

HWRF Ocean: The Princeton Ocean Model

Isaac Ginis Graduate School of Oceanography University of Rhode Island

HWRF Tutorial NCWCP, College Park, MD 23-25 January 2018 THINK BIG WE DO

Why Couple a 3-D Ocean Model to a Hurricane Model?

- To create accurate SST during hurricane model integration
 Evaporation (moisture flux) from sea surface provides heat
- energy to drive a hurricane
- Available energy decreases if storm-core SST decreases
- Uncoupled hurricane models with static SST neglect SST cooling during integration → high intensity bias
- One-dimensional (vertical-only) ocean models neglect upwelling and horizontal advection, both of which can impact SST during integration

Early history of Princeton Ocean Model

- Three-dimensional, primitive equation, numerical ocean model (commonly known as POM)
- Originally developed by Alan Blumberg and George Mellor in the late 1970's
- Initially used for coastal ocean circulation applications
- Open to the community during the 1990's and 2000's
- https://en.wikipedia.org/wiki/Princeton_ocean_model

Developing POM for Tropical Cyclones

- Available POM code version transferred to University of Rhode Island (URI) in 1994
- POM code changes made at URI specifically to address ocean response to hurricane wind forcing
- This POM version coupled to GFDL hurricane model at URI
- Coupled GFDL/POM model operational at NWS in 2001
- Additional POM upgrades made at URI during 2000's (e.g. initialization) and implemented in operational GFDL/POM
- Same version of POM coupled to operational HWRF in 2007
- New version created in 2014: Message Passing Interface POM for tropical cyclones (MPIPOM-TC)

Developing MPIPOM-TC

POM community code development

URI-based code development

MPIPOM-TC Features

- MPIPOM-TC uses MPI software to run efficiently on multiple processors, allowing for both higher grid resolution and a larger ocean domain than POM-TC
- MPIPOM-TC accepts flexible initialization options
- MPIPOM-TC is an adaptation of sbPOM, which has community support and includes 18 years of physics updates and bug fixes
- MPIPOM-TC is a modernized code with NetCDF I/O
- MPIPOM-TC uses a single prognostic code in all worldwide HWRF ocean basins

MPIPOM Domains Worldwide

All domains are set to the same size covering 83.2° (37.5°) of longitude (latitude) with a horizontal grid spacing of $1/12^{\circ}$.

By default, HWRF runs coupled in all ocean basins except Southern Hemisphere. DTC will provide instructions on how to run coupled in all basins.

7

POM Numerical Design

Sigma Vertical Coordinate

- 40 vertical sigma levels; free surface (η)
- Level placement scaled based on ocean bathymetry
- Largest vertical spacing occurs where ocean depth is 5500 m

Arakawa-C Grid: External Mode

Horizontal spatial differencing occurs on staggered Arakawa-C grid

- 2-D variables "UA" and "VA" are calculated at shifted location from " η "

Arakawa-C Grid: Internal Mode

- Horizontal spatial differencing occurs on staggered Arakawa-C grid
- 3-D variables "U" and "V" are calculated at shifted location from "T" and "Q"
- "T" here represents variables "T", "S", and "RHO"
- "Q" here represents variables "Km", "Kh", "Q2", and "Q2I"

Vertical Grid: Internal Mode

- Vertical spatial differencing also occurs on staggered grid
- 3-D variables "W" and "Q" are calculated at shifted depth from "T" and "U"
- "T" here represents variables "T", "S", and "RHO"
- "Q" here represents variables "Km", "Kh", "Q2", and "Q2I"

Time Stepping

- POM has a split time step
- External (two-dimensional) mode uses short time step:
 - 22.5 seconds during pre-coupled initialization
 - 13.5 seconds during coupled integration
- Internal (three-dimensional) mode uses long time step:
 - 15 minutes during pre-coupled initialization
 - 9 minutes during coupled integration
- Horizontal time differencing is explicit
- Vertical time differencing is implicit

POM Physics

1-D processes

Hurricanes cool the ocean surface through:(1) vertical (turbulent) mixing(2) surface heat flux

Vertical mixing drives ~85% of sea surface temperature cooling

Vertical Mixing Parameterization

Turbulent flux terms are assumed proportional to the vertical shear of the mean variables, e.g.

