
Evan Kalina
Developmental Testbed Center, Boulder, CO

NOAA ESRL Global Systems Division, Boulder CO
University of Colorado CIRES, Boulder CO

Python Scripts in HWRF

HWRF v3.9a Tutorial
24 January 2018 College Park, MD

Many slides contributed by
Christina Holt and Sam Trahan

2

Outline
� Resources for Users
� System design
� Object-oriented programming basics
� Configuring HWRF
� Data communication
� Logging

Resources for Users
User webpage
Documentation
Doxygen website
Python website

4

User support webpage
www.dtcenter.org/HurrWRF/users

5

Scientific Documentation
� Technical information covering each HWRF component

� Authorship includes developers and experts
� Chapters covering:

� HWRF introduction
� HWRF Initialization
� MPI POM-TC
� Physics Packages in HWRF
� Design of moving nest
� Use of GFDL Vortex Tracker
� The idealized HWRF framework

https://dtcenter.org/HurrWRF/users/docs/scientific
_documents/HWRFv3.9a_ScientificDoc.pdf

6

HWRF v3.9a User’s Guide
� Includes detailed instructions on running each component

� Specific to the public release
� Explains how to run with provided wrapper scripts

� Content:
� Introduction & software installation
� Running HWRF
� HWRF preprocessing system
� Vortex Relocation
� DA
� Merge

https://dtcenter.org/HurrWRF/users/docs/users_guide/HWRF_v3.9a_UG.pdf

� MPIPOM-TC
� Forecast Model
� Post processor
� Forecast products
� Idealized

7

Doxygen Website
� Detailed information about the HWRF configuration files

and Python scripts

8

General Python help
� Online (https://docs.python.org/release/2.6.6/)
� Open python in a terminal and use help() function for

particular function. An example to get information with a
Python list:

$ python
$ help(list)

� The officially supported version for HWRF is Python v2.6.6.
� Your version of Python should be version 2.6.6 or higher.
� Version 3 is basically a different language.

HWRF System Overview
Overview of the system design

10

HWRF System: Overview
� 6 layers of scripts that are

responsible for preparing the
environment and data for and
running the ~80 HWRF
executables of the end-to-end
system

� Most of these layers are written
using an object-oriented (O-O)
Python design

� O-O design makes the system highly
configurable and reduces the
footprint of the system drastically

Intercycle

Workflow

Scripting

Experiment

Implementation

Portability

11

HWRF Directory Structure
hwrfrun/

doc/
parm/ *.conf

scripts/...................... exhwrf_*.py
sorc/

ush/.......................... hwrf_expt.py
.......................... produtil/
.......................... hwrf/
.......................... pom/

wrappers/

doc/
gfdl-vortextracker/
GSI/
hwrf-utilities/
ncep-coupler/

pomtc/
UPP/
WPSV3/
WRFV3/

12

Intercycle

Workflow

Scripting

Experiment

Implementation

Portability

Rocoto
Wrappers
ECFLOW

HWRF System: Intercycle Layer

� Handles interactions between several
cycles
� Complex dependencies
� Files passed between them

� Automation is not needed for a case
study

� Critical for a large retrospective study,
and for real-time automation

13

Intercycle

Workflow

Scripting

Experiment

Implementation

Portability

Rocoto
Wrappers
ECFLOW

HWRF System: Workflow Layer

� Splits work into multiple batch jobs
� Workflow managers handle

dependencies, submission, failures, and
resubmission of jobs

� Human handles this process when using
wrappers

14

HWRF System: Scripting Layer
� Loads programs and libraries into

computing environment
� Ensures connection to file system

on compute node

� Passes file and executable
locations to the next lower layer

� Layer is optional – can be done
manually by user

Intercycle

Workflow

Scripting

Experiment

Implementation

Portability

exhwrf_*

15

HWRF System: Experiment Layer
� Describes the HWRF workflow
� Creates the object structure that

