

Categorical Verification

Tina Kalb

Contributions from Tara Jensen, Matt Pocernich, Eric Gilleland, Tressa Fowler, Barbara Brown and others

Finley Tornado Data (1884)

LIEUTENANT JOHN P. FINLKY, SIGNAL CORPS, UNITED STATES ARMY.

, Jus P. Finiley.

Forecast answering the question:

Observation answering the question:

Will there be a tornado?

YES

NO

Did a tornado occur?

YES NO

Answers fall into 1 of 2 categories ** Forecasts and Obs are Binary

Finley Tornado Data (1884)

LIEUTENANT JOHN P. FINLKY, SIGNAL CORPS, UNITED STATES ARMY.

Jus P. Finiley.

		Observed		
recast		Yes	No	Total
	Yes			
	No			
БO	Total			

Contingency Table

A Success?

LIEUTENANT JOHN P. FINLKY, SIGNAL CORPS, UNITED STATES ARMY.

Jao. P. Finiley.

		Observed		
recast		Yes	No	Total
	Yes	28	72	100
	No	23	2680	2703
С Ц О	Total	51	2752	2803

Percent Correct = (28+2680)/2803 = 96.6% !!!!

What if forecaster never forecasted a tornado?

LIEUTENANT JOHN P. FINLEY, SIGNAL CORPS, UNITED STATES ARMY.

Jao. P. Finiley.

		Observed		
Forecast		Yes	No	Total
	Yes	0	0	0
	No	51	2752	2803
	Total	51	2752	2803

Percent Correct = (0+2752)/2803 = 98.2% !!!!

maybe Accuracy is not the most informative statistic

But the contingency table concept is good...

2 x 2 Contingency Table

		Observed			
		Yes	No	Total	
			False	Forecast	
–	Yes	Hit	Alarm	Yes	
Cas			Correct	Forecast	
lec	No	Miss	Negative	No	
о Ц	Total	Obs. Yes	Obs. No	Total	

Example: Accuracy = (**Hits+Correct Negs**)/**Total**

MET supports both 2x2 and NxN Contingency Tables

Common Notation

(however not universal notation)

		Observed		
recast		Yes	No	Total
	Yes	а	b	a+b
	No	С	d	c+d
Fо	Total	a+c	b+d	n

Example: Accuracy = (a+d)/n

What if data are not binary? Threshold

Examples: Temperature < 0 CPrecipitation > 1 inch CAPE > 1000 J/kg Ozone > 20 μ g/m³ Winds at 80 m > 24 m/s 500 mb HGTS < 5520 m Radar Reflectivity > 40 dBZMSLP < 990 hPaLCL < 1000 ft Cloud Droplet Concentration > 500/cc

Hint: Pick a threshold that is meaningful to your end-user

Contingency Table for Freezing Temps (i.e. T<=0 C)

		Observed		
recast		<= 0C	> 0C	Total
	<= 0C	а	b	a+b
	> 0C	С	d	c+d
Бo	Total	a+c	b+d	n

<u>Another Example:</u> Base Rate (aka sample climatology) = (a+c)/n

Alternative Perspective on Contingency Table

Conditioning to form a statistic

- Considers the probability of one event given another event
- Notation: p(X|Y=1) is probability of X occuring given
 Y=1 or in other words Y=yes

Conditioning on Fcst provides:

- Info about how your forecast is performing
- Apples-to-Oranges comparison if comparing stats from 2 models

Conditioning on Obs provides:

- Info about ability of forecast to discriminate between event and nonevent - also called Conditional Probability or "Likelihood"
- Apples-to-Apples comparison if comparing stats from 2 models

Conditioning on forecasts

Conditioning on observations

What's considered good?

