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Operational Coupled Tropical Cyclone-

Ocean Models

• 2001 – GFDL/POM at NCEP in Atlantic ocean (3D 
coupling) and Eastern and Central Pacific ocean 
(1D coupling).

• 2007 – HWRF/POM at NCEP in Atlantic ocean (3D 
coupling).

• 2008 – GFDN/POM at FNMOC in Atlantic ocean 
(3D coupling) and all other oceans(1D coupling)

• 2009 – GFDN/POM at FNMOC in the Northern 
Pacific ocean (3D coupling). 



Source: National Geographic 
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Loop Current and Eddies in Gulf of Mexico

Subsurface (75-m)
ocean temperature in
advance of Rita 
initialized in POM 
15 September 2005

Warm “Loop Current”
water and a “Warm 
Core Ring” extend far 
into the Gulf of Mexico
from the Caribbean…
directly under Rita’s
and Katrina’s track

Rita Katrina



75-m Temperature (Sept. GDEM) TPC 26 C depth on 15 Sept. 2005

75-m Temperature AFTER assimilation

(1) Start with monthly

climatology

(3) Assimilate 

SST analysis

Future Hurricane

Rita track

(2) Adjust LC position

& add warm- and

cold-core eddies

info derived from

altimetry

Improved Ocean Model Initialization 

Yablonsky and Ginis (2008)

(4) Spin-up

ocean currents



Examples of Improved Initial Vertical 

Temperature Structure

Loop Current Warm-Core RIng

Yablonsky and Ginis (2008)



Effect of Loop Current on SST Response 

in Hurricane Katrina



Effect of Loop Current 

on Hurricane Katrina

Red – LC 27.6oN, Green – LC 24oN

Central Pressure

Maximum Winds

LC 24oN

LC 27.6oN

August 26th 0018 UTC, 2005



Effect of Ocean Coupling 

on Hurricane Katrina

Red – Coupled Model, Green – Uncoupled Model (fixed SST)

Uncoupled Model

August 26th 0018 UTC, 2005



0 hr 96 hr

Typhoon Nary (2007)

GFDN/POM is initialized from NCODA daily 

analysis in the Pacific Ocean 

NCODA analysis will be implemented into GFDN /POM in the  Atlantic basin in 2010
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Warm sea surface temperature

Cool subsurface temperature

Ocean response to hurricane forcing:

1. Vertical mixing/entrainment

Wind stress → surface layer currents

Current shear → turbulence

Turbulent mixing → entrainment of cooler water

Sea surface temperature decreases

Subsurface temperature increases

This is a 1-D (vertical) process



Cyclonic

hurricane

vortex
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Warm sea surface temperature

Cool subsurface temperature

Ocean response to hurricane forcing:

2. Upwelling

Cyclonic wind stress → divergent surface currents

Divergent currents → upwelling

Upwelling → cooler water brought to surface

This is a 3-D process



Hurricanes have historically translated 

in the Gulf of Mexico:

< 5 m s-1 73% and < 2 m s-1 16% of the time  

in the western tropical North Atlantic

at < 5 m s-1 62% and < 2 m s-1 12% of the time

SST cooling within hurricane inner-core

in 3D and 1D ocean models

Yablonsky and Ginis (2009)

2.5 m s-1 5 m s-1
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2.5 m s-1

1-D
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3-D



GFDN Coupled Model Forecast

Typhoon Cimaron:  November 2nd, 0000 UTC, 2006 

1-D Coupling 3-D Coupling

Demonstrates Importance of  Upwelling for Slow Moving Storm



Significantly Improved Prediction of Track and Intensity

( Typhoon Cimaron:  November 2nd , 0000 UTC, 2006)

3-D OCEAN COUPLING

1-D  OCEAN COUPLING

2006 OPERATIONAL GFDN

MAXIMUM WINDS

CENTRAL PRESSURE

3-D Coupling

3-D Coupling



Since warm water is deep in the eddy, WCEs 

generally restrict hurricane-induced SST cooling

But can a WCR’s circulation modify

hurricane-core SST cooling via 

advection?

Warm-core ring is not just high ocean 

heat content



WCRLWCRRCTRLWCRC

Prescribed translation speed

Cyclonic

hurricane

vortex

A

T

M

O

S

P

H

E

R

E

O

C

E

A

N

Warm core ring

evident in subsurface

temperature field

Vary position 

of ring relative 

to storm track

<

<

<

<

<

<

<

<

Homogeneous initial SST< << <

Horizontally-homogeneous subsurface temperature



WCRR
WCR

Storm

WCRL

WCR
Storm

WCRC

WCR

Storm

CTRL

Storm

SST and Surface Currents in 4 idealized experiments



3-D

WCRR SST – CTRL SST

WCR

Storm

1-D

WCRR SST – CTRL SST

WCR

Storm

Differences in SST cooling within hurricane 

inner-core with and without WCR

The presence of a warm core eddy in advance of a 

hurricane may in some cases create a less favorable

condition for hurricane intensification



Atmospheric Model

Ocean Model

Air-Sea Interface
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Momentum flux (τ)

Sensible heat flux (QH)

Latent heat flux (QE)

Momentum flux (τ)

Wind speed (Ua)

Temperature (Ta)
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Surface current (Us)

SST (Ts)

Conventional Coupling Between 

Atmospheric and Ocean Models



Traditional Assumptions of Air-Sea Coupling 

May Not Valid in Hurricane Conditions

• Momentum and enthalpy exchange coefficients are 

function of wind speed only (sea state dependence is 

neglected)

• Momentum flux into currents is identical to wind 

stress (momentum gained/lost by surface waves is 

neglected)

• Also neglected: 

– Wind-wave-current interaction

– Sea spray effects

24
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Surface Roughness Drag Coefficient

Sea State Dependence 

of Surface Parameters

Based on the coupled GFDL hurricane-wave-ocean 
coupled model simulationsGFDL hurricane-wave-ocean research model
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Wind

Ocean currents

Surface waves

Atmosphere

Ocean

Wind-Wave-Current Interaction 

air



air

Sea State

c
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Current

Current

cair
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Fan, Y., I. Ginis, T. Hara, W. Wright, and E. Walsh, 2009a,. J. Phys. Oceanogr., 39, 2097-2116

Fan, Y., I. Ginis, and T. Hara, 2009b,. J. Phys. Oceanogr., 39, 1019-1034.

Fan, Y., I. Ginis, and T. Hara, 2010. J. Phys. Oceanogr., in review.
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Input parameters:
Maximum wind speed (MWS)

Radius of MWS (RMW)

Central & environmental sea-level pressure 

Holland Hurricane Wind Model

Difference Between Wind Stress ( air ) and 

Momentum Flux into Ocean ( c): Idealized Experiment



air in B / air in Control

air in C / air in Control

Effect of Wind-Wave-Current Interaction on 

Momentum Fluxes into Ocean 

Effect of waves 

(flux budget)

Effect of wind-

wave-current 

interaction

c / air

c / air



• In the TC model, parameterizations of the air-sea 

heat and momentum fluxes and sea spray source 

functions explicitly include SST, sea state 

dependence and ocean current effects.

• The wave model is forced by sea-state dependent 

momentum flux and includes  ocean current effects.

• The ocean model is forced by sea-state dependent 

momentum fluxes.

Air-Sea Coupling Strategies for 

Tropical Cyclone Models 
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• Implemented in GFDL model  in a research mode.

• To be implemented in HWRF later this year

Coupled Hurricane-Wave-Ocean Framework


