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Outline
� Resources for Users
� System design
� Object-oriented programming basics
� Configuring HWRF
� Data communication
� Logging



Resources for Users
User webpage
Documentation
Doxygen website
Python website
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User support webpage 
www.dtcenter.org/HurrWRF/users
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Scientific Documentation
� Technical information covering each HWRF component

� Authorship includes developers and experts
� Chapters covering:

� HWRF introduction
� HWRF Initialization
� MPI POM-TC
� Physics Packages in HWRF
� Design of moving nest
� Use of GFDL Vortex Tracker
� The idealized HWRF framework

https://dtcenter.org/HurrWRF/users/docs/scientific
_documents/HWRFv3.9a_ScientificDoc.pdf
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HWRF v3.9a User’s Guide
� Includes detailed instructions on running each component

� Specific to the public release
� Explains how to run with provided wrapper scripts

� Content:
� Introduction & software installation
� Running HWRF
� HWRF preprocessing system
� Vortex Relocation
� DA
� Merge

https://dtcenter.org/HurrWRF/users/docs/users_guide/HWRF_v3.9a_UG.pdf

� MPIPOM-TC
� Forecast Model
� Post processor
� Forecast products
� Idealized
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Doxygen Website
� Detailed information about the HWRF configuration files 

and Python scripts
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General Python help
� Online (https://docs.python.org/release/2.6.6/)
� Open python in a terminal and use help() function for 

particular function. An example to get information with a 
Python list:

$ python
$ help(list)

� The officially supported version for HWRF is Python v2.6.6.
� Your version of Python should be version 2.6.6 or higher.
� Version 3 is basically a different language.



HWRF System Overview
Overview of the system design
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HWRF System: Overview
� 6 layers of scripts that are 

responsible for preparing the 
environment and data for and 
running the ~80 HWRF 
executables of the end-to-end 
system

� Most of these layers are written 
using an object-oriented (O-O) 
Python design

� O-O design makes the system highly 
configurable and reduces the 
footprint of the system drastically

Intercycle

Workflow

Scripting

Experiment

Implementation

Portability
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HWRF Directory Structure
hwrfrun/

doc/
parm/ .........................  *.conf

scripts/...................... exhwrf_*.py
sorc/

ush/.......................... hwrf_expt.py
.......................... produtil/
.......................... hwrf/
.......................... pom/

wrappers/

doc/
gfdl-vortextracker/
GSI/
hwrf-utilities/
ncep-coupler/

pomtc/
UPP/
WPSV3/
WRFV3/



12

Intercycle

Workflow

Scripting

Experiment

Implementation

Portability

Rocoto
Wrappers
ECFLOW

HWRF System: Intercycle Layer 

� Handles interactions between several 
cycles
� Complex dependencies
� Files passed between them

� Automation is not needed for a case 
study

� Critical for a large retrospective study, 
and for real-time automation
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Intercycle

Workflow

Scripting

Experiment

Implementation

Portability

Rocoto
Wrappers
ECFLOW

HWRF System: Workflow Layer

� Splits work into multiple batch jobs
� Workflow managers handle 

dependencies, submission, failures, and 
resubmission of jobs

� Human handles this process when using 
wrappers
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HWRF System: Scripting Layer
� Loads programs and libraries into 

computing environment
� Ensures connection to file system 

on compute node

� Passes file and executable 
locations to the next lower layer

� Layer is optional – can be done 
manually by user

Intercycle

Workflow

Scripting

Experiment

Implementation

Portability

exhwrf_*



15

HWRF System: Experiment Layer
� Describes the HWRF workflow
� Creates the object structure that 

connects all the pieces
� i.e. GSI should use input from the 

GDAS relocation output
� Each object has a run() function to 

perform the actual task

Intercycle

Workflow

Scripting

Experiment

Implementation

Portability

hwrf_expt.py
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HWRF System: Implementation Layer
� A set of Python classes and functions used by 

