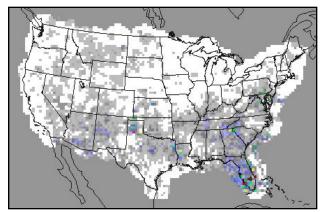

Grid-Stat Tool

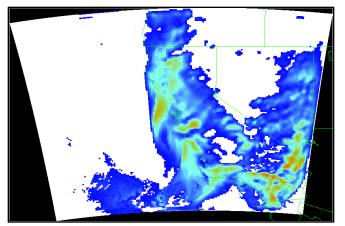
Grid-Stat Tool



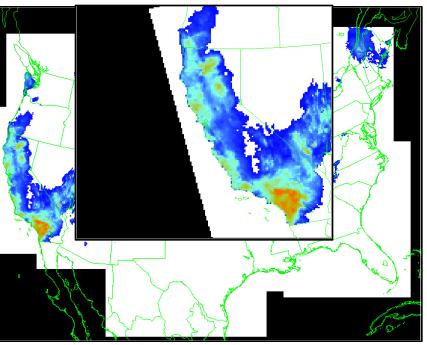
Grid-Stat: Overview

- Compare gridded forecasts to gridded observations on the same grid.
- Accumulate matched pairs over a defined area at a single point in time.
- Verify one or more variables/levels.
- Analysis tool provided to aggregate through time.

- Verification methods:
 - Continuous statistics for raw fields.
 - Single and Multi-Category counts and statistics for thresholded fields.
 - Parametric and non-parametric confidence intervals for statistics.
 - Compute partial sums for raw fields.
 - Methods for probabilistic forecasts.
 - Economic Cost/Loss Value.
 - Neighborhood verification methods.
 - Fourier decomposition.


Copyright 2018, University Corporation for Atmospheric Research, all rights reserved

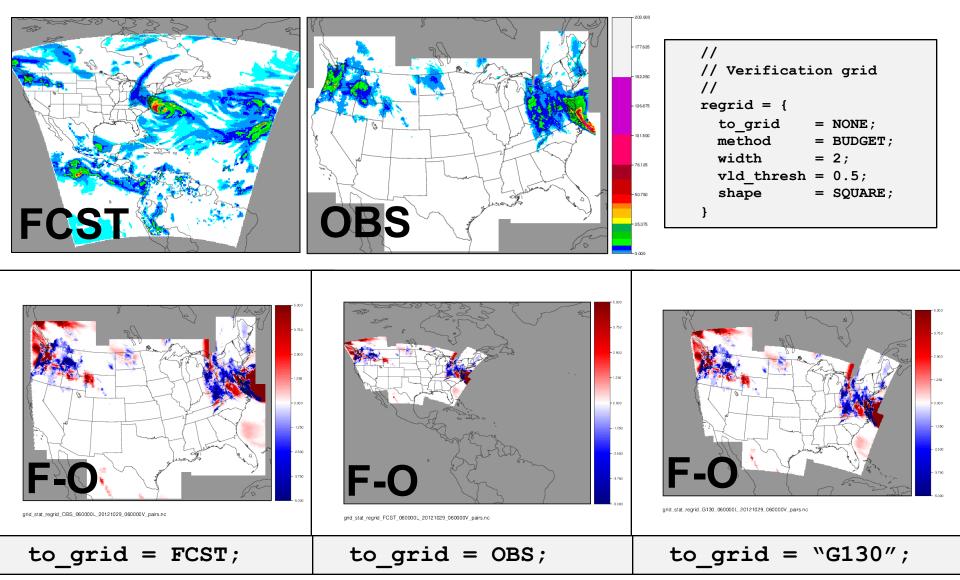
Grid-Stat: Input/Output


- Input Files
 - Gridded forecast and observation files
 - GRIB1 output of Unified Post-Processor (or other)
 - GRIB2 from NCEP (or other)
 - NetCDF from PCP-Combine, wrf_interp, or CF-compliant
 - ASCII configuration file
- Output Files
 - ASCII statistics file with all output lines (end with ".stat")
 - Optional ASCII files sorted by line type with a header row (ends with "_TYPE.txt")
 - Optional NetCDF matched pairs file

Grid-Stat: Common Grid

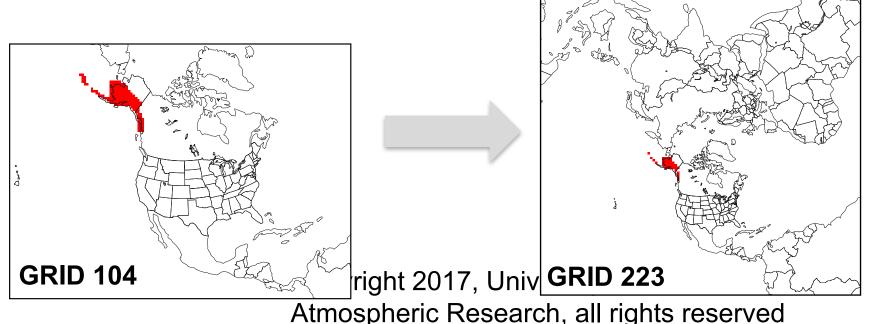
Model Forecast

StageIV Analysis



- Forecast and observations must be placed on a common grid.
- Regrid the StageIV Analysis (GRIB) to the model domain:

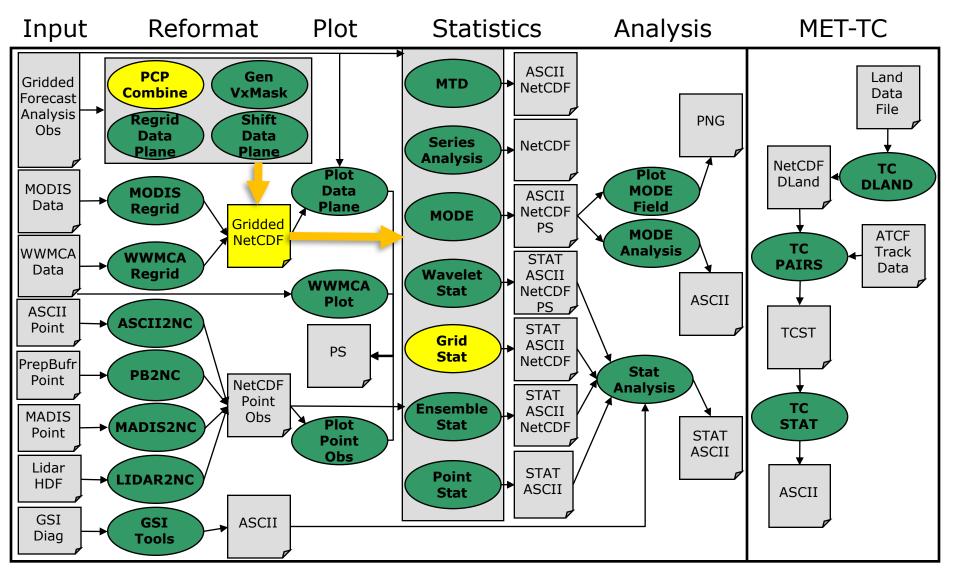
copygb -xg"255 5 169 154 31357 -129770 8 -120500 10395 10395 0 64" \ ST4.2010122212.06h ST4.2010122212.06h_regrid


- Practice running copygb in the practical session.
- Automated regridding in configuration file or use regrid_data_plane. Copyright 2018, University Corporation for Atmospheric Research, all rights reserved

Grid-Stat: Automated Regridding

Auto-Regridding of Masks

- 31 NCEP Verification Regions are defined for Grid 104.
 - CONUS, EAST, and WEST are groups of sub-regions.
- Added 34 NetCDF files to data/poly/NCEP_masks.
- met-6.0: Mask must be defined on verification domain:
 - ERROR : parse_poly_mask() -> The masking and verification grids do not match:
- **met-6.1:** Regrid mask (NEAREST neighbor) to verification domain:
 - DEBUG 2: Regridding mask grid to the verification grid using nearest neighbor interpolation:
- Most similar to VSDB logic.



Grid-Stat: Usage

Usage: grid_stat fcst_file obs_file config_file [-outdir path] [-log file] [-v level] [-compress level]

fcst_file	Gridded forecast file
obs_file	Gridded observation file
config_file	ASCII configuration file
-outdir	Output directory to be used
-log	Optional log file
-V	Level of logging

Grid-Stat: Example Data Flow

Grid-Stat: Configuration

- Many configurable parameters – only set a few:
 - Precipitation accumulated over 24 hours.
 - GRIB1 forecast
 - NetCDF observation
 - Threshold any rain and moderate rain (mm).
 - Accumulate stats over all the points in the domain and just the eastern United States.
 - Compute neighborhood statistics with two sizes.
 - Generate continuous, categorical, and neighborhood line types.

fcst	= {		
fiel	Ld = [
{			
na	ame = "APCP";		
le	evel = ["A24"];		
Ca	$t_t = [>0.0, >20.$	0];	
} [obs = {		
];	field = [
}	{		
	name = "APC	CP 24";	
	level = ["	; (*,*)"];	
	cat thresh = [>0]	0.0, >20.0];	
	}	output f	$lag = {$
];	fho	-
	}	ctc	
		cts	
	c = {	mctc	= BOTH;
-	id = ["FULL"];	mcts	
-	Ly = ["EAST.poly"];	cnt	= BOTH;
}		s1112	= BOTH <i>;</i>
		sal112	= NONE;
	$\mathbf{nd} = \{$	v1112	= NONE;
	$d_{thresh} = 1.0;$	val112	= NONE;
	ith = [3, 5];	pct	= NONE;
	$v_{thresh} = [>=0.5];$	pstd	= NONE ;
}		pjc	= NONE;
		prc	
		eclv	
		nbrctc	
		nbrcts	•
		nbrcnt	= BOTH;

grad

}

= NONE;