connects all the pieces
� i.e. GSI should use input from the

GDAS relocation output
� Each object has a run() function to

perform the actual task

Intercycle

Workflow

Scripting

Experiment

Implementation

Portability

hwrf_expt.py

16

HWRF System: Implementation Layer
� A set of Python classes and functions used by

the Experiment layer to run HWRF
� Each component has its own class and set of

functions
� Some classes perform utilities to support the

system, such as predicting filenames and
performing time/date arithmetic

� Includes two packages
� pom – Princeton Ocean Model initialization
� hwrf – Implementation of most of the HWRF

system

Intercycle

Workflow

Scripting

Experiment

Implementation

Portability

ush/hwrf
ush/pom

17

HWRF System: Portability Layer
� Implements cross-platform

methods of performing
common tasks
� MPI implementation
� OpenMP
� Serial programs
� File operations
� Batch system interaction
� Manipulate resource limitations
� Interact with database file

Intercycle

Workflow

Scripting

Experiment

Implementation

Portability produtil

18

Workflow Object Structure

ush/hwrf_expt.py:
post=HWRFPost('/path/to/infile',

'/path/to/fixd',
'/path/to/hwrf_post',

to_datetime('2015081818'))

Intercycle

Workflow

Scripting

Experiment

Implementation

Portability

scripts/exhwrf_post.py:
import hwrf_expt

hwrf_expt.init_module()
hwrf_expt.post.run_post()

wrappers/post_wrapper
export TOTAL_TASKS=24
$EXhwrf/exhwrf_post.py

ush/hwrf/post.py:
class HWRFPost
def run_post

Object-oriented Programming
A real-world example

20

Object-oriented programming:
Some definitions
� A class is a blueprint (e.g., for building/riding a bike). It defines

all of the characteristics (attributes – e.g., color) and behaviors
(methods – e.g., coasting) of that object (e.g., a bike).

� An object is created from a class. From the blueprint provided by
the class, you can build many different kinds of bikes (fast red bike,
slow blue bike, etc.). Each object (bike) is a specific instance of the
bike class.

� Helpful hints for distinguishing between objects, methods, and
attributes:
� Objects: think nouns: person, place, or thing
� Methods: think action verbs: behaviors that can be performed
� Attributes: think adjectives: characteristics that describe the object

21

Object-oriented Python

sam, an instance of
the bicycle class

� Instantiation
� sam = bicycle()

22

Object-oriented Python

sam, an instance of
the bicycle class

� Attributes
� sam.make = “raleigh”
� sam.model = “revenio”
� sam.wheel_diameter = 700 # in mm

23

Object-oriented Python

sam, an instance of
the bicycle class

� Methods
� sam.ride(“College Park, MD”,

“Boulder, CO”)
� sam.tuneup(3000)

24

Putting it all together
class bicycle: # this is a class

def __init__(self,make,model,wheel_diameter):
this is a special method called by Python to create the class
self.make=make
self.model=model
self.wheel_diameter=wheel_diameter

def ride(self,start,finish): # this is another method
self.lats=[]
self.lons=[]
some logic here to calculate the optimal path
self.lats=[38.99, 39.10, 40.02]
self.lons=[-76.94, -94.58, -105.27]
return self

def tuneup(self,num_km): # this is another method
self.toDo=[]
if (num_km >= 3000. and num_km < 5000.):

self.toDo=['replace tires', 'replace chain', 'clean frame']
insert additional logic for other maintenance milestones
return self

25

Your program that calls the bicycle class
Instantiate the bicycle class
sam = bicycle('rayleigh','revenio',700.)
sam is an object. A specific instance of the bicycle class.