the Experiment layer to run HWRF
� Each component has its own class and set of 

functions
� Some classes perform utilities to support the 

system, such as predicting filenames and 
performing time/date arithmetic

� Includes two packages
� pom – Princeton Ocean Model initialization
� hwrf – Implementation of most of the HWRF 

system

Intercycle

Workflow

Scripting

Experiment

Implementation

Portability

ush/hwrf
ush/pom



17

HWRF System: Portability Layer
� Implements cross-platform 

methods of performing 
common tasks
� MPI implementation 
� OpenMP
� Serial programs
� File operations
� Batch system interaction
� Manipulate resource limitations
� Interact with database file

Intercycle

Workflow

Scripting

Experiment

Implementation

Portability produtil
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Workflow Object Structure

ush/hwrf_expt.py:
post=HWRFPost('/path/to/infile',

'/path/to/fixd', 
'/path/to/hwrf_post', 

to_datetime('2015081818'))

Intercycle

Workflow

Scripting

Experiment

Implementation

Portability

scripts/exhwrf_post.py:
import hwrf_expt

hwrf_expt.init_module()
hwrf_expt.post.run_post()

wrappers/post_wrapper
export TOTAL_TASKS=24
$EXhwrf/exhwrf_post.py

ush/hwrf/post.py:
class HWRFPost
def run_post



Object-oriented Programming
A real-world example
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Object-oriented programming:
Some definitions
� A class is a blueprint (e.g., for building/riding a bike). It defines 

all of the characteristics (attributes – e.g., color) and behaviors 
(methods – e.g., coasting) of that object (e.g., a bike).

� An object is created from a class. From the blueprint provided by 
the class, you can build many different kinds of bikes (fast red bike, 
slow blue bike, etc.). Each object (bike) is a specific instance of the 
bike class.

� Helpful hints for distinguishing between objects, methods, and 
attributes:
� Objects: think nouns: person, place, or thing
� Methods: think action verbs: behaviors that can be performed
� Attributes: think adjectives: characteristics that describe the object
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Object-oriented Python

sam, an instance of 
the bicycle class

� Instantiation
� sam = bicycle()
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Object-oriented Python

sam, an instance of 
the bicycle class

� Attributes
� sam.make = “raleigh”
� sam.model = “revenio”
� sam.wheel_diameter = 700 # in mm 
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Object-oriented Python

sam, an instance of 
the bicycle class

� Methods
� sam.ride(“College Park, MD”, 

“Boulder, CO”)
� sam.tuneup(3000)
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Putting it all together
class bicycle: # this is a class

def __init__(self,make,model,wheel_diameter): 
# this is a special method called by Python to create the class
self.make=make
self.model=model
self.wheel_diameter=wheel_diameter

def ride(self,start,finish): # this is another method
self.lats=[]
self.lons=[]
# some logic here to calculate the optimal path
self.lats=[38.99, 39.10, 40.02]
self.lons=[-76.94, -94.58, -105.27]
return self

def tuneup(self,num_km): # this is another method
self.toDo=[]
if (num_km >= 3000. and num_km < 5000.):

self.toDo=['replace tires', 'replace chain', 'clean frame']
# insert additional logic for other maintenance milestones
return self
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Your program that calls the bicycle class
# Instantiate the bicycle class
sam = bicycle('rayleigh','revenio',700.)
# sam is an object. A specific instance of the bicycle class.