MomentumTemperature $\overline{w'u'}(z) = -K\left(\frac{\partial \overline{u}}{\partial z}\right)$ $\overline{w'\theta'}(z) = -K\left(\frac{\partial \overline{\theta}}{\partial z}\right)$

The turbulent mixing coefficient K is parameterized using either

(1) Mellor–Yamada level 2.5 turbulence closure model (M-Y scheme) or

(2) K-Profile Parameterization (KPP scheme):

K(z) = hWG(z)

h - mixing layer depth W- turbulent velocity scale G(z)- non-dimensional shape-function

3-D processes

Hurricane induced upwelling and horizontal advection can enhance and/or modify surface cooling.

Effect of Ocean Stratification on SST cooling

Rising cold water diminishes a hurricane's intensity

> Deep warm water increases a hurricane's intensity

Typical of Gulf of Mexico in Summer & Fall

Typical of Caribbean in Summer & Fall

Effect of TC translation speed on SST cooling

POM Initialization

Flexible Initialization Options

- Feature-based modifications to U.S. Navy's Generalized Digital Environmental Model (GDEM) monthly temperature (*T*) and salinity (*S*) climatology with assimilated daily SST (FB) used in NATL.
- 2. Global Real-Time Ocean Forecast System (RTOFS) used in EPAC & CPAC.

Feature-based (FB) initialization

- The basic premise of the FB procedure is that major oceanic fronts and eddies in the western North Atlantic Ocean are poorly represented by GDEM climatology.
- By defining the spatial structure of these fronts and eddies using observations gathered from field experiments, cross-frontal "sharpening" of GDEM T & S fields is performed to increase the horizontal density gradients across the fronts.
- Algorithms are incorporated to initialize the Gulf Stream and Loop Current with prescribed paths and to insert eddies into the Gulf of Mexico based on guidance from near-real-time observations, such as satellite altimetry.

Feature-based Initialization: Gulf Stream

Falkovich, A., I. Ginis, and S. Lord, 2005 24

Feature-based Initialization: Hurricane Irma

Hurricane: IRMA(Sep. 06 2017 18Z)

94°W 89°W 84°W 79°W 74°W 69°W 64°W 59°W 54°W 49°W 44°W 39°W 34°W 29°W 24°W 19°W

Feature-based Initialization: Examples of improved vertical temperature in Loop Current and warm-core eddy

Yablonsky and Ginis (2008)

Effect of Loop Current on Hurricane Katrina Intensity

GFDL forecast Initialized Aug. 26, 18Z

Atmosphere-Ocean Coupling

Developing Air-Sea Interface Module (ASIM) with explicit wave coupling

Motivation: air-sea fluxes and turbulent mixing above/below sea surface are significantly modified by surface waves in high wind conditions.

Image courtesy of Fabrice Veron

Wind-Wave-Current Interaction In Hurricanes

Fan, Y., I. Ginis, and T. Hara, 2010 31

Sea State Dependent Drag Coefficient in WW3-MPIPOM coupled model

Sea State Dependent Langmuir turbulence in KPP

1. Sea state enhancement of K based on the Langmuir number

$$K(z) = [hw_*G(z)] \times F(La)$$
$$La = \sqrt{u_* / u_{St}}$$

2. Use the Lagrangian current in place of the Eulerian current in KPP

Sea State Dependent Langmuir turbulence in KPP

The enhancement factor needed in the KPP mixing coefficient is found by running a Large Eddy Simulation (LES) model

Langmuir impact on the ocean response

An ideal hurricane is translated westward.

Three translation speeds: 0 (stationary), 2.7 (slow), and 5.8 (fast) m/s.

