Downloading and Compiling MET

Julie Prestopnik

Release History

- MET was first released in 2007
- METv6.1: Released December 04, 2017

Major Enhancements:

- Added specification of point obs using the variable name (vs. GRIB code)
- Added "convert(x)" config file option for conversion functions (convert(x)= C_to_F(x);)
- Added "censor_thresh" and "censor_val" config file options for filtering thresholds and replacement values
- Added new Economic Cost-Loss Value (ECLV) STAT line type derived from CTC or PCT lines
- Added new Gradient (GRAD) STAT line type for statistics derived from gradients, including the S1 score
- Added new Relative Position (RELP) STAT line type
- Option to compute 1-D Fourier Decomposition when generating CNT, SL1L2, SAL1L2, VL1L2, and VAL1L2 output lines
- Added initial support for binned climatologies by adding "climo_stdev" and "climo_cdf_bins" config file options

• Other Enhancements:

- Support for Gaussian grids and Polar Stereographic CF-Compliant NetCDF files
- Shape option added to config files to define a square or circle area
- Added support for reading BUFR files directly, rather than just PREPBUFR

MET Users

- METv6.1: Released December 04, 2017
 - Pre-installed on tutorial machines
- 3500+ registered MET users from 132 countries
 - 48/27/14/11%: University/Gov't/Nonprofit/Private
 - 30/16/6/3%: USA/China/India/Brazil
- On-line and hands-on tutorials

Downloading MET

- Download MET release and compile locally.
 - Register and download:
 - www.dtcenter.org/met/users
- Language:
 - Primarily in C++ with calls to a Fortran library
- Supported Platforms and Compilers:
 - 1. Linux with GNU compilers
 - 2. Linux with Portland Group (PGI) compilers
 - 3. Linux with Intel compilers

www.dtcenter.org/met/users

TESTING & EVALUATION

COMMUNITY CODES

VISITOR PROGRAM

EVENTS

MET USERS PAGE

Home

Terms of Use

Overview

Download►

Documentation

User Support

ober buppere

Related Links

MODEL EVALUATION TOOLS

ABOUT

Welcome to the users page for the Model Evaluation Tools (MET) verification package. MET was developed by the National Center for Atmospheric Research (NCAR) Developmental Testbed Center (DTC) through the generous support of the U.S. Air Force Weather Agency (AFWA) and the National Oceanic and Atmospheric Administration (NOAA).

Description

Welcome

MET is designed to be a highly-configurable, state-of-the-art suite of verification tools. It was developed using output from the Weather Research and Forecasting (WRF) modeling system but may be applied to the output of other modeling systems as well.

MET provides a variety of verification techniques, including:

- Standard verification scores comparing gridded model data to point-based observations
- Standard verification scores comparing gridded model data to gridded observations
- Spatial verification methods comparing gridded model data to gridded observations using neighborhood, object-based, and intensity-scale decomposition approaches
- Ensemble and probabilistic verification methods comparing gridded model data to point-based or gridded observations
- Aggregating the output of these verification methods through time and space

EVENTS

AMS 2018 NWP using Docker Containers 01.06.2018 to 01.06.2018 Location: AMS Annual Meeting in Austin, TX

2018 Hurricane WRF Tutorial 01.23.2018 to 01.25.2018 Location: College Park, MD

ANNOUNCEMENTS

MET Version 6.1 Release 12.04.2017

Release v3.9a of the HWRF system 10.16.2017

MET NEWS

MET Online Tutorial New for METv6.1 on 2017.12.04

METv6.0 Running within a Docker container New for Mac and Windows 10 users who wish to skip building and installing METv6.0

MET SPONSORS

National Center for Atmospheric Research (NCAR)

Dependencies

- REQUIRED:
 - C++/Fortran Compilers (GNU, PGI, Intel)
 - GNU Make Utility
 - Unidata's NetCDF4 library (both NetCDF-C and NetCDF-CXX)
 - HDF5 library (required to support NetCDF4)
 - NCEP's BUFRLIB Library v10.2.3
 - GNU Scientific Library (GSL)
 - Z Library (zlib)
- OPTIONAL:
 - GRIB2 C-Library with JASPER and PNG libraries
 - HDF4 and HDF-EOS2 libraries for MODIS-Regrid tool
 - Cairo and FreeType libraries for MODE-Graphics tool

• RECOMMENDED:

- Unified Post-Processor
- COPYGB (included with Unified Post-Processor)
- wgrib and wgrib2
- R statistics and graphics package