Grid-Stat: Field name and level

- GRIB1 and GRIB2 files
 - name = "GRIB Abbreviation";
 - http://www.nco.ncep.noaa.gov/pmb/docs/on388/table2.html
 - TMP for Temperature, APCP for accumulated precipitation.
 - **level = ["string"];** Multiple values expand to multiple vx tasks
 - Level indicator followed by level value.
 - **A** for accumulation interval in HH[MMSS] format (A06).
 - **P** for pressure level (*P500*) or layer (*P500-600*).
 - **Z** for vertical level (*Z2* or *Z10*).
 - **L** for generic level type (*L100*).
 - **R** for a specific GRIB record number (*R225*).
- Gridded NetCDF files
 - **name = "string";** Defines NetCDF variable name.
 - **level = ["string"];** Defines index into dimensions.
 - For APCP_06(lat,lon) from PCP-Combine output
 - name = "APCP_06"; level = ["(*,*)"];
 - For TT(Time, num_metgrid_levels, south_north, west_east) from p_interp
 - name = "TT"; level = ["(0,0,*,*)", "(0,1,*,*)", "(0,2,*,*)"];

Grid-Stat: Config File Defaults

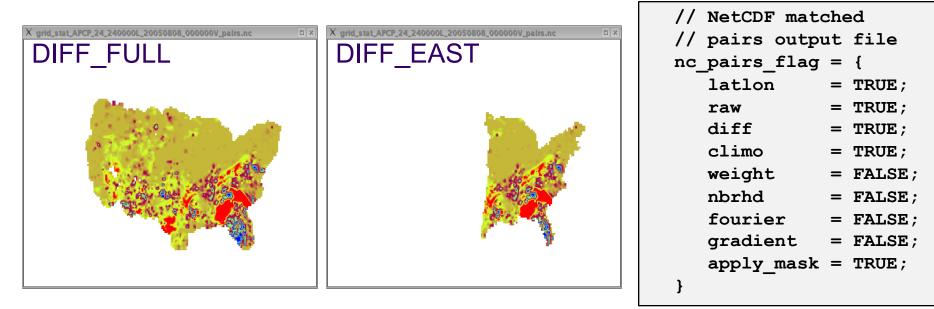
- MET Statistics tools parse up to 4 configuration files:
 - MET_BASE/config/ConfigConstants defines configuration file constants (e.g. NONE, STAT, BOTH) and should not be modified.
 - MET_BASE/config/ConfigMapData defines default map data for all plots (map data files, line colors, widths, and types for Plot-Point-Obs, Plot-Data-Plane, Wavelet-Stat, and MODE).
 - 3. MET_BASE/config/GridStatConfig_default defines default settings for the specific tool.
 - 4. User-specific configuration file passed on the command line override default settings.

NOTE: MET_BASE/config/README describes config file options. **NOTE:** When running a shared installation of MET, override default settings in the **user-specific configuration** file rather than modifying the system-wide defaults.

Grid-Stat: Run

met-6.1/bin/grid stat \ sample fcst.grb sample obs.nc \ GridStatConfig APCP24 -outdir out -v 2 DEBUG 1: Default Config File: met-6.1/share/met/data/config/GridStatConfig default DEBUG 1: User Config File: GridStatConfig APCP24 DEBUG 1: Forecast File: sample fcst.grb DEBUG 1: Observation File: sample obs.nc DEBUG 2: ---DEBUG 2: Processing APCP/A24 versus APCP A24, for interpolation method UW MEAN(1), over region FULL, using 6412 pairs DEBUG 2: Computing Categorical Statistics. DEBUG 2: Computing Multi-Category Statistics. DEBUG 2: Computing Continuous Statistics. DEBUG 2: Processing APCP/A24 versus APCPA24, for interpolation method UW MEAN(1), over region EAST, using 2582 pairs. DEBUG 2: Processing APCP/A24 versus APCPA24, for interpolation method NBRHD(9), raw thresholds of >0.000 and >0.000, over region EAST, using 5829 pairs. DEBUG 2: Computing Neighborhood Categorical Statistics. DEBUG 2: Computing Neighborhood Continuous Statistics. ... MORE NEIGHBORHOOD VERIFICATION TASKS LISTED DEBUG 2: -----DEBUG 1: Output file: out/grid stat 240000L 20050808 000000V.stat DEBUG 1: Output file: out/grid stat 240000L 20050808 000000V fho.txt DEBUG 1: Output file: out/grid stat 240000L 20050808 000000V ctc.txt DEBUG 1: Output file: out/grid stat 240000L 20050808 000000V cts.txt DEBUG 1: Output file: out/grid stat 240000L 20050808 000000V mctc.txt DEBUG 1: Output file: out/grid stat 240000L 20050808 000000V mcts.txt DEBUG 1: Output file: out/grid stat 240000L 20050808 000000V cnt.txt DEBUG 1: Output file: out/grid stat 240000L 20050808 000000V sl112.txt DEBUG 1: Output file: out/grid stat 240000L 20050808 000000V nbrctc.txt DEBUG 1: Output file: out/grid stat 240000L 20050808 000000V nbrcts.txt DEBUG 1: Output file: out/grid stat 240000L 20050808 000000V nbrcnt.txt DEBUG 1: Output file: out/grid stat 240000L 20050808 000000V pairs.nc

