Obs(K) Channel 11
atms_npp, 2017031706
0.6 —— ges, global
—— anl, global
0.4

0.2

-0.2

Jan 2017 Feb 2017 Mar 2017

Cycle Time
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Bias Correction and
QC Interact

Bias Correction

Observations are bias-corrected
after quality control

Quality Control

Quality control usually uses
bias-corrected observations
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Assimilating satellite radiances

Observation Errors
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 The observation error is made up of a number of
components:

— Instrument noise
— Forward model error

Nyas

9

* Including the ability of the quality control to identify cases that the
forward model cannot simulate (e.g., clouds)

— Representivity error
— Linearity error

* Very often the first guess departure is used as a
rough estimate of the observation error

— This includes model error — which strictly should not be
part of the observation error.
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* Observation errors are often adjusted within
the GSI code to reflect situations where
uncertainties are higher:

— Surface emission over land is less well
characterized than over sea

— Characterization of cloudy scenes is less accurate
than for clear sky.
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Geer et al. (2010)

. Clear sky
: Cloudy

Obs: Cloudy skJ
Model: Clear

=0
o ”
o

Obs error I Large obs errror Small obs errror » Dry model

function of (Small weight) (Large weight) atmosphere
Obs cloud
Obs error
function of # Small obs Large obs Moisten
Model errror errror model
cloud (Large weight) (Small weight) atmosphere
69
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Symmetric Observation Error Assignment
for AMSU-A under All-sky Condition

710
oo MOV

AMSU-A Channel 01

First Guess Departure (K)

40 :

sol- Rafare-OC J
K DCOIVUIC \(\U i
- Error Model /\/\\/\ -
200 VTN
10— M“ -
. After QC J
0 — 1 1 1 1 1 1 1 1 Il 1 1 1 [Tl b T '

0.0 0.5 1.0 15 2.0 " i, S :

: « ' = - ;, = -

Symmetric cloud amount Ch01 Mean4.9 STD 7.7 Min 25 Max 59.1 Nobs 11709

| | 1 |
25 30 35 40 45 50 55 60 80 100 120 150 200 25.0 30.0 60.0

Obs. error used in the analysis

*Mean of cloud derived from model and cloud derived from observations
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* Observation errors are in general correlated both spectrally and
spatially.

* A number of techniques are currently used to empirically
determine these errors. The most common are the
Hollingsworth-Lonnberg and Desroziers techniques which are
well-summarized in Bormann and Bauer (2010)*.

* In the GSI we now have the capability to use spectrally correlated
errors.

*Bormann and Bauer (2010),
Q.J.R.M.S,, 136: 1036-1050.
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CrlIS Observation Error
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CrIS-FSR, over Sea
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Assimilating satellite radiances

Thinning
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W4 Thinning or Superobbing
 Thinning

Reducing spatial or spectral resolution by selecting a reduced set of
locations or channels.

Can include “intelligent thinning” to use better observation.

e Superobbing

Reducing spatial or spectral resolution by combining locations or
channels.

Can reduce noise.

Includes reconstructed radiances.

Can include higher moments contained in data Purser et al., 2010.
Can be done with obs or departures, but should be done after QC.

 Both can be used to address 3 problems:

Redundancy in data.
Reduce correlated error.
Reduce computational expense.
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Assimilating satellite radiances

Assimilating Radiances in the GSI
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GSI Code Flow

Initialize CRTM observation operator
(call int_crtm)

Sensor/channel spectral information
Sensor/channel transmittance
coefficients for gases
Spectral coefficients for surface
emissivity, cloud and aerosol optical
properties

Read in and distribute:
Observations

Bkg fields, Bkg errors Radiance bias
correction info

Radiance diag. files (opt)

Get user input parameters

(resolution, static/hybrid, 3d/4d,
constraints, data type, data
thinning, ... etc)

Outer Loop Iteration ( glbsoi.f90 )
Call setup routines: ( e.g., setuprad.f90 for radiance )

Get resource files* * Compute simulated observation and Jacobian with

. associated observation operator ( call _crtm provide and
anainfo: bkg/anl vars

satinfo : sensor/channel +
obs error

locinfo : localization length

...etc

for radiance data )
= Compute radiance bias correction predictors
= Compute Hessian of J from radiance bias correction

= Compute observation innovations

= Quality control and adjust obs errors
Call Inner Loop Iteration ( pcgso0i.fo0 )

= Compute gradient information Write output
files for
analysis,
radiance bias
correction and
obs diagnostic

= Apply background error )
= Compute search direction and step size
= Update analysis increment
= Check convergence
Update guess fields .
. . ) . . files
Estimate bias correction coefficients for passive channels

Initialization

*GSl advanced user’s guide
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Important Input Files For
Radiance Assimilation
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USER PROVIDED FILES:

 OBS_INPUT namelist: Lists instruments, links to CRTM files, defines thinning etc.

e SATINFO*: Controls channel-by-channel data usage, observation errors quality control

* SCANINFO: Defines relation between scan position and scan angle plus usage at scan
edges

* ANAVINFO: Defines state and control variables and their use within the CRTM.