Directory Structure

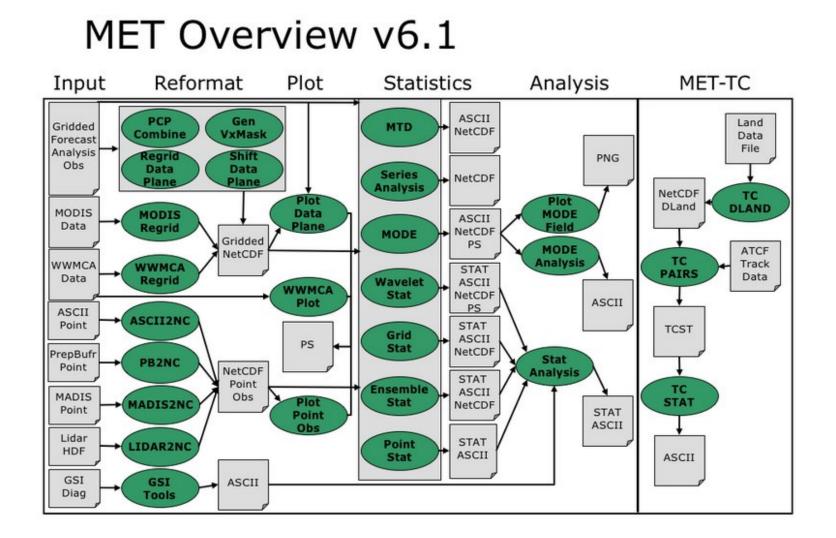
File or Directory	Contents
README	Installation instructions and release notes
configure (plus supporting files and subdir)	Used by the autoconf build process; Configures the MET package for installation on a system
bin/	Built MET executables
data/	Contains map data, colortables, sample input data, GRIB and GRIB2 table files, and default configuration files
doc/	MET User's Guide
out/	Output generated by the test scripts
scripts/	Test scripts to be run after building MET
src/	MET Source Code

Building MET

- Steps for building MET:
 - 1. Build required/optional libraries.
 - Same family of compilers for MET
 - 2. Download and unpack latest MET patches.
 - 3. autoconf determines available compilers, but can be explicitly set by the user
 - 4. Set environment variables in .cshrc or equivalent file
 - Paths for HDF5, NetCDF, BUFRLIB, and GSL libraries
 - The compilation of various tools can be turned on/off
 - 5. Configure the installation for your system and run configure
 - The compilation of various tools can be turned on/off
 - 6. Run make install and make test and check for runtime errors.
 - Test scripts run each of the MET tools at least once.
 - Uses sample data distributed with the tarball.

Existing MET Builds

• MET User's Page

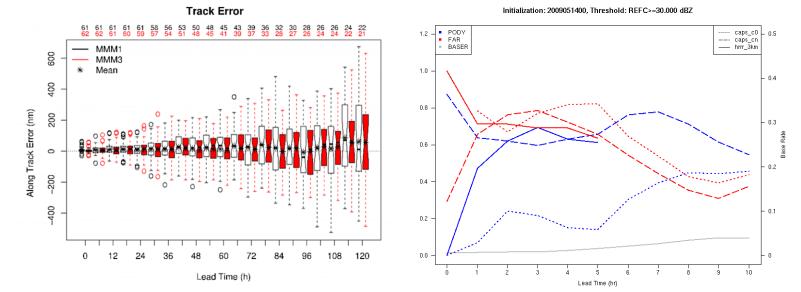

Download -> Existing MET Builds

• Cheyenne

- module use /glade/p/ral/jnt/MET/MET_releases/cheyenne/modulefiles
- module load met/6.1

