Logs Overview

HWRF Python Scripts Training
College Park, MD
January 22,2016




Types of logs

° jlogfile

® Python standard error and standard output
® Per-job log files




A few common file locations

e SHOMEhwrf — HWREF installation directory
o SWORKhwrf — the directory in which each HWRF

storm runs. There is one of these per cycle, per storm.

o $1intercom=$s WORKhwrf/intercom — a directory for

trading data between jobs within one storm and Cycle.

o $SCOMhwrf — the output directory for each cycle. There

may be one of these per storm, or all storms may share one.




A few more common variables

» $log — log files that are not specific to a storm or cycle

e $J0b — the name of the job (post, forecast, products,
etc.)

e $jobid — the job ID assigned by the batch system, or
passed down to the scripts by ecFlow (NCO-specific)

e« $YMD, $YMDH, $HH components of the forecast
cycle. For September 6, 2016, 00:00 UTC:
* $YMD = 20160906
e $YMDH = 2016090600
e $HH =00

o $STID — three-character storm id, such as 12L or 31W




NCO Variables

 $envir NCO-specitic variable: prod, para or test for
the production, parallel or test version of HWRFE.

e $stormnum NCO-specitic variable: a number from 1
to 7, for the storm priority.




@

Where are the logs?

o If you’re NCO:

$WORKhwrf=/tmpprd_p2/hwrf$stormnum_$envir_$HH/
$COMhwrf=/com2/hur/$envir/hwrf.$YMDH/
$log=/com2/output/$envir/$YMD/

$envir=prod

per—-job logs: $log/hwrf$stormnum_$job.o$jobid
jlogfile: None?

® If you’re a repository uscer:

$WORKhwrf=$CDSCRUB/$SUBEXPT/$YMDH/$STID/
$COMhwrf=$CDSCRUB/$SUBEXPT/com/$YMDH/$STID/
$log=$CDSCRUB/$SUBEXPT/ log/

per job logs: $WORKhwrf/hwrf_$job. log

j logfile=$CDSCRUB/$SUBEXPT/log/jlogfile




Jlog

¢ [ocated here for most: pytmp/{EXPT}/1log/jlogfile
® NCO's jlog location is configured by $j logfile

¢ Contains

* A record of the completion of HWREF jobs
* Log messages for all jobs run by that sub-experiment, for all
storms and cycles.

® Only the highest—level messages are reported in the file

e To write to the jlogfile:

e produtil. log.jlogger.info
e produtil. log.jlogger.critical

@




jlogfile

11705 21:12:227 run_hwrf-INFO: Successfully ran rocotorun for hwrf-Python_training-17W-2015082000.
11705 21:20:05Z run_hwrf-INFO: Successfully ran rocotorun for hwrf-Python_training-17W-2015082000.
11705 21:21:20Z hwrf launch 17W_2015082000_E99-INFO: exhwrf launch is starting
11705 21:21:20Z hwrf_launch_17W_2015082000_E99-hwrf: ERROR: /com/hur/prod/inpdata/nstorms: error reading: [Errno 2] No
such file or directory: '/com/hur/prod/inpdata/nstorms'.
Will read all storms.
11705 21:21:24Z hwrf_launch_17W_2015082000_E99-INFO: ENS 99 (of 0) is not a perturbed ensemble member; not perturbing wind.
11/05 21:21:35Z hwrf_launch_17W_2015082000_E99-INFO: exhwrf launch Completed
11705 22:52:18Z run_hwrf-INFO: Successfully ran rocotorun for hwrf-Python_training-17W-2015082000.
11705 22:53:29Z hwrf_input_17W_2015082000_E99-INFO: HWREF input job starting
11/05 22:53:39Z hwrf_input_17W_2015082000_E99-hwrf.exhwrf_input: ERROR: [MainThread] Christina. Holt(@dtn-
zeus.rdhpes.noaa.gov: cannot access; will skip
11/06 00:09:32Z hwrf_input_17W_2015082000_E99-INFO: HWREF input job completed
11706 00:24:15Z run_hwrf-INFO: Successfully ran rocotorun for hwrf-Python_training-17W-2015082000.
11/06 00:26:56Z hwrf_init_17W_2015082000_GFS_0_E99-INFO: WPS Geogrid completed.
11/06 00:27:12Z run_hwrf-INFO: Successfully ran rocotorun for hwrf-Python_training-17W-2015082000.
11706 00:27:37Z hwrf_init_17W_2015082000_GDAS1_6_E99-INFO: WPS Geogrid completed.
11/06 00:27:38Z hwrf_init_17W_2015082000_GDAS1_6_E99-INFO: WPS Ungrib Completed
11/06 00:27:437Z hwrf_init_17W_2015082000_GFS_0_E99-INFO: WPS Ungrib completed
11/06 00:27:49Z hwrf_init_17W_2015082000_GDAS1_6_E99-INFO: WPS Metgrid completed
11/06 00:28:027Z hwrf_init_17W_2015082000_GDAS1_9_E99-INFO: WPS Geogrid completed.
11706 00:28:03Z hwrf_init_17W_2015082000_GDAS1_3_E99-INFO: WPS Geogrid completed.
11/06 00:28:05Z hwrf init 17W_2015082000_GDAS1_3_E99-INFO: WPS Ungrib completed
11706 00:28:06Z hwrf_init_17W_2015082000_GDAS1_9_E99-INFO: WPS Ungrib completed
11/06 00:28:15Z hwrf_init_17W_2015082000_GDAS1_3_E99-INFO: WPS Metgrid completed
11/06 00:28:19Z hwrf_init_17W_2015082000_GDAS1_9_E99-INFO: WPS Metgrid completed
11/06 00:28:27Z hwrf_init_17W_2015082000_GDAS1_6_E99-INFO: fgat.t201508200000/realinit: completed




stderr and stdout
® Located in the $ WORKhwrt directory

* stdout files contain all the logging (info, error, critical level)
messages from the Python scripts

® stderr files contain all the error and critical messages, plus
the submission information for the job (PROLOGUE,

EPILOGUE)

® Separated into hwrt_*.out and hwrf_*.err. Name is set in
Rocoto ent files.

e At least one set for each task.

® Multiple processor jobs have multiple sets of logs

® post, products, tracker, erc.

@




Writing to the standard out

* Adding log messages can be done from the ush scripts with a
few simple commands

logger=self.log()

logger.info(‘This is the value of some_variable:

%s’ %(some_variable))

logger.warning(‘This is a warning!’)
logger.error(‘This is an error’)
logger.critical(‘This is really bad!’)

Result:

01/08 04:34:45.706 hwrf.gfsinit (relocate.py:353) INFO: This
is the value of some_variable: 270.0

01/08 04:34:45.902 hwrf.gfsinit (relocate.py:354) WARNING:
This is a warning!

(-




Python log structure

01/08 04:34:45.706 hwrf.gfsinit (relocate.py:353) INFO: This
is the value of some_variable: 270.0

01/08 04:34:45.902 hwrf.gfsinit (relocate py:354) WARNING:
This a warning!

log stream log level
date and time of

log message file and line number that
generated the message

o




Python Logging Levels

stdout stderr jlogfile

DEBUG N N N Debug messages used by developer
INFO Y N N Regular status information
WARNING Y Y N Info useful for debugging failed jobs
ERROR v v v Errors that degrade fest or disable
components
CRITICAL Y Y Y Failures that require intervention

Note: Log messages sent to the special "jlog" stream also go to the jlogfile,

even if they're at lower log levels

@ y




Python Exception Stacks

e Several lines you get when HWRF components fail

Traceback (most recent call last):
File "/pan2/projects/dtc-hurr/dtc/HWRF_training//scripts/
exhwrf_gsi.py", line 60, in <module>
main()
File "/pan2/projects/dtc-hurr/dtc/HWRF_training//scripts/
exhwrf_gsi.py", line 53, in main
hwrf_expt.gsi_d02.run()
File "/pan2/projects/dtc-hurr/dtc/HWRF_training/ush/hwrf/gsi.py", line
982, 1n run
self.grab_enkf_input()
File "/pan2/projects/dtc-hurr/dtc/HWRF_training/ush/hwrf/gsi.py", line
285, 1n grab_enkf_input
self.grab_gfs_enkf()
File "/pan2/projects/dtc-hurr/dtc/HWRF_training/ush/hwrf/gsi.py", line
607, in grab_gfs_enkf
%(there,))
GSIInputError: required input file 1is empty or non-existent: /pan2/
projects/dtc-hurr/dtc/HWRF_training/pytmp/HWRF_training/2015082000/17W/
hwrfdata/enkf.2015081918/sfg_2015081918_fhro6s_mem001l




