
Verification of ensembles

Barbara Brown

Acknowledgments: Tom Hamill, Laurence Wilson, Tressa Fowler

Copyright UCAR 2018, all rights reserved.

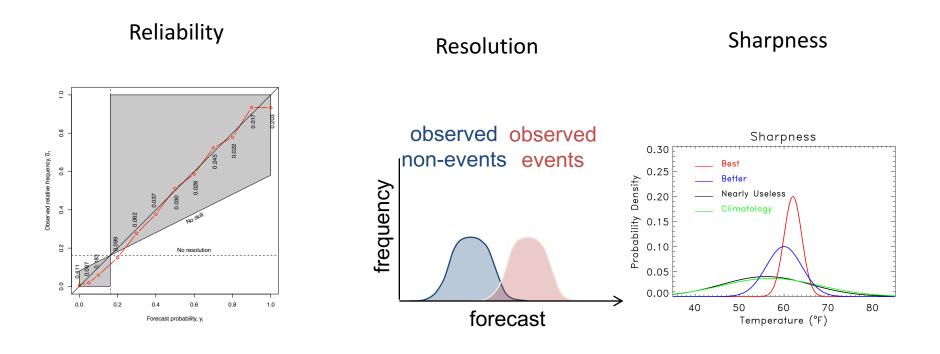
How good is this ensemble forecast?

Questions to ask before beginning?

- How were the ensembles constructed?
 - Poor man's ensemble (distinct members)
 - Multi-physics (distinct members)
 - Random perturbation of initial conditions (anonymous members)
- How are your forecasts used?
 - Improved point forecast (ensemble mean)
 - Probability of an event
 - Full distribution

Approaches to evaluating ensemble forecasts

- As individual members
 - Use methods for continuous or categorical forecasts
- As probability forecasts
 - Create probabilities by applying thresholds or statistical post-processing
- As a full distribution
 - Use individual members or fit a distributions through post-processing

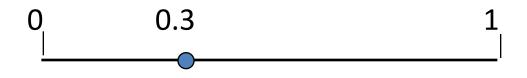

Evaluate each member as a separate, deterministic forecast

- Why? Because it is easy and important
 - If members are unique, it might provide useful diagnostics.
 - If members are biased, verification statistics might be skewed.
 - If members have different levels of bias, should you calibrate?
 - Do these results conform to your understanding of how the ensemble members were created?

Verifying a probabilistic forecast

- You cannot verify a probabilistic forecast with a single observation.
- The more data you have for verification, (as with other statistics) the more certain you are.
 - Evaluation of probability forecasts generally requires larger sample sizes than other types of forecasts
- Rare events (low probability) require more data to evaluate.
- These comments refer to probabilistic forecasts developed by methods other than ensembles as well.

Properties of a perfect probabilistic forecast of a binary event.



The Brier Score

• Mean square error of a probability forecast

$$BS = \frac{1}{n} \sum_{i=1}^{n} (f_i - x_i)^2$$

- where *n* is the number of forecasts f_i is the forecast prob on occasion *i* x_i is the observation (0 or 1) on occasion *i*
- Weights larger errors more than smaller ones

Copyright UCAR 2018, all rights reserved.

Brier Score

$$BS = \frac{1}{n} \sum_{k=1}^{n} (f_k - x_k)^2 \text{ where }$$

$$f_k$$
 = forecast probability
on occasion k
 x_k = observation (0 or 1)
on occasion k

BS can be decomposed into 3 components that represent important properties of the forecasts:

$$BS = \frac{1}{n} \sum_{i=1}^{I} N_i (f_i - \overline{x}_i)^2 - \frac{1}{n} \sum_{i=1}^{I} N_i (\overline{x}_i - \overline{x})^2 + \overline{x} (1 - \overline{x})$$

Reliability Resolution Uncertainty

Where the *I* is the number of discrete values of $f(e.g., f_1 = 0.05, f_2 = 0.10, f_3 = 0.20, \dots$ etc.) and

$$n = \sum_{i=1}^{I} N_{i} \qquad \overline{x}_{i} = \frac{1}{N_{i}^{\text{Copyright UCAR 2018, all rights reserved.}}} \overline{x}_{k} = \frac{1}{n} \sum_{k=1}^{n} x_{k} = \frac{1}{N} \sum_{i=1}^{I} N_{i} \overline{x}_{i}$$

Components of the Brier Score

Reliability

Measures how well the conditional relative frequency of events matches the forecast