Grid-Stat: ASCII Output Types


- Statistics line types: 19 possible
 - Same as Point-Stat (16)
 - FHO, CTC, CTS, MCTC, MCTS, CNT
 - SL1L2, SAL1L2, VL1L2 , VAL1L2
 - PCT, PSTD, PJC, PRC
 - ECLV
 - Neighborhood apply threshold, define neighborhood
 - Neighborhood continuous statistics (NBRCNT)
 - Neighborhood contingency table counts (NBRCTC)
 - Neighborhood contingency table statistics (NBRCTS)
 - Gradient line type (GRAD)
- 22 header columns common to all line types
- Remaining columns specific to each line type

Grid-Stat: Sample Output

- 1. **STAT** file output for sample run:
 - 2 lines each for CNT, MCTC, MCTS, and SL1L2
 - = 2 verification regions (FULL and EAST)
 - 4 lines each for FHO, CTC, and CTS
 - = 2 regions * 2 thresholds
 - 8 lines each for NBRCNT, NBRCTC, NBRCTS
 - = 2 regions * 2 thresholds * 2 neighborhood sizes
- 2. Additional TXT files for each line type
- 3. NetCDF file containing matched pairs

Grid-Stat: NetCDF Matched Pairs

- Forecast, observation, and difference fields for each combination of...
 - Variable, level, masking region, and interpolation method (smoothing)
- Sample output contains 6 fields:
 - FCST, OBS, and DIFF for FULL and EAST

• Set apply_mask = FALSE; for only FULL domain.

Grid-Stat: CTC Output Line

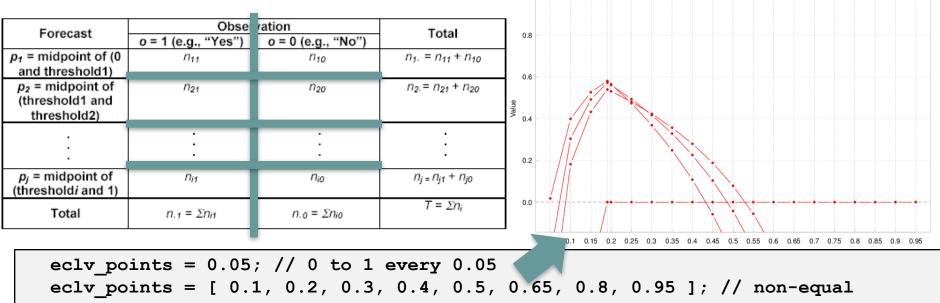
			ГАСТ
VERSION	V6.1	VX_MASK	EAST
MODEL	WRF	INTERP_MTHD	UW_MEAN
DESC	NA	INTERP_PNTS	1
FCST_LEAD	240000	FCST_THRESH	>20.000
FCST_VALID_BEG	20050808_000000	OBS_THRESH	>20.000
FCST_VALID_END	20050808_000000	COV_THRESH	NA
OBS_LEAD	000000	ALPHA	NA
OBS_VALID_BEG	20050808_000000	LINE_TYPE	CTC
OBS_VALID_END	20050808_000000	TOTAL	2582
FCST_VAR	APCP_24	FY_OY (hits)	5
FCST_LEV	A24	FY_ON (f.a.)	104
OBS_VAR	APCP_24	FN_OY (miss)	70
OBS_LEV	A24	FN_ON (c.n.)	2403
OBTYPE	MC_PCP		

FHO vs CTC Line Types

- Grid-Stat, Point-Stat, and Stat-Analysis can output FHO and CTC line types.
 - Values are equivalent (and redundant).
 - CTC has integer counts for 4 cells of 2x2 table.
 - FHO has floating point rates.
 - FHO rounding issues for rare events.