Theia

- module use /contrib/modulefiles
- module load met/6.1



Configuration Files

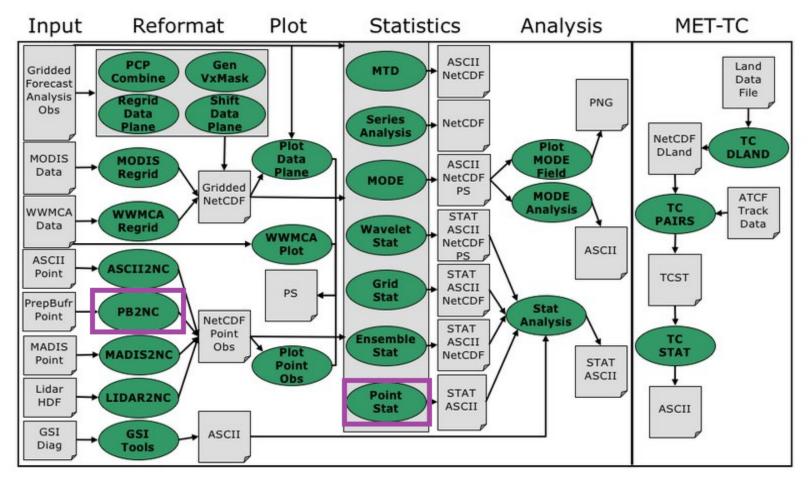
- MET tools controlled using command line options and ASCII configuration files
 - Well commented and documented in MET User's Guide
 - Easy to modify
 - Distributed with the tarball
- Configuration files control things such as:
 - Fields/levels to be verified
 - Thresholds to be applied
 - Interpolation methods to be used
 - Verification methods to be applied
 - Regions over which to accumulate statistics
 - README file in data/config area describes various settings

Graphics

- Limited graphics incorporated into MET
- Options for plotting MET statistical output
 - R, NCL, IDL, GNUPlot, and many others
- Sample plotting scripts on MET website
- Future METViewer database/display system

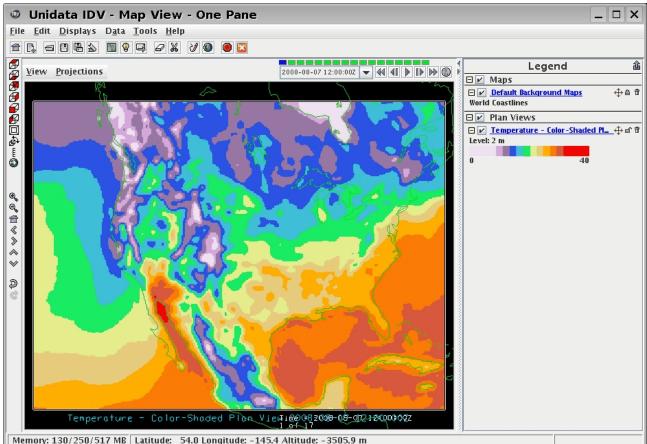
R Statistics and Graphics

- The R Project for Statistical Computing (www.r-project.org)
 - Powerful statistical analysis and plotting tools
 - Large and growing user community
 - Freely available and well supported for Linux/Windows/Mac
- Sample R plotting and analysis scripts posted on the MET website
- Use R to plot data in the practical sessions


Getting Started with MET

A Typical Use Case

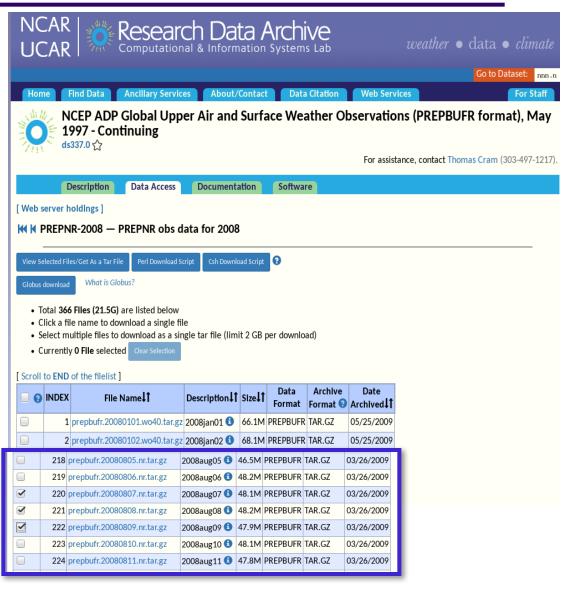
Julie Prestopnik


Use Case: Point Verification

MET Overview v6.1

Use Case: 2-m Temperature

- Verify 2-m temperature versus PREPBUFR point observations.
- Initialized
 2008080712
 with 3-hourly
 output to 48h
- Run WRFOUT through UPP to create GRIB
- Unidata's IDV for display


Use Case: Find Observations

- MET downloads page
 - Select "Observation Datasets"
 - NCAR CISL Site:
 - DS337.0
 - Global PREPBUFR point observations
 - NCAR CISL Site:
 - DS337.0: NCEP ADP Global Upper Air and Surface Observations (PREPBUFR and NetCDF PB2NC Output) archive starting May 1997:

http://rda.ucar.edu/datasets/ds337.0

Use Case: Get Observations

- Register and log in
- NCAR CISL Site:
 - DS337.0
 - Select 20080807 through 20080809
 - Pull daily
 PREPBUFR files
 - Can view by "Faceted Browse" or "Complete File List" (shown here)