Resolution

Measures how well the forecasts distinguish situations with different frequencies of occurrence

Uncertainty

Measures the variability in the observations (i.e., the difficulty of the forecast situations)

Looking at Brier Score <u>components</u> is critical to understand forecast performance

 $\frac{1}{n}\sum_{i=1}^{I}N_i(f_i-\overline{x}_i)^2$

 $\frac{1}{n}\sum_{i=1}^{I}N_i(\overline{x}_i-\overline{x})^2$

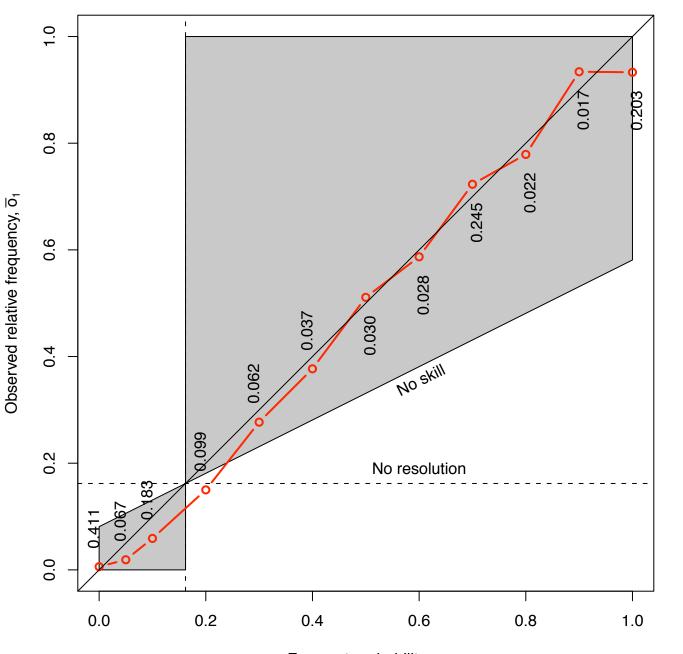
 $\overline{x}(1-\overline{x})$


Brier Skill Score (BSS)

$BSS = \frac{RES - REL}{UNC}$

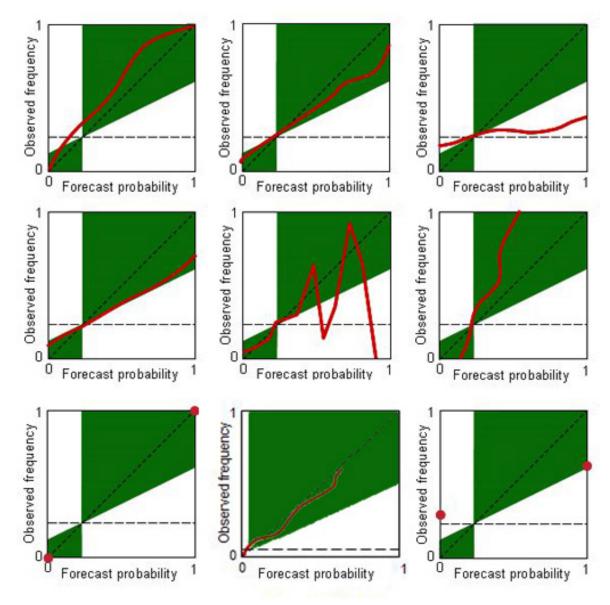
BSS is a simple combination of the 3 components of the Brier Score (assumes "Sample Climatology" as the reference forecast)

Copyright UCAR 2018, all rights reserved.

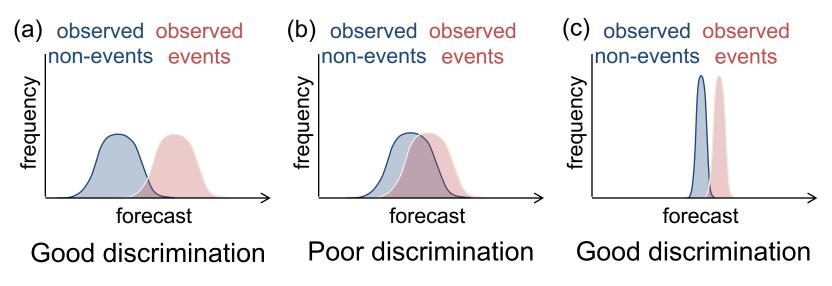

Our friend, the scatterplot

Introducing the attribute diagram!