Call the ride method
sam = sam.ride('College Park, MD', 'Boulder, CO')
print(sam.lats, sam.lons)

Call the tuneup method
sam = sam.tuneup(3000)
print(sam.toDo)

[Evan.Kalina@fe2 python]$ python
Python 2.7.13 |Anaconda 4.3.1 (64-bit)|

>>> execfile("bike.py")
([38.99, 39.1, 40.02], [-76.94, -94.58, -105.27])
['replace tires', 'replace chain', 'clean frame']

Object-oriented Programming
An example for HWRF

27

An example for UnifiedPost
class UnifiedPost:

def __init__(self,infile,fixd,postexec,when):
(self.infile,self.fixd.self.postexec,self.when)=\

infile, fixd, postexec, when
def run_post(self):

self.link_fix()
self.make_itag()
make_symlink(self.infile,”INFILE”,

logger=self.log(),force=True)
cmd=mpirun(mpi(self.postexec)<”itag”)
checkrun(cmd,all_ranks=true,logger=self.log())

def link_fix(self):
fixes=[f for f in glob.glob(fixd+”/*”)]
make_symlinks_in(fixes,”.”,logger=self.log())

28

An example for UnifiedPost
class HWRFPost(UnifiedPost):

defmake_itag (self):
with open(“itag”,”wt”) as f:

itagdata=self.when.strftime(
“INFILE\nnetcdf\n%Y-%m-%d_%H:%M:%S” “\nNMM NEST\n”)

f.write(itagdata)

class NEMSPost(UnifiedPost):
defmake_itag (self):

with open(“itag”,”wt”) as f:
itagdata=self.when.strftime(
“INFILE\nnetcdf\n%Y-%m-%d_%H:%M:%S” “\nNEMS\n”)

f.write(itagdata)

Configuring HWRF
Conf files
hwrf_expt.py

30

Configuring HWRF Overview
parm/*.conf

hwrf_input.conf

hwrf.conf

hwrf_holdvars.conf

hwrf_basic.conf

system.conf

user-specified files
and options

com/

storm1.conf

scripts/

exhwrf_launch
hwrf.launcher.launch

ush/

hwrf.launcher.HWRFLauncher
hwrf.config.HWRFConfig

hwrf.task.HWRFTask
...and its subclasses...

hwrf.namelist.*
and direct conf usage

31

Unix .conf Files
This is a comment
[section]
key=value ; This is also a comment
key2=value2

parm/*.conf

hwrf_input.conf

hwrf.conf

hwrf_holdvars.conf

hwrf_basic.conf

system.conf

user-specified files
and options

Short description of section
#
Long description of section
@note Doxygen+markdown syntax
[section]
key=value ;; short description of key
Short description of key2

long description of key2
key2=value2

Simple format

Doxygen format

32

Unix Conf Files
� String substitution

� String substitution with formatting

� Substitute from other sections

[myprog]
basedir = /some/path
exename = myexe.x
exepath = {basedir}/exec/{exename}

[myprog]
gridnum = 5
exename = myexe_{gridnum:02d}.x
exepath = {basedir}/exec/{exename}

[grid]
num = 5
[myprog]
exename = myexe_{grid/num:02d}.x
exepath = {basedir}/exec/{exename}

exepath = /some/path/exec/myexe.x

exename = myexe_05.x

exename = myexe_05.x

33

Config Processing

� Python ConfigParser.ConfigParser parses the
*.conf files in order

� Puts result in an in-memory
hwrf.launcher.HWRFLauncher object

parm/*.conf

hwrf_input.conf

hwrf.conf

hwrf_holdvars.conf

hwrf_basic.conf

system.conf

user-specified files
and options

scripts/

exhwrf_launch
hwrf.launcher.launch

34

storm1.conf

� exhwrf_launch writes storm1.conf
� storm1.conf contains all the processed config

data for later jobs to read
� No other conf file is processed

� Later jobs read storm1.conf using
hwrf.launcher.load

� hwrf.launcher.HWRFLauncher contains many
convenience functions for using the conf info

com/

storm1.conf

scripts/

exhwrf_launch
hwrf.launcher.launch

ush/

hwrf.launcher.HWRFLauncher
hwrf.config.HWRFConfig

35

HWRF Python Tasks
� HWRFLauncher & HWRFConfig

� Classes that access conf data
� getstr(section, key, default)