Use Case: Process Observations

GDAS PREPBUFR

- 4/day in 6-hr chunks
- nr = not restricted

exposure:jpresto% /usr/local/met-6.1/bin/pb2nc obs/20080807.nr/					
obs/20080807.nr/prepbufr.gdas.20080807.t00z.nc PB2NCConfig -v 2					
DEBUG 1: Default Config File: /usr/local/met-6.1/share/met/conf	ig/PB2NCConfig_default				
DEBUG 1: User Config File: PB2NCConfig					
DEBUG 1: Creating NetCDF File: obs/20080807.nr/prepbuf	r.gdas.20080807.t00z.nc				
DEBUG 1:					
DEBUG 1: Pre-processing Bufr File for metadata (BUFR variable n	ames) from obs/20080807.nr/pr				
bufr.gdas.20080807.t00z.nr					
DEBUG 1:					
DEBUG 1: Processing Bufr File: obs/20080807.nr/prepbufr.gdas.2	0080807.t00z.nr				
DEBUG 1: Blocking Bufr file to: /tmp/tmp_pb2nc_blk_3604_0					
DEBUG 2: PrepBufr Time Center: 20080807 000000					
DEBUG 2: Searching Time Window: 20080806_180000 to 2008	0807 060000				
DEBUG 2: Processing 336773 PrepBufr messages	-				
5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 5	85% 90% 95%				
DEBUG 2: Total PrepBufr Messages processed = 336773					
DEBUG 2: Rejected based on message type = 0					
DEBUG 2: Rejected based on station id = 0					
DEBUG 2: Rejected based on valid time = 0					
DEBUG 2: Rejected based on masking grid = 0					
DEBUG 2: Rejected based on masking polygon = 282327					
DEBUG 2: Rejected based on elevation = 0					
DEBUG 2: Rejected based on pb report type = 0					
DEBUG 2: Rejected based on input report type = 0					
DEBUG 2: Rejected based on instrument type = 0					
DEBUG 2: Rejected based on zero observations = 2366					
DEBUG 2: Total PrepBufr Messages retained = 52080					
DEBUG 2: Total observations retained or derived = 213961					

exposure:jpresto% 1s 2008* 20080807.nr: prepbufr.qdas.20080807.t00z.nr

prepbufr.gdas.20080807.t062.nr

prepbufr.gdas.20080807.t12z.nr prepbufr.gdas.20080807.t18z.nr

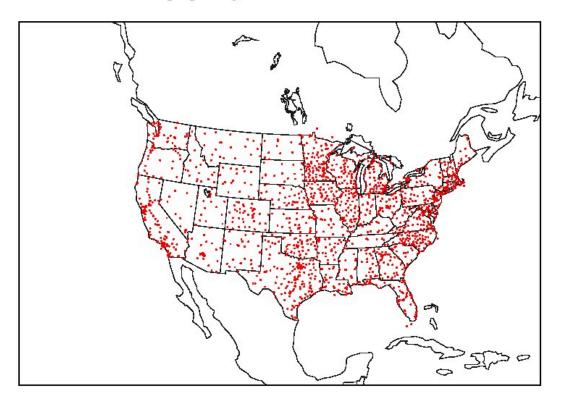
prepbufr.gdas.20080808.t12z.nr

prepbufr.gdas.20080808.t18z.nr

20080808.nr:

prepbufr.gdas.20080808.t00z.nr prepbufr.gdas.20080808.t06z.nr

20080809.nr:


prepbufr.gdas.20080809.t00z.nr prepbufr.gdas.20080809.t06z.nr prepbufr.gdas.20080809.t12z.nr prepbufr.gdas.20080809.t18z.nr

- Run each through
 pb2nc
 - All observation types
 - Full 6-hr time window
 - Quality marker of 9
 - Only over CONUS

Use Case: Plot 2-m TMP Obs

- 2-m TMP obs in ADPSFC message type
- Run plot_point_obs utility to display obs

prepbufr.gdas.20080807.t00z.nc

Use Case: Verify 2-m TMP Fcst

Run point_stat to compare gridded forecast to

point observations.