(close relative to the reliability diagram)


- Analogous to the scatter plot- same intuition holds.
- Data must be binned!
- Hides how much data is represented by each
- Expresses conditional probabilities.
- Confidence intervals can illustrate the problems with small sample sizes.

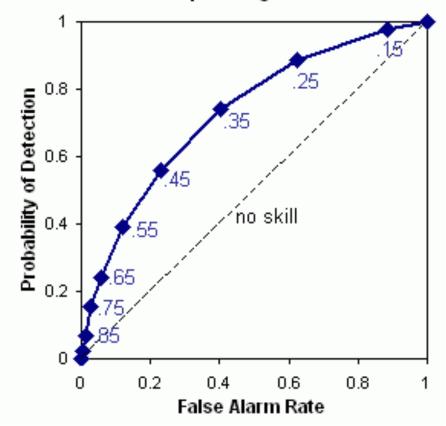
Forecast probability yi8, all rights reserved.


Attribute diagram shows reliability, resolution, skill

Reliability Diagram Exercise

Discrimination

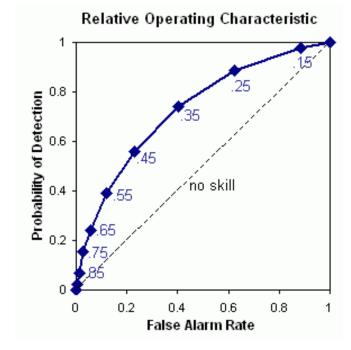
- Discrimination: The ability of the forecast system to clearly distinguish situations leading to the occurrence of an event of interest from those leading to the nonoccurrence of the event.
- Depends on:
 - Separation of means of conditional distributions
 - Variance within conditional distributions



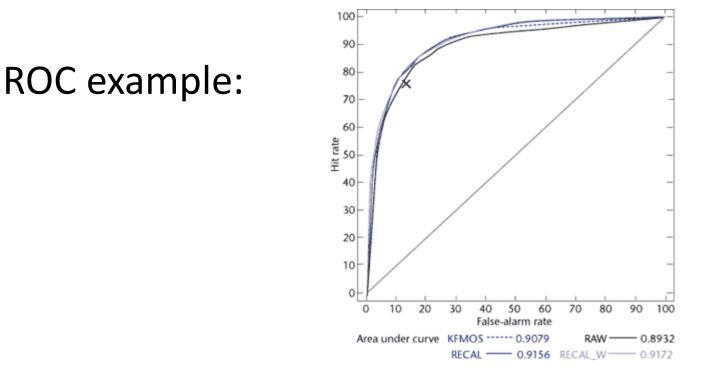
Copyright UCAR 2018, all rights reserved.

Relative Operating Characteristic (ROC)

Measures the ability of the forecast to discriminate between events and nonevents (resolution)

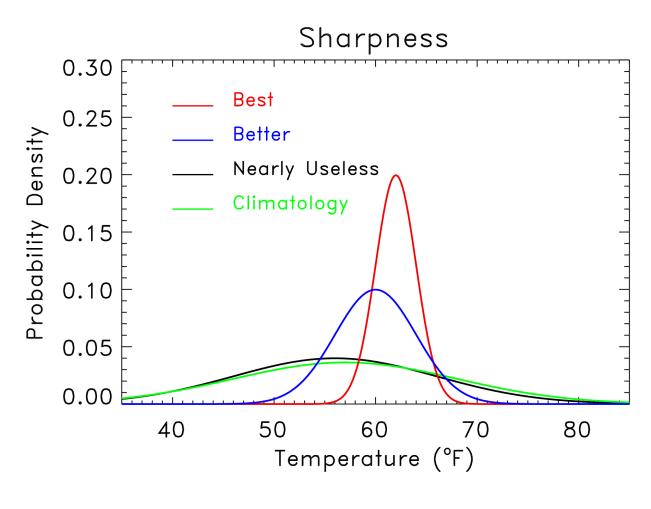

→ Plot hit rate H vs false alarm rate F using a set of varying probability thresholds to make the yes/no decision.

Relative Operating Characteristic


Interpretation of ROC

- Close to upper left corner good resolution
- Close to diagonal *little* skill
- Area under curve ("ROC area") is a useful summary measure of forecast skill
- **Perfect**: ROC area = 1
- No skill: ROC area = 0.5
- ROC skill score ROCS = 2(ROCarea-0.5)
- Not sensitive to bias.