� Returns default value if none specified in storm1.conf

� getint, getfloat, getbool, etc. (see docs for full list)

� HWRFTask is an instance of each of the tasks to
be completed
� Examples include GeogridTask,WRFAtmos, etc.
� Has a database task name, a conf section, and an

HWRFConfig

� hwrf.namelist.NamelistInserter reformats
storm1.conf information into Fortran namelist
files needed for various components

ush/

hwrf.launcher.HWRFLauncher
hwrf.config.HWRFConfig

hwrf.task.HWRFTask
...and its subclasses...

hwrf.namelist.*
and direct conf usage

Data Communication
Database introduction
Passing around information

37

HWRF Database
� HWRF needs to know the status/availability of files millions

of times per cycle
� When a file becomes available, a Python script puts its

location, availability, and other metadata into an SQLite3
database

38

HWRF Database & produtil
� The produtil package contains all the HWRF utilities to write to

and query the SQLite3 database
� produtil includes methods to check, deliver, and “undeliver” files

� prod.check – Check for file of specified minimum size and age
� Returns status as RUNNING, COMPLETED, FAILED

� prod.undeliver – Remove file from working area
� prod.deliver – Deliver file to specified location

� You can query the database on your own like any other SQLite3
database

� For a list of the input/output needed for HWRF, see
hwrf.fcsttask.WRFTaskBase

Logging

40

stderr and stdout
� Located in the $HOMEhwrf/wrappers directory
� stdout files contain all the logging (info, error, critical level)

messages from the Python scripts
� stderr files contain all the error and critical messages, plus

the submission information for the job (PROLOGUE,
EPILOGUE)

� Can be separated into *.out and *.err, or joined into one
stream. Name and location depend on your job submission
script.

� At least one set/file for each task.
� Multiple processor jobs have multiple sets of logs

� post, products, tracker, etc.

41

Writing to the standard out
� Adding log messages can be done from the ush scripts with a

few simple commands
logger=self.log()
logger.info(‘This is the value of some_variable:

%s’ %(some_variable))
logger.warning(‘This is a warning!’)
logger.error(‘This is an error’)
logger.critical(‘This is really bad!’)

Result:
01/08 04:34:45.706 hwrf.gfsinit (relocate.py:353) INFO: This
is the value of some_variable: 270.0
01/08 04:34:45.902 hwrf.gfsinit (relocate.py:354) WARNING:
This is a warning!

42

Python Exception Stacks
� Several lines you get when you fail.

Traceback (most recent call last):
File "/pan2/projects/dtc-

hurr/dtc/HWRF_training//scripts/exhwrf_gsi.py", line 60, in <module>
main()

File "/pan2/projects/dtc-
hurr/dtc/HWRF_training//scripts/exhwrf_gsi.py", line 53, in main

hwrf_expt.gsi_d02.run()
File "/pan2/projects/dtc-hurr/dtc/HWRF_training/ush/hwrf/gsi.py",

line 982, in run
self.grab_enkf_input()

File "/pan2/projects/dtc-hurr/dtc/HWRF_training/ush/hwrf/gsi.py",
line 285, in grab_enkf_input

self.grab_gfs_enkf()
File "/pan2/projects/dtc-hurr/dtc/HWRF_training/ush/hwrf/gsi.py",

line 607, in grab_gfs_enkf
%(there,))

GSIInputError: required input file is empty or non-existent:
/pan2/projects/dtc-
hurr/dtc/HWRF_training/pytmp/HWRF_training/2015082000/17W/hwrfdata/en
kf.2015081918/sfg_2015081918_fhr06s_mem001

43

Output from components
� Many components have their own log files
� For example:

� WRF: rsl.out.* and rsl.err.*
� WPS: metgrid.log.*, geogrid.log.*, ungrib.log
� GSI: stdout
� Coupler: cpl.out

Questions?

