

Development of the Navy's COAMPS-TC

James D. Doyle, C. Amerault, S. Chen, J. Cummings¹, E. Hendricks², R. Hodur³, T. Holt, H. Jin, Y. Jin, C.-S. Liou, M. Peng, K. Sashegyi, J. Schmidt Naval Research Laboratory, Monterey, CA ¹Naval Research Laboratory, Stennis, MS ²NRC, ³SAIC, Monterey, CA Acknowledgements: P. Black, R. Elsberry, NRL-SSC ONR, PMW-120, NOAA

Typhoon Saomai (08W) and Tropical Storm Bopha (10W) 02Z 8 Aug 2006 (NASA MODIS)

Outline

Background and COAMPS-TC description

Real-time COAMPS-TC tests

- •T-PARC/TCS08 (2008)
- Hurricane Forecast Improvement Project (HFIP) Demo (2009)

Diagnosis and improvements to system

New capabilities

- Two-way air-sea coupled experiments
- Adjoints
- Ensemble techniques

Summary and Future Research

COAMPS-TC Background

- •COAMPS[®] has been the operational mesoscale model for the Navy since 1998 to support research and DoD operations.
- •COAMPS-TC: New version of COAMPS[®] developed for tropical cyclone analysis and prediction:
 - New 3D-Var TC analysis, synthetic observations for vortex initialization, improved microphysics, air-sea fluxes, and boundary layer (CBLAST)
 - Goal is to predict tropical cyclone *track, structure, intensity, ocean response*

•COAMPS-TC demonstrated in real time in 2008-2009:

- T-PARC/TCS08 and Hurricane Forecast Improvement Project (HFIP) Demo
- 45/15/5 km resolution (inner two moving nests)

Near-term objectives:

- Evaluate the skill of the COAMPS-TC predictions 2008-2009
- Research to improve the prediction of TC track, structure, and intensity
- Transition to Navy operations and HFIP multi-model ensemble
- New insight into TC coupled processes, dynamics, and predictability

COAMPS-TC Overview Current and Future Capabilities

Atmospheric Analysis	Ocean Analysis
 Complex Data Quality Control Relocation of TC in background Synthetic Observations: TC vortex NAVDAS 3DVAR: u, v, T, q, TC option Initialization: Digital Filter Option TC Balance Step: (underway) 	 Navy Coupled Ocean Data Assimilation (NCODA) System 2D OI: SST 3D MVOI: T, S, SSH, Sea Ice, Currents Complex Data Quality Control Initialization: Stability check
Atmospheric Model	Ocean Models
 Numerics: Nonhydrostatic, Scheme C, Moving Nests, Sigma-z, Flexible Lateral BCs Physics: PBL, Convection, Explicit Moist Physics, Radiation, Surface Layer TC Tools: Moving nests, dissipative heating, spray parameterization, shallow convection 	 NRL Coastal Ocean Model (NCOM) Numerics: Hydrostatic, Scheme C, Nested Grids, Hybrid Sigma/z Physics: Mellor-Yamada 2.5 Wave Models (WWIII and SWAN) Generalized Coupling Layer (ESMF)
Atmospheric Ensembles	Ocean Ensembles
 Initial Cond. Perturbation: ET, EnKF Physics Perturbations: PBL, Convection Lateral BCs: Global ensemble (NOGAPS) Probabilistic Products: Intensity, track 	 Initial Cond. Perturbation: ET Physics Perturbations: PBL, Fluxes Lateral BCs: NCOM Probabilistic Products: Mixed layer, OHC

Tropical Cyclone Initialization High-Resolution Synthetic Observations

Typhoon Sinlaku (15W) (0000 UTC 9 August 2008)

Synthetic Observations:
Modified Rankine Vortex
JTWC / NHC Warning Message
NOGAPS truncated fields
Blend Synthetics w/all other observations in 3DVAR

- Relocation of first guess (warm start)
- Improved TC representation with synthetics using 3DVAR

COAMPS-TC Track Forecasts for T-PARC/TCS08 Track Forecast Verification

Black line: Warning positions Colored lines: COAMPS forecasts

COAMPS-TC Structure Forecasts Structure Prediction of Typhoon Nuri

- The 72-h forecast captures the distribution of the convection.
- Closed eye (radar) with heaviest convection on the south/southwest side.
- Precipitation over-forecast on western side of storm; track error at 72h.