				1
LINE_TYPE	CTC	LINE_TYPE		FHO
TOTAL	2582	TOTAL		2582
FY_OY (hits)	5	F_RATE (fcst rate)	(5+104)/2582	0.042215
FY_ON (false alarms)	104	H_RATE (hit rate)	5/2582	0.0019365
FN_OY (misses)	70	O_RATE (obs rate)	(5+70)/2582	0.029047
FN ON (correct neg)	2403			

Comparing Different Fields

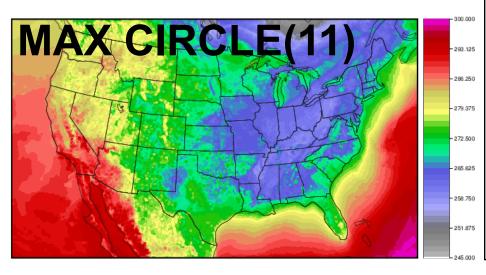

- Grid-Stat, Point-Stat, and all STAT tools may be used to compare different variables.
 - User must interpret results.
 - Example: Convective Precip vs. Total Precip
 - Configuration file settings:
 - Selecting variable/levels

```
fcst = {
  field = [
    {
    name = "ACPCP";
    level = [ "A24" ];
    cat_thresh = [ >0.0 ];
    }
  ];
};
```

```
obs = {
  field = [
    {
    name = "APCP";
    level = [ "A24" ];
    cat_thresh = [ >0.0 ];
    }
  ];
};
```

Economic Cost/Loss Value

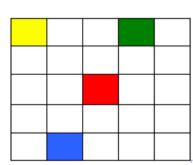
- Grid-Stat, Point-Stat, and Stat-Analysis can output the ECLV line type.
- Equivalent to the VSDB ECON line type, except...
 - ECON is only generated when evaluating ensemble probabilities.
 - ECLV from 2x2 CTC contingency table yields a single curve.
 - ECLV from Nx2 PCT probabilistic contingency table yields N curves.
- One ECLV line equals one curve on the plot.
 - Undefined at 0 and 1.
 - Maximized for the base rate.


1.0

Copyright 2018, University Corporation for Atmospheric Research, all rights reserved

Economic Cost/Loss Value from PCT

Grid-Stat: Data Smoothing


- Higher resolution forecasts typically score worse than lower resolution ones for traditional scores, like RMSE.
- Specify interp section to apply smoothing method(s) prior to computing statistics.
- Smoothing methods indicated in INTERP_MTHD and INTERP_PNTS columns.


```
//
// Data smoothing methods
//
interp = {
  // FCST, OBS, or BOTH
  field
             = BOTH;
 vld thresh = 1.0;
  shape = SQUARE;
 type = [
    // Default, no smoothing
    { method = NEAREST;
     width = 1; \},
    // Mean of 11x11 square
    { method = UW MEAN;
     width = 11; \},
    // Max of circle diam 11
    \{ method = MAX; \}
     width = 11;
      shape = CIRCLE; }
  ];
```

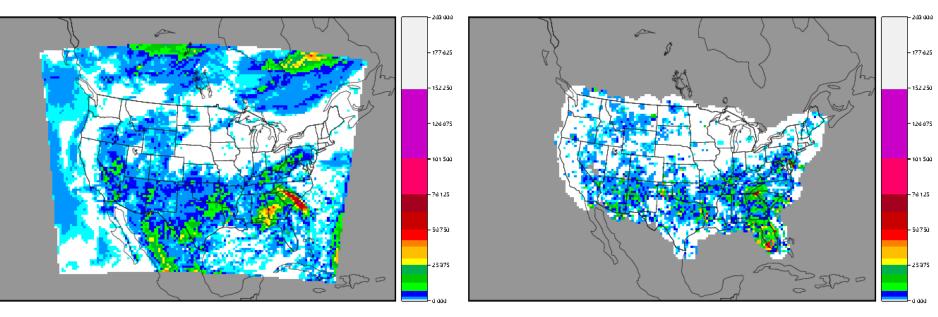
Grid-Stat: Neighborhoods

- As with all neighborhood methods (i.e. HiRA), allows for some spatial / temporal uncertainty in either model or observation by giving credit for being 'close'.
- Apply categorical threshold and neighborhood width to convert gridded forecast and observation fields into fractional coverage fields.
- Select SQUARE or CIRCLE shape.
- Every permutation of cat_thresh and nbrhd.width.
 - NBRCNT statistics (FBS, FSS) computed directly from fractional coverage fields.
 - Apply cov_thresh thresholds to fractional coverage fields to compute NBRCTC and NBRCTS counts and statistics (i.e. like CTC and CTS).