- ROC is conditioned on the observations (i.e., given that Y occurred, what was the corresponding forecast?)
- Reliability and ROC diagrams are good companions


Relative Operating Characteristic (ROC)

ROC diagram for T12< 5 °C at T+72. Shades indicate the different levels of statistical processing applied as shown in the key. The cross indicates the ROC (FAR, HR) of the ECMWF high-resolution deterministic model.

from "Verification of PREVIN site-specific probability forecasts", Met Office (<u>http://www.metoffice.com/research/nwp/publications/nwp_gazette/dec01/verif.html</u>)

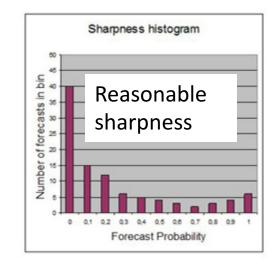
Sharpness also important

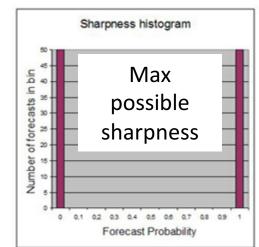
"Sharpness"

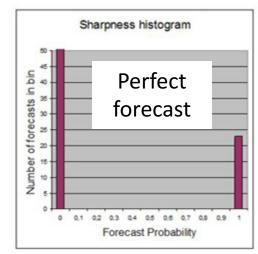
measures the specificity of the probabilistic forecast. Given two reliable forecast systems, the one producing the sharper forecasts is preferable.

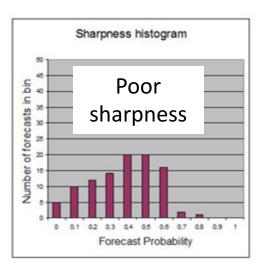
But: don't want sharp if not reliable. Implies unrealistic confidence.

Sharpness ≠ resolution

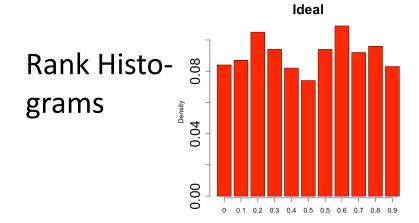

 Sharpness is a property of the forecasts alone; a measure of sharpness in Brier score decomposition would be how populated the extreme N_i's are.


$$BS = \frac{1}{n} \sum_{i=1}^{I} N_i (f_i - \bar{x}_i)^2 - \frac{1}{n} \sum_{i=1}^{I} N_i (\bar{x}_i - \bar{x})^2 + \bar{x} (1 - \bar{x})$$


Sharpness for binary probability forecasts


For a binary probability forecast, sharpness is based on the distribution (histogram) of frequencies associated with each possible probability

Sometimes summarized using the variance of the distribution



Forecasts of a full distribution

- How is it expressed?
 - Discretely by providing forecasts from all ensemble members
 - A parametric distribution normal (ensemble mean, spread)
 - Smoothed function kernel smoother