J. Hensley, P. Harr, R. Elsberry (NPS)

COAMPS-TC Intensity Forecasts Prediction of Super Typhoon Jangmi

0000 UTC 26 September 2008 (72-h forecast)

Animation of COAMPS predicted radar reflectivity every 30 minutes on 5 km moving grid

- COAMPS-TC forecasted rapid intensification of Jangmi.
- Convection was spotty and disorganized early in forecasts.
- Overall, intensity forecasts were not as skillful as statistical models.

COAMPS-TC Improvements Based on Analysis from T-PARC/TCS08

Azimuthally average tangential (shaded) and radial (contour) winds Hurricane Katrina (72 h valid 00Z Aug 29 2005, ∆x=3km) TCS08 New \

New Version of COAMPS-TC

- TCS08 Version
 - Basic TC 3D-VAR
 - Basic TC physics

New Version

- Additional synthetic observations
- Improved 3D-VAR data assimilation
- •Bougeault type of mixing (PBL & above)
- New sfc moisture transfer coefficient
- New ice nucleation
- •New dissipative heating formulation
- New sea spray parameterization
- •New shallow convection param.

• New COAMPS-TC -Improves initial & forecast <u>intensity</u> -Improves the convective <u>structure</u> -Good agreement with Doppler obs.

More Systematic Diagnosis is Needed Including Comparison with Observations and Other Models.

10

COAMPS-TC W. Pacific Forecasts (2008)

Improvements Following TCS08

COAMPS-TC Atlantic Forecasts Real-Time Forecasts for 2009 (HFIP)

- Track forecasts in the Atlantic were poor, particularly for weak storms. -Inadequacies of TC vortex initialization (especially weak storms).
- Systems initially weaken during first 12 h, then over-intensify.
 Intensity forecasts similar to GFDN through 48 h in WPAC.

COAMPS-TC Retrospective Forecasts Coupled Air-Sea Prediction of Hurricane Bill (2009)

COAMPS-TC air-sea coupled forecasts alleviate an overintensification bias as a result of SST cooling.

COAMPS-TC Adjoint during Genesis Quantifying Initial Condition Sensitivity for TY Nuri

- Adjoint allows for the mathematically rigorous calculation of forecast sensitivity of a response function to changes in initial state.
- •COAMPS-TC adjoint includes full microphysics and nesting.

- Sensitivity underscores importance of mid-level moistening for genesis.
- Spiral bands of ζ sensitivity (similar to Nolan and Farrell 1999).
- Evolved perturbations grow rapidly (30x growth in 9 h).
- Need to quantify predictability of TC lifecycle and characteristics.

COAMPS-TC Ensembles

Coupled Air-Sea Ensembles of Hurricane Ike (2008)

Summary and Future Plans

• High-resolution TC predictions for T-PARC & HFIP:

- COAMPS-TC Challenges:
 - TC vortex initialization, especially for weak and sheared storms
 - Organized convection and microphysics
 - Air-sea interaction in high-wind regime (uncertainties in sea spray etc.)
- Promising results from air-ocean coupling: alleviates over-intensification
- Improvements (physics & analysis) to COAMPS-TC based on real time fcsts

• Future Research:

- Improvements to TC vortex initialization (EnKF and 4D-Var options)
- Improvements in microphysics and convection in 3-5 km regime
- 3-way coupled air-ocean-wave capability and coupled ensemble prediction
- Quantify predictability of TC evolution (moist adjoint, EnKF)
- Community collaborations through HFIP, NOPP, field projects (TCS08, ITOP...)
 - -Model diversity is important: Multi-model high-resolution ensembles
 - -Community-based diagnostics needed (obs., model intercomparison).

http://www.nrlmry.navy.mil/coamps-web/web/tc