Model Forecast

White boxes = 0 Colored boxes > 0

Threshold Forecast Blue boxes = event

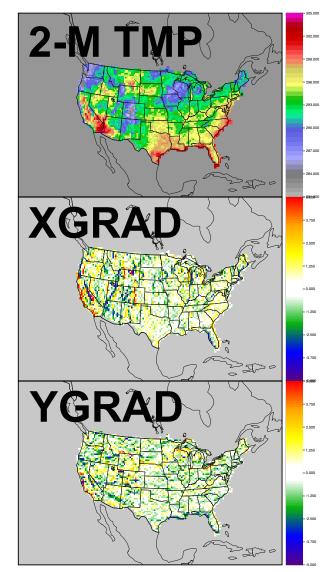

Fractional Proportion

- 1x1 Neighborhood: 1/1
- 3x3 Neighborhood: 1/9
- 5x5 Neighborhood: 4/25

```
cat_thresh = [ >0.0, >=6.35 ];
...
nbrhd = {
  width = [ 1, 3, 5, 7 ];
  cov_thresh = [ >=0.5 ];
  vld_thresh = 1.0;
  shape = SQUARE;
}
```

Grid-Stat: Neighborhoods

- Threshold 24-APCP >= 0.1"
 Edge effects as width increases.
- - FSS increases as width increases:
 - 0.64287, 0.73593, 0.80247
 - 0.85106, 0.89191, 0.91487
 - 0.92632, 0.93536, 0.94517



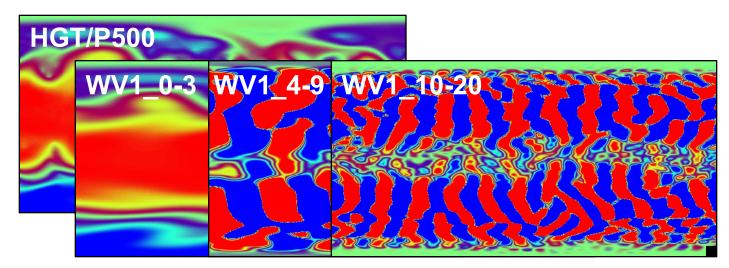
grid_stat_APCP_24_240000L_20050808_000000V_pairs.nc

grid_stat_APCP_24_240000L_20050808_000000V_pairs.nc

Grid-Stat: Gradients

- **GRAD** line type contains the S1 score and its components.
 - WMO-mandated statistic from 1954.
 - Computed over the gradients of forecast and observation fields computed in the X and Y grid direction.
 - Adapted from VSDB code:
 - FGBAR: mean forecast gradient
 - OGBAR: observed gradient
 - MGBAR: mean of maximum gradient
 - EGBAR: mean of gradient differences
 - S1 = 100 * EGBAR / MGBAR
 - S1_OG = 100 * EGBAR / OGBAR
 - FGOG_RATIO = FGBAR / OGBAR

Copyright 2018, University Corporation for Atmospheric Research, all rights reserved

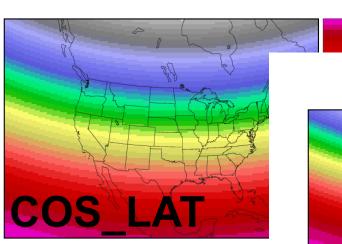

grid stat 1200001 20050807 120000V pairs no

Grid-Stat: Fourier Decomposition

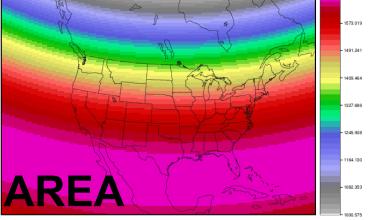
- Added support to Grid-Stat for 1-Dimensional Fourier decompositions.
- Affects output for CNT, SL1L2, SAL1L2, VL1L2, and VAL1L2 line types.
- Configuration file option to specify the waves:

```
fourier = {
    wave_1d_beg = [ 0, 0, 4, 10 ];
    wave_1d_end = [ 72, 3, 9, 20 ];
}
```

- Wave numbers indicated in the INTERP_MTHD column:
 - WV1_0-72
 - WV1_0-3
 - WV1 4-9
 - WV1_10-20



Grid-Stat: Grid Weighting


// The "grid_weight_flag" specifies how grid weighting should be applied... // - "NONE" to disable grid weighting using a constant weight (default). // - "COS_LAT" to define the weight as the cosine of the grid point latitude. // This an approximation for grid box area used by NCEP and WMO. // - "AREA" to define the weight as the true area of the grid box (km^2). grid_weight_flag = NONE;

default_weight.nc

NONE

cos_lat_weight.nc

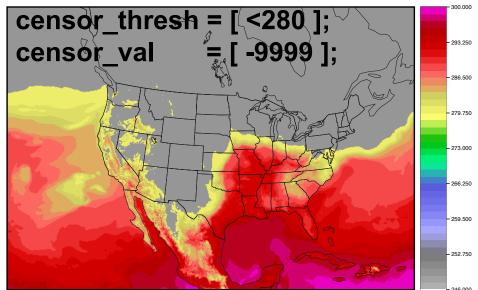
true_area_weight.nc

Config: Converting Data

- Enhance config file language to support functions of 1 variables.
- Use convert(x) function to define unit conversions:

convert(x) = log10(x);convert(x) = sqrt(x);

