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3DVar	Cost	func6on	

J	:	Penalty	(Fit	to	background	+	Fit	to	observaLons)	
δx	:		Analysis	increment	(xa	–	xb)	
xa,	xb	:		Analysis,	Background	
B	:	Background	error	covariance	(esLmated	offline)	
H	:	ObservaLons	(forward)	operator	
R	:	ObservaLon	error	covariance	(Instrument	+	

representaLveness)	
d	=	yo	-	Hxb,	where	yo	are	the	observaLons	
	
Cost	funcLon	(J)	is	minimized	to	find	soluLon,	δx	[xa	=	xb	+	δx]	

J δx( ) = 1
2
δxTB-1δx + 1

2
Hδx -d( )T R-1 Hδx -d( )
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Hybrid	Ensemble	Var	Cost	func6on	

	
Bs	:	(Sta6c)	background-error	covariance	(esLmated	offline)	
Be	:	(Flow-dependent)	background-error	covariance	(esLmated	

from	ensemble)	
β: WeighLng	factor	(0.25	means	total	B	is	¾	ensemble).	

Jhybrid δx( ) = β
2
δxTBs

−1δx+1−β
2

δxTBe
−1δx+ 1

2
Hδx -d( )TR−1 Hδx -d( )
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What	does	Be	do?	

Increment	(all	sta6c)	 Increment	(all	ensemble)	

Temperature	observaLon	near	a	warm	front	
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Bs	 Be	



What	does	Be	do?	

½	Sta6c,	½	ensemble	

First	guess	SLP,	wind	 All	sta6c	

All	ensemble	

Zonal	wind	observaLon	near	a	hurricane	(Ike)	
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What	does	Be	do?	

Ps ob 

First-Guess 
SLP contours 

3DVar	increment	would	be	zero!			
(cross-variable	covariances	hard	to	model	with	sta9c	Bs)	

Surface	pressure	observaLon	near	an	“atmospheric	river”	
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What	does	Be	do?	

•  Adds	situa6on-dependence	to	analysis	
increments.	

•  Sparse	observaLons	near	coherent	dynamical	
features	used	more	effecLvely.	

•  Changes	in	the	observing	network	can	be	
captured	in	background-error	variance.	

•  More	informa9on	extracted	from	
observa9ons	=>	More	skillful	forecasts	
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So	what’s	the	catch?	

•  Rank Deficiency 
–  Need a fairly large O(100) ensemble to represent uncertainty 

•  Too few degrees of freedom available to fit the observations 
•  Low rank approximation yields spurious long-distance 

correlations 

•  Mistreatment of “system error/uncertainty” 
–  Sampling (as above), model error, observation operator 

error, representativeness, etc. 

•  State estimate is ensemble average 
–  This can produce unphysical estimates, smooth out high 

fidelity information, etc. 
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So	what’s	the	catch?	
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•  The	GSI	variaLonal	system	does	not	provide	
the	ensemble	–	it	provides	an	analysis	that	
can	be	interpreted	as	the	ensemble	mean,	
given	an	ensemble	that	represents	forecast	
uncertainty.	

•  In	NCEP	operaLons,	an	“Ensemble	Kalman	
Filter”	(EnKF)	is	used	to	generate	the	
background	ensemble.	

	



Data	assimila6on	terminology	
•  y	:	ObservaLon	vector	(weather	balloons,	satellite	

radiances,	etc.)	
•  x		:	the	state	of	the	atmosphere	as	represented	by	the	

model	
•  xb	:	Background	state	vector	(“prior”)	
•  xa	:	Analysis	state	vector	(“posterior”)	
•  H	:	(hopefully	linear)	operator	to	convert	model	state	à	

observaLon	locaLon	&	type	
•  R	:	ObservaLon	-	error	covariance	matrix	
•  Pb	:	Background	-	error	covariance	matrix	
•  Pa	:	Analysis	-	error	covariance	matrix	
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Approaches	to	Solu6on	
•  Two	main	perspecLves	of	pracLcal	data	assimilaLon	&	hybrid	

approach	
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Varia6onal	Approach:		
	Least	square	esLmaLon	
	[maximum	likelihood]	
–  3D-Var	(3	dim	in	space)	
–  4D-Var	(4th	dim	is	Lme)	
	 		

Sequen6al	(KF)	Approach:		
	Minimum	Variance	esLmate	
	[minimum	uncertainty]	
–  OpLmal	InterpolaLon	(OI)	
–  (Extended	/	Ensemble)	Kalman	

Filter	
	 		

p(x)	

Courtesy:	Kayo	Ide	

p(x)	



From	Bayes	theorem	to	4DVar	and	the	(Ensemble)	Kalman	Filter	

Variational methods maximize the posterior PDF to find the state 
trajectory x that best fits the obs y in a least-squares sense. In practice, 
this is done by minimizing a cost function, which is what’s inside the exp: 

The minimum can be found analytically if H is linear (see Lorenc 1986) 
This gives the equations for the Kalman Filter 

•   Matrix Pb is too big for any computer, covariance update step impractical. 