* cloudy_radiance_info.txt*: Additional information of cloudy radiance observation
error model.

FILES UPDATED BY THE GSI:
e SATBIAS: Contains bias-correction coefficients
e SATBIAS_PC: Preconditioning information for bias correction

 SATANGBIAS: Scan-dependent bias correction file if this is done offline (a depreciated
feature in NCEP DA)

*There has been a restructuring of the way radiance assimilation is being done resulting

in modifications to some files and addition of extra ones. The current release of the DTC
GSI does not include these changes. brc GsiTutorial 2017 77
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. OBS_INPUT namelist
% & —
N &
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&0BS_INPUT
dmesh(1)=145.0,dmesh(2)=150.0,dmesh(3)=100.0,time window max=3.0,
SOBSINPUT

/

OBS_ INPUT::

! dfile dtype dplat dsis dval dthin dsfcalc
hirs3bufr hirs3 nl7 hirs3 nl7 0.0 1 0
hirs4bufr hirs4 metop-a hirs4 metop-a 0.0 1 1
gimgrbufr goes img gll imgr gll 0.0 1 0
airsbufr airs aqua airs_aqua 0.0 1 1
amsuabufr amsua nls amsua_nl5 0.0 1 1
amsuabufr amsua nl8 amsua_nl8 0.0 1 1
amsuabufr amsua metop-a amsua_metop-a 0.0 1 1
airsbufr amsua aqua amsua_aqua 0.0 1 1
amsubbufr amsub nl7 amsub nl7 0.0 1 1
mhsbufr mhs nlsg mhs nl8 0.0 1 1
mhsbufr mhs metop-a mhs metop-a 0.0 1 1
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satinfo: old configuration 5 g
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* J

Isensor/instr/sat  chaniuse error error_cld ermax var_b var_pg icld_det

amsua_n1l5 7 1 0.250 0.250 2.000 10.000 0.000 -2
amsua_n1l5 8 1 0.275 0.275 2.000 10.000 0.000 -2
amsua_n1l5 9 1 0.340 0.340 2.000 10.000 0.000 -2
amsua_n1l5 10 1 0.400 0.400 2.000 10.000 0.000 -2
amsua_n1l5 11 -1 0.600 0.600 2.500 10.000 0.000 -2
amsua_n1l5 12 1 1.000 1.000 3.500 10.000 0.000 -2
amsua_n1l5 13 1 1.500 1.500 4.500 10.000 0.000 -2
amsua_n15 14 -1 2.000 2.000 4.500 10.000 0.000 -2
amsua_n1l5 15 1 3.500 15.000 4.500 10.000 0.000 -2
hirs3_n17 1 -1 2.000 0.000 4.500 10.000 0.000 -1
hirs3_n17 2 -1 0.600 0.000 2.500 10.000 0.000 1
hirs3_n17 3 -1 0.530 0.000 2.500 10.000 0.000 1
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satinfo: new configuration 5 s

% N

Vigsx>
1- - - T "
Isensor/instr/sat  chan iuse error error_cld ermax var b var_pg icld_degt icloud iaerospl

amsua_n15 7 1 0.250 0.250 2.000 10.000 0.000 -2 , 1 -1 I
amsua_n15 8 1 0275 0.275 2.000 10.000 0.000 -2 | 1 -1 I
amsua_n15 9 1 0340 0.340 2.000 10.000 0.000 -2 4, 1 -1 I
amsua_n15 10 1 0.400 0.400 2.000 10.000 0.000 -2 | 1 -1 |
amsua_n15 11 -1 0.600 0.600 2.500 10.000 0.000 -2 1 -1
amsua_n15 12 1 1.000 1.000 3.500 10.000 0.000 -2 , 1 -1
amsua_n15 13 1 1500 1500 4.500 10.000 0.000 -2 , 1 -1
amsua_n15 14 -1 2.000 2.000 4.500 10.000 0.000 -2 1 -1 ]
amsua_n15 15 1 3.500 15.000 4.500 10.000 0.000 -2 1 -1
hirs3_n17 1 -1 2.000 0.000 4.500 10.000 0.000 -1 4 -1 -1
hirs3_n17 2 -1 0.600 0.000 2.500 10.000 0000 1 ; -1 -1
hirs3_n17 3 -1 0.530 0.000 2.500 10.000 0.000 1 | -1 -1
I I
I I