 Common conversion functions pre-defined in share/met/config/ConfigConstants:


```
K_to_C(t) = t - 273.15;

C_to_K(t) = t + 273.15;

C_to_F(t) = 1.8 * t + 32.0;
```

Config: Censoring Data

- Applying MET to wider range of data types reveals need for pre-processing.
- Censor logic is applied to raw data before any regridding is done.
- May be specified separately for each forecast and/or observation field:
 - The **censor_thresh** entry is an array of thresholds.
 - The **censor_val** entry is an array of replacement values.
- Reflectivity Example:
 - Forecast reflectivity values are 0 or >= 35 dBZ.
 - Observed reflectivity values are continuous less than 35 dBZ.
 - Define observation censor: censor_thresh = [<35]; censor_val = [0];
- Used to make the forecast and observation data more comparable.
- Can be used for range checking data.

Config: Climatology Data

- Required for anomaly correlation (ANOM_CORR)
- NCEP monthly 2.5 degree
 - match_day = FALSE
- NCEP daily 1.0 degree
 - match_day = TRUE
- ERA daily 1.5 degree
 - match_day = TRUE
- Any other reference forecast.

```
climo mean
             = {
   file name = [
    // List of file names
   ];
   field
            = Γ
   // Same length as fcst.field
   ];
   regrid
            = {
    method
                = NEAREST;
    width
                = 1;
    vld thresh = 0.5;
   time interp method = DW MEAN;
  match day
                      = FALSE;
                      = 21600;
   time step
}
```

Config: Binned Climatologies

- Enhance Grid-Stat and Point-Stat to process climatological distributions (i.e. climo mean and standard deviation).
- Binned climatologies affect only the computation of probabilistic statistics.
- Config file options:

climo_mean = { ... }; // Climo Mean Fields climo_stdev = { ... }; // Climo Standard Deviation climo_cdf_bins = 10; // Number of Climo Bins // Or array of bin values

- For each observation value, use the climo mean and standard deviation and compute a CDF value between 0 and 1.
- Place that observation into the correct climo CDF bin.
- Compute stats for all pairs within each bin.
- When climo mean and standard deviation are provided, derive the climatological probability values when computing Brier Skill Score.
- Bin number appended to the VX_MASK output column:
 - FULL_BIN1, FULL_BIN2, ..., FULL_BIN10

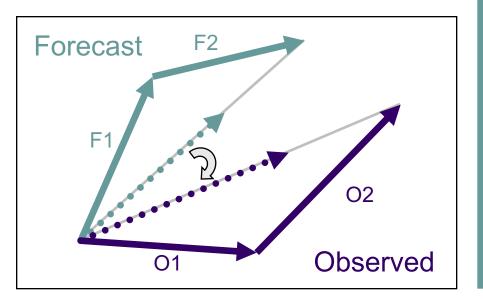
Verifying Winds

- Verify u, v, and speed, but not wind direction.
- Incremental support for wind direction:
 - Verify vector winds in Point-Stat and Grid-Stat:
 - Add wind speed thresholds to determine which u/v pairs are included in the vector partial sums (VL1L2).
 - Aggregate winds in Stat-Analysis:
 - Aggregate vector partial sum (VL1L2) or (*new in V5.0*) u/v pairs (MPR) and compute statistics for the wind direction errors.
 - Mean forecast and observation wind directions, mean error (F-O), and mean absolute error

Wind Direction: Example

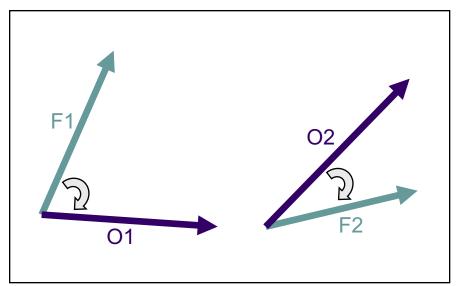
Point-Stat: VL1L2 Lines

VX MASK	THRESH	LINE_TYPE	TOTAL	UFBAR	VFBAR	UOBAR	VOBAR	UVFOBAR	UVFFBAR	UVOOBAR
DTC_165	>=1.000	7L1L2	653	1.91117	0.07900	1.40658	-0.06126	13.01039	18.12575	20.31649
DTC_165	>=3.000	JL1L2	279	3.13561	-0.35096	2.87061	-0.30072	26.50472	30.03257	38.25362
DTC 165	>=5.000	/L1L2	96	5.21268	-2.74580	5.47813	-2.01667	49.90791	51.10427	70.78802
DTC_166	>=1.000	VL1L2	2431	-1.62742	0.25391	-1.23402	-0.04393	18.48309	29.70179	21.89615
DTC_166	>=3.000	/L1L2	1610	-1.84581	0.16061	-1.47491	-0.11217	24.45214	36.67400	29.36032
DTC_166	>=5.000	7L1L2	520	-0.93518	-0.45435	-0.25923	-0.49558	37.21821	52.51917	47.26483