Evaluating ensembles

Density

Too wide

1.5

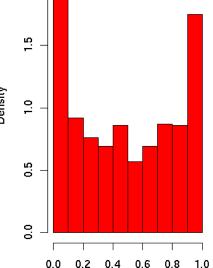
2

0.5

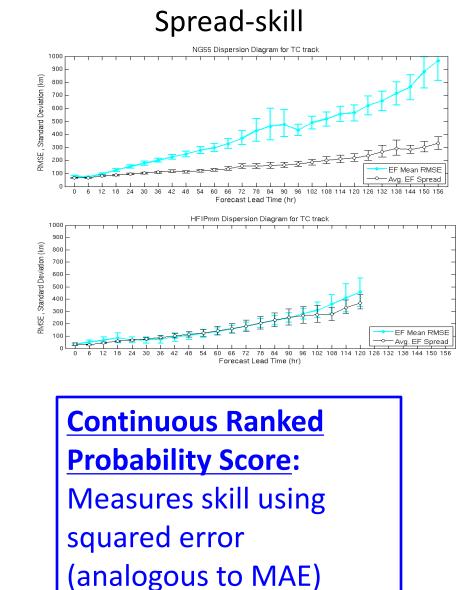
0.0

0.0

0.2

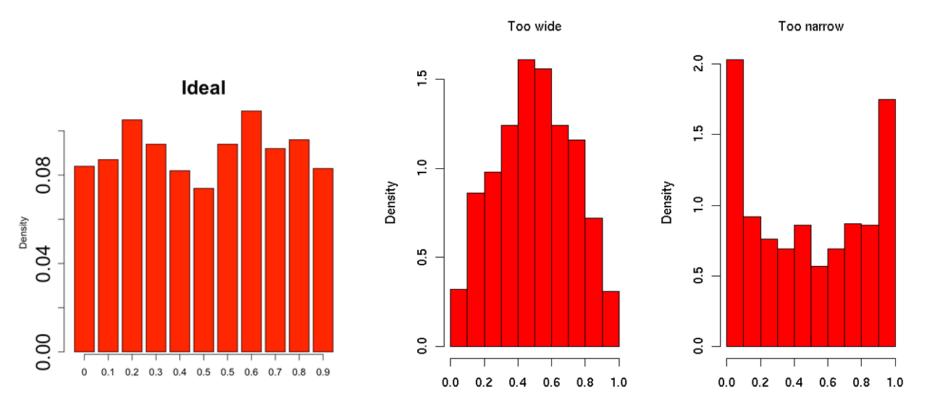

0.4

0.6

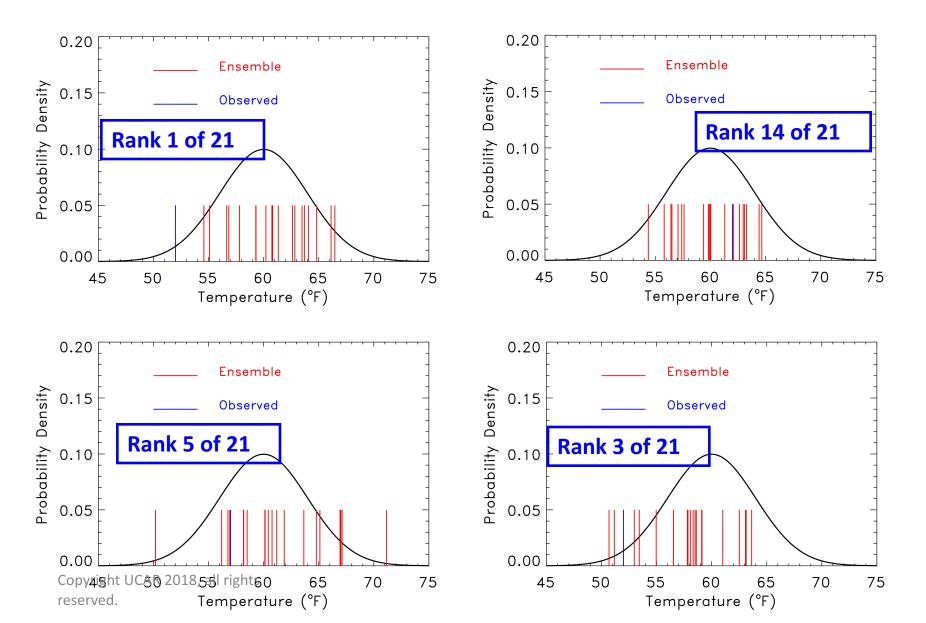

0.8

1.0

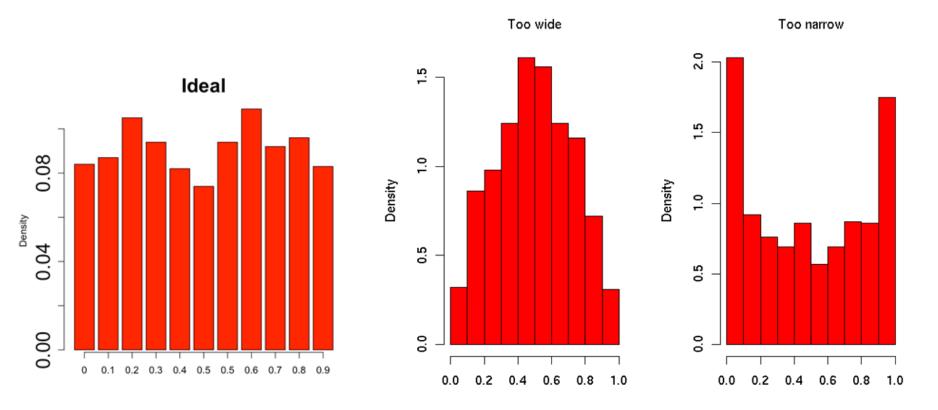
Density


Too narrow

Ensemble Calibration / Reliability


- By default, we assume all ensemble forecasts have the same number of members.
 Comparing forecasts with different number of members is an advanced topic.
- For a perfect ensemble, the observation comes from the same distribution as the ensemble.