-1: not use cloud/aerosol info;

0: include cloud/aerosol in forward
obs operator;

1: cloud/aerosol analysis

All or some channels of a

sensor can be activated for all-
sky radiance assimilation



cloudy radiance_info.txt
(new)
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radiance_mod_instr_input::
lobsname obsloc ex_obserr ex_biascor cld_effect
amsua sea  .true. .true. .true.

obs_amsua::
I Parameters for the observation error model
I cclr [kg/m2] & ccld [kg/m2]: range of cloud amounts
I over which the main increase in error take place
I ch cclr ccld
1 0.050 0.600
0.030 0.450
0.030 0.400

0.020 0.450 Extra parameters used for
0.000 1.000

0.100 1.500 the observation error model
15 0.030 0.200

o Uk WN
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:net_guess.. _ control_vector:
lvar level crtm_use desc Orig_name lvar level itracer as/tsfc_sdv an_amp0O source funcof
ps 1 -1 surface_pressure ps S 64 0 0.60 1.0 state uv
z 1 -1 geopotential_height phis vo 64 0 0.60 1.0 state L;,V
u 64 2 zonzﬂfwmd . u ps 1 0 0.75 -1.0 state prse
v 64 2 meridional_wind v t 64 0 075 1.0 state tv
div. 64 -1 zonal wind  div g 64 1 075 -10 state g
vor 64 -1 meridional_wind  vor oz 64 1 075 -1.0 state oz
tv. 64 2 virtual_temperature tv sst 1 0 1.00 1.0 state sst
q 64 2 specific_humidity sphu w64 1 1.00 -1.0 state cw
oz 64 2 ozone ozone stt 1 0 3.00 -1.0 motley sst
cw 64 10 cloud _condensate cw sti 1 0 3.00 -1.0 motley sst
o] 64 12 cloud_liquid o]
g 64 12 cloud _ice qi

crtm_use:

<0: general variable; not used in CRTM
0: general variable; use prescribed global mean data to affect CRTM
1: use gfs yearly global annual mean historical value

>1: use gfs 3d background field (in interval [10,20) indicates cloud)
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* Itis essential to have good data monitoring.

e Usually the NWP centres see problems with instruments prior
to notification by provider.

 The data monitoring can also show problems with
assimilation systems.

* Needs to be ongoing/real time.

 Monitoring reports from most major NWP centers at:
https://nwpsaf.eu/site/monitoring/

 NCEP data monitoring is at:
http://www.emc.ncep.noaa.gov/gmb/gdas/
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Quality Monitoring of Satellite Data

platfarm: Qirs.049
regian 1 global {(180W—180E, S0S—90N)
variable: ges_(w /o bias cor) — obs (K)
valid i 0O0Z11MAR2007 to O0Z10APR2007
<channel 375 R T - - 1137
¥ 0.3328 ﬂ+f**1 ~
f 22771.43 GHz -
A 13.17 gam
avg: —1.254 —1.0354, -
sdv: 1.910 —1.ae5 0
—1.294 4
—1.424 ¢
—-1.8563 4 -
11MAR
<channeal 453
¥ 235%8%6 o
5 . Hz —q:"*—
avg!: —o310fd - - - - 3
de: 1‘E24.74-53 —0465 4+ - . - - - - - e e - - ‘
HANNEL O'BZO-P S R A
e 1S NOT we ‘ f»
ASSIMILATED it 5 *-EII ;E
—oe30f - - - T T
11MAR 16MAR Z1MAR

— - F1.044

- L oc.oaz

. F D.92%F

r p.BE0

-+ .70

channel 484 joeo

x Q9.2982 D.98S

f 24114.80 GHZz - At c.ace

A 12,43 parm % F o846
QAvgl —0.714 —0.4924 - - -
sdv: 04927 —0.815 4y, -

—0Q. 737 A

—0.860 -
—0.9B3 1
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First guess departure at 713 cm!

0.80
0.72
0.64
0.56
0.48
0.40
032
0.24
0.16
0.08
0.00 (K)
-0.00
-0.08
-0.186
-0.24
-0.32
-0.40
-0.48
-0.56
-0.64
-1.09
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Some Final Comments T@
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Satellite data must be treated carefully.

Important to be aware of instrument
characteristics before attempting to use data.

No current component of observing system is
used “perfectly” or “as well as possible”.

Computational expense plays important role
in design of system.
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