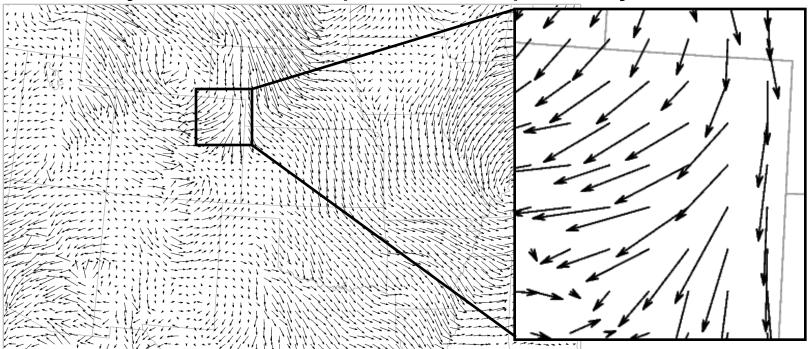

Stat-Analysis: aggregate_stat jobs

COL_NAME: ROW_MEAN_WDIR:	-job aggregate_stat -fcst_thresh >=1.000 -line_type VL1L2 -out_line_type WDIR TOTAL FBAR OBAR ME MAE 2 183.25038 0.22749 -3.02289 7.88372 3084 103.87238 85.96574 -17.90663 NA
COL_NAME: ROW_MEAN_WDIR:	-job aggregate_stat -fcst_thresh >=3.000 -line_type VL1L2 -out_line_type WDIR TOTAL FBAR OBAR ME MAE 2 5.67967 0.81565 -4.86402 4.86402 1889 94.38140 80.45939 -13.92200 NA
COL_NAME: ROW_MEAN_WDIR:	-job aggregate_stat -fcst_thresh >=5.000 -line_type VL1L2 -out_line_type WDIR TOTAL FBAR OBAR ME MAE 2 0.93288 338.91179 -22.02109 22.02109 616 358.38152 319.08761 -39.29391 NA

Wind Direction: Output


AGGR_WDIR

- 1. Aggregate VL1L2 partial sums lines
- 2. Derive wind directions and errors

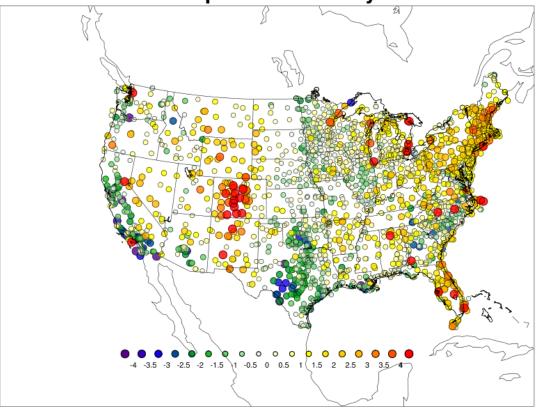

• ROW_MEAN_WDIR

- Derive wind directions and errors for each VL1L2 line
- 2. Compute mean of errors

Wind Direction: Suggestions

- When aggregating, wind directions can cancel out.
 - Verify over regions with unimodal wind direction.
 - Verify u and v components separately.

Copyright 2018, University Corporation for Atmospheric Research, all rights reserved


Stat-Analysis: -by case option

- Run the same analysis job for each unique set of values in one or more columns.
 - Compute aggregated continuous statistics for each forecast variable, masking region, and lead time:
 - stat_analysis –job aggregate_stat –line_type SL1L2 –out_line_type CNT –lookin out
 –by fcst_var –by vx_mask –by fcst_lead
 - Compute aggregated wind direction errors for each station:
 - stat_analysis –job aggregate_stat –line_type MPR –out_line_type WDIR –lookin out –fcst_lev Z2 –by obs_sid

Sample -by Case Plot

- 1. Run Point-Stat to generate MPR output.
- 2. Run Stat-Analysis to compute CNT stats for each station through time.
- 3. Plot Stat-Analysis output using NCL.

Dew Point Temperature Bias by Station ID

Config=AFWAOC_WRFv3.5 Season=WINTER Init=00UTC Fcst Hr=42h