Conditioning on Forecast

Fraction of hits - p(x=1|f=1) = a/(a+b) : close to 1 False Alarm Ratio - p(x=0|f=1) = b/(a+b) : close to 0

Conditioning on Observations

Hit Rate - p(f=1|x=1) = a/(a+c): close to 1 [aka Probability of Detection Yes (PODy)] Fraction of misses p(f=0|x=1) = a/(a+c): close to 0

Examples of Categorical Scores (most based on conditioning)

- PODy = a/(a+c)
- False Alarm **Ratio** (FAR) = b/(a+b)
- PODn = d/(b+d) = (1 POFD)
- False Alarm Rate (POFD) = b/(b+d)

POD

POFD Probability of False Detection

• (Frequency) Bias (FBIAS) = (a+b)/(a+c)

(CSI)

• Threat Score or Critical Success Index = a/(a+b+c)

		Observed		
recast		Yes	No	Total
	Yes	а	b	a+b
	No	С	d	c+d
Ц	Total	a+c	b+d	n

Examples of CTC calculations

		Observed		
recast		Yes	No	Total
	Yes	28	72	100
	No	23	2680	2703
Рo	Total	51	2752	2803

Threat Score = 28 / (28 + 72 + 23) = 0.228Probability of Detection = 28 / (28 + 23) = 0.55False Alarm Ratio= 72/(28 + 72) = 0.720

Example

Timeseries of PODY and FAR for 20% Ramp Events during daylight hours

Copyright 2018, University Corporation for Atmospheric Research, all rights reserved

Relationships among scores

- CSI is a *nonlinear* function of POD and FAR
- CSI depends on base rate (event frequency) and Bias

HMT Performance Diagram

- On same plot
 - POD
 - 1-FAR (aka Success Ratio)
 - CSI
 - Freq Bias
- Dots: Scores Aggregated Over Lead Time
- Colors: different thresholds
- Results:
 - Decreasing skill with higher thresholds across multiple metrics
 - Highest skill 18 24 h lead times

Roberts et al. (2011), Roebber (WAF, 2009), Wilson (presentation, 2008)

Skill Scores

How do you compare the skill of easy to predict events with difficult to predict events?

- Provides a single value to summarize performance.
- Reference forecast best naive guess; persistence; climatology.
- Reference forecast must be comparable.
- Perfect forecast implies that the object can be perfectly observed.

Generic Skill Score $SS = \frac{(A - Aref)}{(Aperf - Aref)}$ where A = any measure ref = reference perf = perfect

Example:
$$MSESS = 1 - \frac{MSE}{MSE_{climo}}$$
 where N Mean Section Section 2.1 S

where MSE = Mean Square Error

- Interpreted as fractional improvement over reference forecast
 - Reference could be: Climatology, Persistence, your baseline forecast, etc..
 - Climatology could be a separate forecast or a gridded forecast sample climatology
 - SS typically positively oriented with 1 as optimal

Commonly Used Skill Scores

- **Gilbert Skill Score** based on the CSI corrected for the *number of hits expected by chance*.
- Heidke Skill Score based on Accuracy corrected by the *number of hits expected by chance*.
- Hanssen-Kuipers Discriminant (Pierce Skill Score) measures ability of forecast to discriminate between (or correctly classify) events and non-events. H-K=POD-POFD
- Brier Skill Score for probabilistic forecasts
- Fractional Skill Score for neighborhood methods
- Intensity-Scale Skill Score for wavelet methods

Example

Timeseries of CSI, GSS and Base Rate for 20% Ramp Events during daylight hours

Copyright 2018, University Corporation for Atmospheric Research, all rights reserved

Thank you!

References:

Jolliffe and Stephenson (2012): Forecast Verification: a practitioner's guide, Wiley & Sons, 240 pp.

Wilks (2011): Statistical Methods in Atmospheric Science, Academic press, 467 pp.

Stanski, Burrows, Wilson (1989) Survey of Common Verification Methods in Meteorology

http://www.eumetcal.org.uk/eumetcal/verification/www/english/courses/msgcrs/index.htm

WMO Verification working group forecast verification web page, http://www.cawcr.gov.au/projects/verification/