Initial temperature profile: Mixed Layer Depth: 20m dT/dz=-.1°C/m

35

Langmuir impact on the ocean response

Langmuir impact on the ocean response

37

Coupled WW3-MPIPOM Modeling of Hurricane Edouard (2014)

Model wind fields based on TC vitals Modeled significant wave heights

Blair et al. 2017

Coupled WW3-MPIPOM Modeling of Hurricane Edouard (2014)

Coupled WW3-MPIPOM Modeling of Hurricane Edouard (2014)

Comparisons between model and observations of SST and mixed layer depth after the storm, on September 17th,1800 UTC.

Blair et al. 2017 40

Wave-dependent physics in HWRF

- Atmospheric model: air-sea fluxes depend on sea state
- Wave model: forced by sea state dependent wind forcing
- Ocean model: forced by sea state dependent wind stress modified by growing or decaying wave fields and Coriolis-Stokes effect. Turbulent mixing is modified by the Stokes drift (Langmiur turbulence).

References

- Ginis, I., 2002: Tropical cyclone-ocean interactions. Vol. 1, Advances in Fluid Mechanics Series, No. 33, WIT Press, 83-114.
- Falkovich, A., I. Ginis, and S. Lord, 2005: Ocean data assimilation and initialization procedure for the Coupled GFDL/URI Hurricane Prediction System. *J. Atmos. Oceanic Technol.*, **22**, 1918-1932.
- Moon, I.-J., I. Ginis, T. Hara, and B. Thomas, 2007: A physics-based parameterization of air-sea momentum flux at high wind speeds and its impact on hurricane intensity predictions. *Mon. Wea. Rev.*, **135**, 2869-2878.
- Yablonsky, R. M., and I. Ginis, 2008: Improving the ocean initialization of coupled hurricane-ocean models using feature-based data assimilation. *Mon. Wea. Rev.*, **136**, 2592-2607.
- Yablonsky, R. M., and I. Ginis, 2009: Limitation of one-dimensional ocean models for coupled hurricane-ocean model forecasts. *Mon. Wea. Rev.*, **137**, 4410-4419.
- Fan, Y., I. Ginis, and T. Hara, 2010: Momentum flux budget across air-sea interface under uniform and tropical cyclones winds. *J. Phys. Oceanogr.*, **40**, 2221-2242.
- Fan, Y., I. Ginis, and T. Hara, 2009: The effect of wind-wave-current interaction on air-sea momentum fluxes and ocean response in tropical cyclones. *J. Phys. Oceanogr.*, **39**, 1019-1034.

References (cont'd)

- Yablonsky, R. M., I. Ginis, B. Thomas, V. Tallapragada, D. Sheinin, and L. Bernardet, 2015: Description and analysis of the ocean component of NOAA's operational Hurricane Weather Research and Forecasting (HWRF) Model. J. Atmos. Oceanic Technol., 32, 144–163.
- Yablonsky, R. M., I. Ginis, B. Thomas, 2015: Ocean modeling with flexible initialization for improved coupled tropical cyclone-ocean prediction, *Environmental Modelling & Software*, **67**, 26-30.
- Reichl, B. G., T. Hara, and I. Ginis, 2014: Sea state dependence of the wind stress over the ocean under hurricane winds. *J. Geophys. Res. Oceans*, **119**, 30-51.
- Reichl, B. G, D. Wang, T. Hara, I. Ginis, T. Kukulka, 2016a: Langmuir turbulence parameterization in tropical cyclone conditions, *J. Phys. Oceanogr*, **46**, 863-886.
- Reichl, B. G., I. Ginis, T. Hara, B. Thomas, T. Kukulka and D. Wang 2016b: Impact of sea-state-dependent Langmuir turbulence on the ocean response to a tropical cyclone. *Mon. Wea. Rev.*, **144**, 4569-4590.
- Blair, A., Ginis, I., Hara, T., & Ulhorn, E., 2017: Impact of Langmuir turbulence on upper ocean response to Hurricane Edouard: Model and observations. *J. Geophys. Res. Oceans*, **122**, 9712–9724.