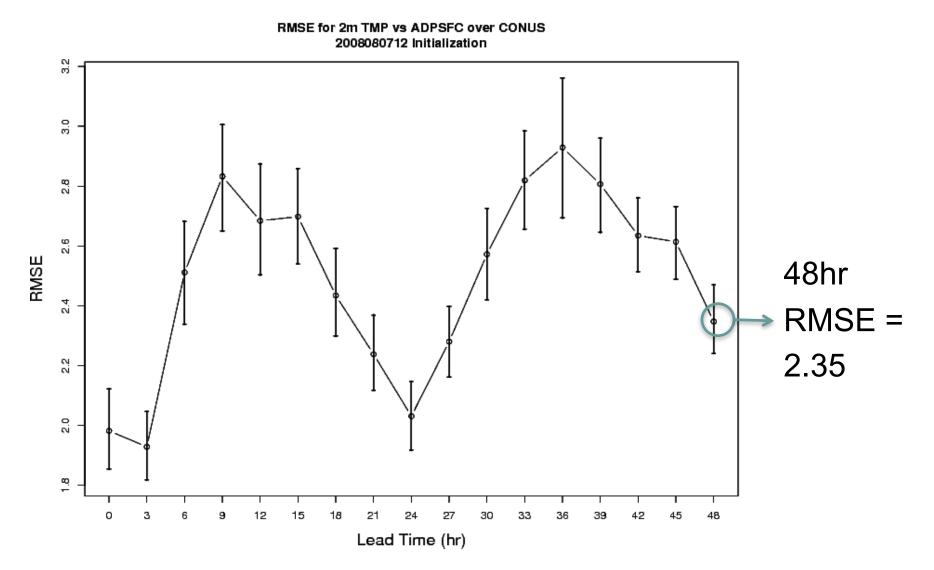
- Once/fcst time
- Obs +/- 5 min
- Bilinear interp
- Score over FULL model domain
- Continuous statistics line (incl RMSE)

CALLING: /usr/local/met-6.1/bin/point_stat fcst/2008080712/ WRFPRS_TMP_2m.tm00 obs/20080807.nr/prepbufr.gdas.20080807. t12z.nc PointStatConfig -outdir out -v 2 Default Config File: /usr/local/met-6.1/share/met/config/ PointStatConfig_default User Config File: /d1/jpresto/DTC/doc/MET_Tutorial_201801/ use_case/PointStatConfig GSL_RNG_TYPE=mt19937 GSL_RNG_SEED=22173274 Forecast File: fcst/2008080712/WRFPRS_TMP_2m.tm00 Observation File: obs/20080807.nr/prepbufr.gdas.20080807. t12z.nc

Reading data for TMP/Z2. Processing masking regions. For TMP/Z2 found 1 forecast levels, 0 climatology mean levels, and 0 climatology standard deviation levels.

Searching 205379 observations from 50339 messages.

Processing TMP/Z2 versus TMP/Z2, for observation type ADPSFC, over region FULL, for interpolation method BILIN(4), using 782 pairs. Computing Continuous Statistics.


Use Case: Continuous Statistics

- One STAT output file for each lead time
- Continuous line type (CNT) including Cl's

exposure:jpresto% ls -1 *.stat point_stat_000000L_20080807_120000V.stat point_stat_030000L_20080807_150000V.stat point_stat_060000L_20080807_180000V.stat point_stat_090000L_20080807_210000V.stat point_stat_120000L_20080808_000000V.stat point_stat_150000L_20080808_030000V.stat point_stat_180000L_20080808_060000V.stat point_stat_210000L_20080808_090000V.stat point_stat_240000L_20080808_120000V.stat point stat 270000L 20080808 150000V.stat point_stat_300000L_20080808_180000V.stat point_stat_330000L_20080808_210000V.stat point_stat_360000L_20080809_000000V.stat point stat 390000L 20080809 030000V.stat point stat 420000L 20080809 060000V.stat point stat 450000L 20080809 090000V.stat point stat 480000L 20080809 120000V.stat

Column	48hr fcst	Column	48hr fcst
TOTAL	771	MAE	1.84045
FBAR	290.54368	MSE	5.5114
FSTDEV	4.49174	BCMSE	5.34955
OBAR	290.94598	RMSE	2.34764
OSTDEV	3.89426	E10	-3.39623
PR_CORR	0.85709	E25	-1.93107
ME	-0.40230	E50	-0.39260
ESTDEV	2.31441	E75	1.05912
MBIAS	0.99862	E90	2.56695

Use Case: Time Series of RMSE

Use Case: Conclusions

- Diurnal cycle for surface temperature
 - RMSE best in the morning (perfect RMSE = 0)
 - RMSE worst in the evening
- Performance degrades as lead time increases
- Too little data to make strong conclusions
 - This is a single initialization
 - Verify/aggregate over a month, season, or year