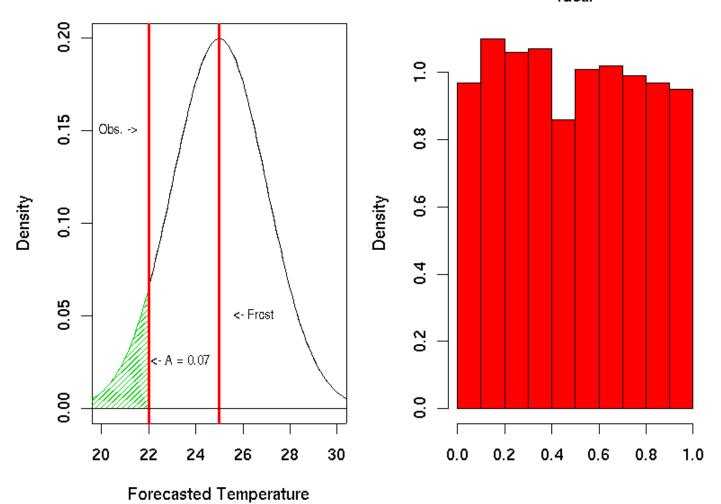
Rank histogram examples



Rank histograms are a way to examine the calibration of an ensemble

Creating rank histograms

Rank histogram examples



Rank histograms are a way to examine the calibration of an ensemble

Verifying a continuous expression of a distribution (i.e. normal, Poisson, beta)

- Probability of any observation occurring is on [0,1] interval.
- Probability Integral Transformed (PIT) fancy word for how likely is a given forecast
- Still create a rank histogram using bins of probability of observed events.

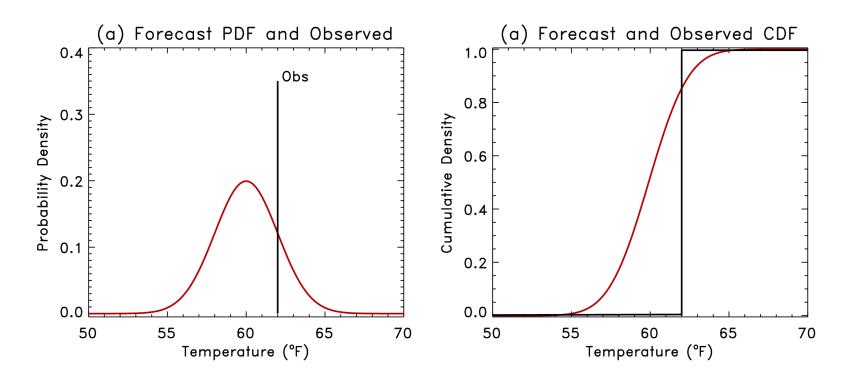
Verifying a distribution forecast

Ideal

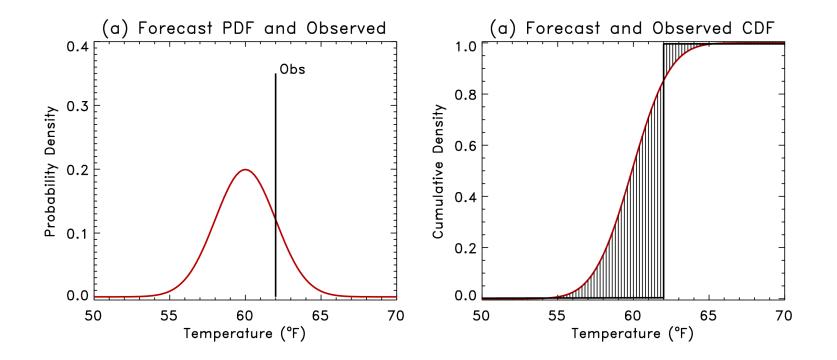
Copyright UCAR 2018, all rights reserved.

Warnings about rank histograms

- Assume all samples come from the same climatology!
- A flat rank histogram can be derived by combining forecasts with offsetting biases
- See Hamill, T. M., and J. Juras, 2006: Measuring forecast skill: is it real skill or is it the varying climatology? *Quart. J. Royal Meteor. Soc.*, Jan 2007 issue
- Techniques exist for evaluating "flatness", but they mostly require much data.