•   Instead, represent PDFs of x and y by an ensemble, compute sample estimate of 
Pb and xb. Evolve the sample, not the full covariance.  EnKF gives same result as 
full KF if ensemble size becomes infinite. 
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p(x|y) / exp

⇣
�(x� xb)

TPb�1
(x� xb)� (y �Hx)TR�1

(y �Hx)
⌘

J (x) / (x� xb)TPb�1
(x� xb) + (y �Hx)TR�1(y �Hx)



Computa6onal	shortcuts	in	EnKF:	
(1)	Simplifying	Kalman	gain	calculaLon	

K = PbH T HPbH T +R( )
−1

define Hxb = 1
m

Hx i
b

i=1

m

∑

PbH T =
1
m−1

x i
b − xb( ) Hx ib −Hxb( )

i=1

m

∑
T

HPbH T =
1
m−1

Hx i
b −Hxb( ) Hx ib −Hxb( )

i=1

m

∑
T

The	key	here	is	that	the	huge	matrix	Pb	is	never	explicitly	formed	
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Computa6onal	shortcuts	in	EnKF:	
(2)	serial	processing	of	observaLons	(requires	
observaLon	error	covariance	R	to	be	diagonal)	

EnKF	
Background	
forecasts	

ObservaLons	
1	and	2	

Analyses	

EnKF	
Background	
forecasts	

ObservaLon	
1	

Analyses	
aqer	obs	1	 EnKF	

ObservaLon	
2	

Analyses	

Method	1	

Method	2	
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The	serial	EnKF	–	a	recipe	
Given	a		single	ob	yo		with	expected	error	variance	R,	an	ensemble	of	model	forecasts	xb	
(model	priors),	and	an	ensemble	of	predicted	observaLons	yb	=	Hxb	(observaLon	priors):	
		

				Step	1:		Update	observaLon	priors.	
		
(1a)																																																															update	for	ob	prior	means	
(1b)																																																														rescaling	of	ob	prior	perturba4ons	
		
where	the	scalar	K	=	var(yb)/(var(yb)+	R),	overbar	denotes	means,	prime	denotes	
perturbaLons,	superscript	b	denotes	prior,	a	denotes	analysis.	
		
Linear	interpola9on	between	observa9on	and	observa9on	prior	mean	with	weight	K	
(0<=K<=1),	rescaling	of	observa4on	prior	ensemble	so	posterior	variance	is	consistent	with	
Kalman	filter,	i.e.	var(ya)=(1-K)	var(yb)=	var(yb)R/(var(yb)+R).	
		
when	var(yb)	<<	R,	all	weight	given	to	prior.	
when	var(yb)	>>	R,	all	weight	given	to	observaLon.	

y
a

= (1�K)y
b

+ Kyo

y
0

a =
p

(1�K)y
0

b
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The	serial	EnKF	–	a	recipe	(2)	

Step	2:	Update	model	priors.		
		
Let	Δx=	xa-xb	be	analysis	increment	for	model	priors,	Δy=	ya-yb	is	analysis	
increment	for	observaLon	priors.	
		
(2)					Δx	=	GΔy																				computa4on	of	increments	to	model	prior	
		
where	G	=	cov(xb,	ybT)/var(yb)	
		
Linear	regression	of	model	priors	on	observa9on	priors.	
		
Only	changes	model	priors	when	xb		and		yb		are	correlated	within	the	ensemble.			
		
If	there	is	more	than	one	ob	to	be	assimilated,	the	observaLon	priors	for	other	(not	
yet	assimilated)	obs	(Yb)	should	be	also	be	updated	using	(2)	with	Δx	replaced	by	ΔY.		
Next	iteraLon,	replace	yb	with	next	column	of	Yb,	removing	that	column	from	Yb.		Aqer	
each	iteraLon	the	model	priors	and	observaLon	priors	are	set	to	the	latest	analysis	
values	(xa	replaces	xb,		Ya	replaces	Yb).	ConLnue	iteraLng	unLl	Yb	is	empty.	
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Infla6on	and	Localiza6on	

•  Infla6on	
– Used	to	inflate	ensemble	esLmate	of	uncertainty	to	
avoid	filter	divergence	(addiLve	and	mulLplicaLve)	

•  Localiza6on	
– Domain	Localiza6on	

•  Solves	equaLons	independently	for	each	grid	point	(LETKF)	
–  Covariance	Localiza6on	

•  Performed	element	wise	(Schur	product)	on	covariances	
themselves	
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Methods	for	represen6ng	model	error		
(infla6on)	

	•  Mul6plica6ve	infla6on:		
–  RelaxaLon-to-prior	spread	(RTPS)	
–  RelaxaLon-to-prior	perturbaLon	(Zhang	et	al.	2004)	
–  AdapLve	(Anderson	2007)	

				 		
	
•  Addi6ve	infla6on:		Add	random	samples	from	a	specified	

distribuLon	to	each	ensemble	member	aqer	the	analysis	
step.	
–  Env.	Canada	uses	random	samples	of	isotropic	3DVar	
covariance	matrix.	