Logs from components

® Many components have their own special log files

* For example:
* WPS: metgrid.log.*, geogrid.log.*, ungrib.log
e GSI: stdout
® Coupler: cpl.out

e WREF: rsl.out.* and rsl.err.*




@

Forecast Logs

® Three coupled components: Atmosphere, Ocean, Coupler

* Coupler and ocean share $WORKhwrf/cpl.out

® This extra file exists because it’s huge

® WREF has an out and err file for each rank
o $WORKhwrf/runwrf/rsl.out.RANK
e $WORKhwrf/runwrf/rsl.err.RANK

® The WRF master process does extensive logging in
$WORKhwrf/runwrf/rsl.out.0000

* Note: A failure could occur in any rank, and would be in that

rsl.err or rsl.out file




Post-processing & Regribbing Logs

® Post-processing is split into post and products jobs

® post runs the UPP to convert WRF output files to native e—grid
GRIB files

® products regrids the UPP output to standard grids, copies the

GRIB files and native WRF output files to $COMhwrf, and runs
the GFDL vortex tracker

® The post standard out is very large and is deleted upon

success of post. If there is a failure, the log lives here:

$WORKhwrf/post.x /vpost. log




@

Products Logs

® Gribbers — these perform regribbing operations on post

output.

® Runs cnvgrib, wgrib and hwrt_egrid2latlon (copygb) programs.

$WORKhwrf/$jobid—gribber[1-7]. log

* Copiers — these copy native model output. Once all native

model output is copied, they start regribbing instead.
$WORKhwrf/$jobid—copier. log

® Trackers — these run the GFDL Vortex Tracker on outputs

from the Gribbers.

Main Tracker: $WORKhwrf/$jobid-tracker. log
d02 Tracker: $WORKhwrf/$jobid-d02tracker. log
d01l Tracker: $WORKhwrf/$jobid-d@ltracker. log

/




@

Init & Bdy Logs

® These jobs run many programs with extensive logging. Each
init job has its own Python standard output/error stream,

but each program also generates logs

* Two types of initialization: gfsinit and fgatinit

$WORKhwrf/gfsinit — parent global model full-length forecast. By
default, this is the GFS.

$intercom/gfsinit — intercom delivery location for that init

$WORKhwrf/fgat.$YMDHOO parent global model short-length
forecast for analysis. By default, this is the GDAS. There are
usually three of these, for the HWRF analysis time -3, +0 and
+3 hours.

$intercom/fgat.$YMDHOO — intercom delivery location for that init




@

Init & Bdy Logs

Geogrid
* stdout/stderr — wps/geogrid. log
» per rank — wps/geogrid. Log.RANK
Ungrib
* stdout/stderr — wps/ungrib. log
Metgrid
* stdout/stderr — wps/metgrid. log
* per rank — wps/metgrid. Log.RANK
prep_hybrid
* While running: $WORKhwrf/(init)/prep_hybrid/$YMDH/
prep. log
* When finished: $intercom/(init)/prep_hybrid/prep_
$piece. log where $piece is the boundary time index.




Init & Bdy Logs

* WREF and Real: (see Forecast logs)
* init-length real_nmm — realinit/
* forecast-length real_nmm — realfcst/
* wrfanl run of the wrf — wrfanl/

. ghost run of the wrf — ghost/

* For generating parent vortex location: (see Post-processing
Logs)
* post (while running or if failed) — post.*
* hwrf . gribtask to convert to lat-lon — regribber/

* tracker — tracker/

@




Questions?

Up next...
Troubleshooting