Continuous and discrete rank probability scores

- Measures of accuracy for
 - Multiple category forecasts (e.g., precipitation type)
 - Rank Probability Score (RPS)
 - Continuous distributions (e.g., ensemble distribution)


Continuous Ranked Probability Score (CRPS)

 Relates to Brier score – for a forecast of a binary event, the RPS score is equivalent to the Brier score.

Rank Probability Scores

A good RPS score minimizes area

Copyright UCAR 2018, all rights reserved.

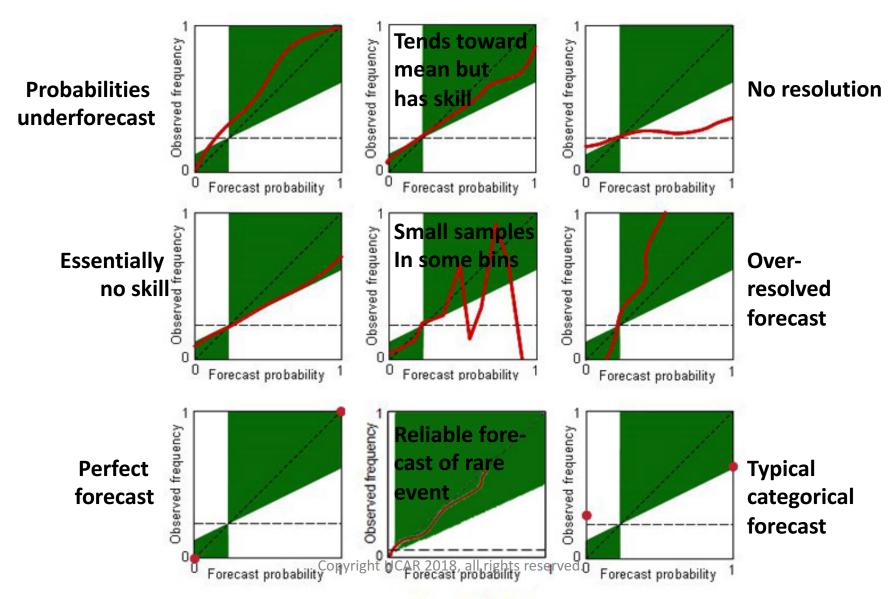
Ignorance score (for multi-category or ensemble forecasts)

• A "local" score

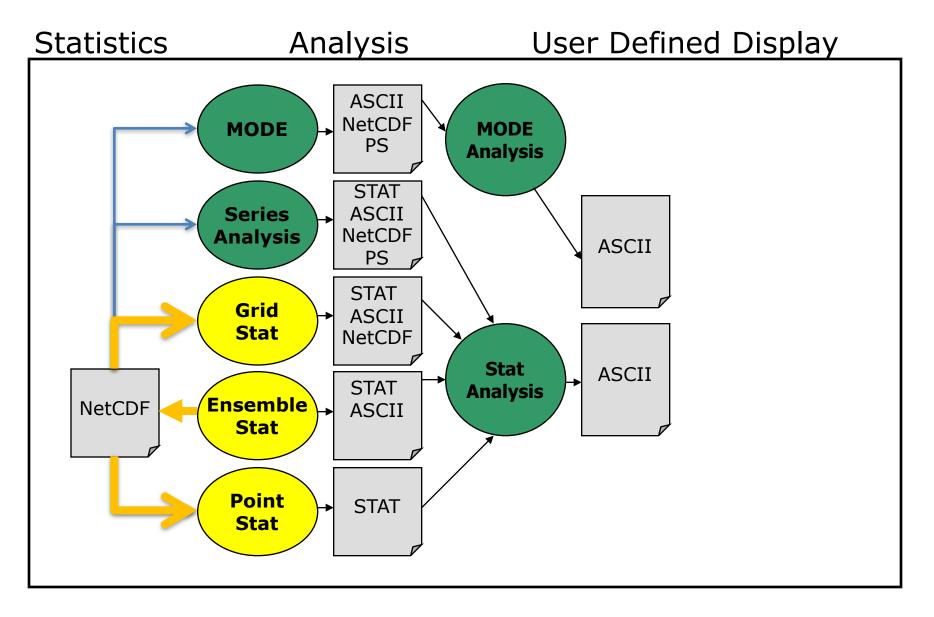
$$IS = \frac{1}{n} \sum_{i=1}^{n} \log_2(p_{t,k^*(t)})$$

- $k^{*}(t)$ is the category that actually was observed at time t
- Based on information theory
- Only rewards forecasts with some probability in "correct" category
- Perfect score: 0 [i.e., log₂(1) = 0]

Final comments


- Know how and why your ensemble is being created.
- Use a combination of graphics and scores.
- Areas of more research
 - Verification of spatial forecasts
 - Additional intuitive measures of performance for probability and ensemble forecasts.