– NCEP	used	random	samples	of	48-h	–	24-h	forecast	
error	(fcsts	valid	at	same	Lme).	
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Imperfect	Model		(Addi9ve	+	
Mul9plica9ve	Infla9on	Example)	

•  AddiLve	inflaLon	alone	
outperforms	mulLplicaLve	
inflaLon	alone	(compare	
values	y-axis	to	values	
along	x-axis)	

•  A	combinaLon	of	both	is	
bewer	than	either	alone.	

•  MulLplicaLve	and	addiLve	
inflaLon	represenLng	
different	error	sources	in	
the	DA	cycle?	
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Covariance Localization – Simple Example 
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EsLmates	of	covariances	from	a	small	ensemble	will	be	noisy,	
with	signal-to-noise	small	especially	when	covariance	is	small	



Covariance	localiza6on	–	NWP	Ex.	
•  AMSUA	NOAA15	channel	6	
radiance	at	150E,-50S.		

•  Increment	to	level	30	(~310mb)	
temperature	for	a	1K	O-F	for	40,	
80,	160,	320	and	640	ens	
members	with	no	localizaLon.				
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N	=	40	 N	=	80	

N	=	160	 N	=	320	 N	=	640	



Factors	limi6ng	EnKF	performance	
1)	Treatment	of	model	error	

Must	account	for	the	background	error	covariance	associated	with	
“model	error”	(any	difference	between	simulated	and	true	
environment).		Methods	used	so	far:	
	

1)  mulLplicaLve	inflaLon	(mult.	ens	perts	by	a	factor	>	1).	
2)  model-based	schemes	(e.g.	stochasLc	kineLc	energy	

backscawer	for	represenLng	unresolved	processes,	
stochasLcally	perturbed	physics	tendecies	for	represenLng	
parameterizaLon	uncertainty).	

3)  addiLve	inflaLon	(random	perts	added	to	each	member	–	
e.g.	differences	between	24	and	48-h	forecasts	valid	at	the	
same	Lme).	
	
Opera9onal	NCEP	system	uses	the	first	two.	
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Factors	limi6ng	EnKF	performance	
2)	Treatment	of	sampling	error	(localiza9on)	

• 	All	EnKF	implementaLons	localize	the	spaLal	impact	of	
observaLons	on	the	model	state.	
• 	Done	by	spaLally	modulaLng	covariance	between	obs.	prior	
and	model	state,	or	by	only	using	observaLons	‘close’	to	a	model	
state	variable	to	update	that	variable.	
• 	Needed	to	account	for	low	rank	of	ensemble	(compared	to	
model	state).	
• 	Methods	used	currently	are	not	flow	dependent,	and	assume	
there	is	no	sampling	error	at	ob	locaLon.	
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Why	combine	EnKF	and	Var?	
Features	from	EnKF	 Features	from	Var	
Can	propagate	Pb	from	across	
assimilaLon	windows	

Treatment	of	sampling	error	in	
ensemble	Pb		esLmate	does	not	
depend	on	H.	

More	flexible	treatment	of	
model	error	(can	be	treated	in	
ensemble)	

Dual-resoluLon	capability	–	can	
produce	a	high-res	“control”		
analysis.			

AutomaLc	iniLalizaLon	of	
ensemble	forecasts.	

Ease	of	adding	extra	constraints	
to	cost	funcLon,	including	a	
staLc	Pb		component.	
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EnKF	
member	update	

member	2		
analysis	

high	res	
forecast	

GSI	Ens/Var	 high	res	
analysis	

member	1		
analysis	

member	2		
forecast	

member	1		
forecast	

recenter	analysis	ensem
ble	

Ensemble-Var	workflow	

member	3		
forecast	

member	3		
analysis	
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Summary	
•  The	EnKF	uses	an	ensemble	of	first-guess	forecasts	to	
esLmate	the	background-error	covariance.	Every	
ensemble	member	is	updated	at	each	analysis	Lme.	
–  Parallel	code,	scalable	out	to	O(1000’s)	of	processors	as	
long	as	number	of	obs	<<	number	of	state	vars.	

–  Requires	state	vector	in	model	and	ob	space,	plus	obs,	as	
input.	

–  GSI	used	to	compute	forward	observaLon	operator	
(separate	step	run	before	EnKF).	

•  Need	to	carefully	tune	localizaLon	length	scales	
(depends	on	model	resoluLon,	observing	network).	

•  Ensemble	(co)variances	must	be	representaLve	of	
control	forecast	error.		Treatment	of	model	error	is	
crucial.	
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