# Call the ride method
sam = sam.ride('College Park, MD', 'Boulder, CO')
print(sam.lats, sam.lons)

# Call the tuneup method
sam = sam.tuneup(3000)
print(sam.toDo)

[Evan.Kalina@fe2 python]$ python
Python 2.7.13 |Anaconda 4.3.1 (64-bit)|

>>> execfile("bike.py")
([38.99, 39.1, 40.02], [-76.94, -94.58, -105.27])
['replace tires', 'replace chain', 'clean frame']



Object-oriented Programming
An example for HWRF
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An example for UnifiedPost
class UnifiedPost:

def __init__(self,infile,fixd,postexec,when):
(self.infile,self.fixd.self.postexec,self.when)=\

infile,     fixd,     postexec,     when
def run_post(self):

self.link_fix()
self.make_itag()
make_symlink(self.infile,”INFILE”,

logger=self.log(),force=True)
cmd=mpirun(mpi(self.postexec)<”itag”)
checkrun(cmd,all_ranks=true,logger=self.log())

def link_fix(self):
fixes=[f for f in glob.glob(fixd+”/*”)]
make_symlinks_in(fixes,”.”,logger=self.log())
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An example for UnifiedPost
class HWRFPost(UnifiedPost):

defmake_itag (self):
with open(“itag”,”wt”) as f:

itagdata=self.when.strftime(
“INFILE\nnetcdf\n%Y-%m-%d_%H:%M:%S”  “\nNMM NEST\n”)

f.write(itagdata)

class NEMSPost(UnifiedPost):
defmake_itag (self):

with open(“itag”,”wt”) as f:
itagdata=self.when.strftime(
“INFILE\nnetcdf\n%Y-%m-%d_%H:%M:%S” “\nNEMS\n”)

f.write(itagdata)      



Configuring HWRF
Conf files
hwrf_expt.py
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Configuring HWRF Overview
parm/*.conf

hwrf_input.conf

hwrf.conf

hwrf_holdvars.conf

hwrf_basic.conf

system.conf

user-specified files 
and options

com/

storm1.conf

scripts/

exhwrf_launch
hwrf.launcher.launch

ush/

hwrf.launcher.HWRFLauncher
hwrf.config.HWRFConfig

hwrf.task.HWRFTask
...and its subclasses...

hwrf.namelist.*
and direct conf usage
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Unix .conf Files
# This is a comment
[section]
key=value ; This is also a comment
key2=value2

parm/*.conf

hwrf_input.conf

hwrf.conf

hwrf_holdvars.conf

hwrf_basic.conf

system.conf

user-specified files 
and options

## Short description of section 
#
# Long description of section 
# @note Doxygen+markdown syntax 
[section]
key=value ;; short description of key 
## Short description of key2
# 
# long description of key2
key2=value2

Simple format

Doxygen format
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Unix Conf Files
� String substitution

� String substitution with formatting

� Substitute from other sections

[myprog]
basedir = /some/path
exename = myexe.x
exepath = {basedir}/exec/{exename}

[myprog]
gridnum = 5
exename = myexe_{gridnum:02d}.x
exepath = {basedir}/exec/{exename}

[grid]
num = 5
[myprog]
exename = myexe_{grid/num:02d}.x
exepath = {basedir}/exec/{exename}

exepath = /some/path/exec/myexe.x

exename = myexe_05.x

exename = myexe_05.x
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Config Processing

� Python ConfigParser.ConfigParser parses the 
*.conf files in order

� Puts result in an in-memory 
hwrf.launcher.HWRFLauncher object

parm/*.conf

hwrf_input.conf

hwrf.conf

hwrf_holdvars.conf

hwrf_basic.conf

system.conf

user-specified files 
and options

scripts/

exhwrf_launch
hwrf.launcher.launch
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storm1.conf

� exhwrf_launch writes storm1.conf
� storm1.conf contains all the processed config

data for later jobs to read 
� No other conf file is processed

� Later jobs read storm1.conf using 
hwrf.launcher.load

� hwrf.launcher.HWRFLauncher contains many 
convenience functions for using the conf info

com/

storm1.conf

scripts/

exhwrf_launch
hwrf.launcher.launch

ush/

hwrf.launcher.HWRFLauncher
hwrf.config.HWRFConfig
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HWRF Python Tasks
� HWRFLauncher & HWRFConfig

� Classes that access conf data
� getstr(section, key, default)

� Returns default value if none specified in storm1.conf

� getint, getfloat, getbool, etc. (see docs for full list)

� HWRFTask is an instance of each of the tasks to 
be completed
� Examples include GeogridTask,WRFAtmos, etc.
� Has a database task name, a conf section, and an 

HWRFConfig

� hwrf.namelist.NamelistInserter reformats 
storm1.conf information into Fortran namelist
files needed for various components

ush/

hwrf.launcher.HWRFLauncher
hwrf.config.HWRFConfig

hwrf.task.HWRFTask
...and its subclasses...

hwrf.namelist.*
and direct conf usage



Data Communication
Database introduction
Passing around information
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HWRF Database
� HWRF needs to know the status/availability of files millions 

of times per cycle
� When a file becomes available, a Python script puts its 

location, availability, and other metadata into an SQLite3 
database
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HWRF Database & produtil
� The produtil package contains all the HWRF utilities to write to 

and query the SQLite3 database
� produtil includes methods to check, deliver, and “undeliver” files

� prod.check – Check for file of specified minimum size and age
� Returns status as RUNNING, COMPLETED, FAILED

� prod.undeliver – Remove file from working area
� prod.deliver – Deliver file to specified location

� You can query the database on your own like any other SQLite3 
database

� For a list of the input/output needed for HWRF, see 
hwrf.fcsttask.WRFTaskBase



Logging
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stderr and stdout
� Located in the $HOMEhwrf/wrappers directory
� stdout files contain all the logging (info, error, critical level) 

messages from the Python scripts
� stderr files contain all the error and critical messages, plus 

the submission information for the job (PROLOGUE, 
EPILOGUE)

� Can be separated into *.out and *.err, or joined into one 
stream. Name and location depend on your job submission 
script.

� At least one set/file for each task. 
� Multiple processor jobs have multiple sets of logs

� post, products, tracker, etc.
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Writing to the standard out
� Adding log messages can be done from the ush scripts with a 

few simple commands
logger=self.log()
logger.info(‘This is the value of some_variable: 

%s’ %(some_variable)) 
logger.warning(‘This is a warning!’)
logger.error(‘This is an error’)
logger.critical(‘This is really bad!’)

Result: 
01/08 04:34:45.706 hwrf.gfsinit (relocate.py:353) INFO: This 
is the value of some_variable: 270.0
01/08 04:34:45.902 hwrf.gfsinit (relocate.py:354) WARNING: 
This is a warning!
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Python Exception Stacks
� Several lines you get when you fail.

Traceback (most recent call last):
File "/pan2/projects/dtc-

hurr/dtc/HWRF_training//scripts/exhwrf_gsi.py", line 60, in <module>
main()

File "/pan2/projects/dtc-
hurr/dtc/HWRF_training//scripts/exhwrf_gsi.py", line 53, in main

hwrf_expt.gsi_d02.run()
File "/pan2/projects/dtc-hurr/dtc/HWRF_training/ush/hwrf/gsi.py", 

line 982, in run
self.grab_enkf_input()

File "/pan2/projects/dtc-hurr/dtc/HWRF_training/ush/hwrf/gsi.py", 
line 285, in grab_enkf_input

self.grab_gfs_enkf()
File "/pan2/projects/dtc-hurr/dtc/HWRF_training/ush/hwrf/gsi.py", 

line 607, in grab_gfs_enkf
%(there,))

GSIInputError: required input file is empty or non-existent: 
/pan2/projects/dtc-
hurr/dtc/HWRF_training/pytmp/HWRF_training/2015082000/17W/hwrfdata/en
kf.2015081918/sfg_2015081918_fhr06s_mem001
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Output from components
� Many components have their own log files 
� For example:

� WRF: rsl.out.* and rsl.err.*
� WPS: metgrid.log.*, geogrid.log.*, ungrib.log
� GSI: stdout
� Coupler: cpl.out



Questions?