Measure	Attribute evaluated	Comments			
Probability forecasts					
Brier score	Accuracy	Based on squared error			
Resolution	Resolution (resolving different categories)	Compares forecast category climatologies to overall climatology			
Reliability	Calibration				
Skill score	Skill	Skill involves <i>comparison</i> of forecasts			
Sharpness measure	Sharpness	Only considers distribution of forecasts			
Relative Operating Characteristic (ROC)	Discrimination	Ignores calibration			
C/L Value	Value	Ignores calibration			
Ensemble distribution					
Rank histogram	Calibration	Can be misleading			
Spread-skill	Calibration	Difficult to achieve			
CRPS	Accuracy	Squared difference between forecast and observed distributions Analogous to MAE in limit			
log p score	Accuracy Copyright UCAR 2018, all r	Local score, rewards for correct category; infinite if observed category has 0 density			


Useful references

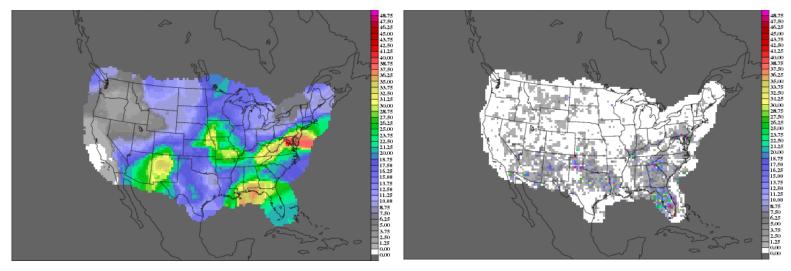
- **Good overall references** for forecast verification:
 - (1) Wilks, D.S., 2011: Statistical Methods in the Atmospheric Sciences (3rd Ed). Elsevier, 704 pp.
 - (2) WMO Verification working group forecast verification web page, http://www.cawcr.gov.au/projects/verification/
 - (3) Jolliffe and Stephenson Book: Jolliffe, I.T., and D.B. Stephenson, 2012: Forecast Verification. A Practitioner's Guide in Atmospheric Science., 2nd Edition, Wiley and Sons Ltd.
- Verification tutorial Eumetcal (<u>http://www.eumetcal.org/-learning-modules-</u>)
- **Rank histograms**: Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts. *Mon. Wea. Rev.*, **129**, 550-560.
- **Spread-skill relationships**: Whitaker, J.S., and A. F. Loughe, 1998: The relationship between ensemble spread and ensemble mean skill. *Mon. Wea. Rev.*, **126**, 3292-3302.
- Brier score, continuous ranked probability score, reliability diagrams: Wilks text again.
- **Relative operating characteristic**: Harvey, L. O., Jr, and others, 1992: The application of signal detection theory to weather forecasting behavior. *Mon. Wea. Rev.*, **120**, 863-883.
- Economic value diagrams:
 - (1)Richardson, D. S., 2000: Skill and relative economic value of the ECMWF ensemble prediction system.
 Quart. J. Royal Meteor. Soc., **126**, 649-667.
 - (2) Zhu, Y, and others, 2002: The economic value of ensemble-based weather forecasts. *Bull. Amer. Meteor. Soc.*, 83, 73-83.
- **Overestimating skill**: Hamill, T. M., and J. Juras, 2006: Measuring forecast skill: is it real skill or is it the varying climatology? *Quart. J. Royal Meteor. Soc.*, Jan 2007 issue. <u>http://tinyurl.com/kxtct</u>

Reliability Diagram Exercise

Probability fields

Verifying Probabilities

- Probabilistic verification method tools:
 Grid-Stat, Point-Stat, and Stat-Analysis
- Define Nx2 contingency table using:


Multiple forecast probability thresholds

Forecast	Observation		Total	Example:	
	o = 1 (e.g., "Yes")	o = 0 (e.g., "No")			
p_1 = midpoint of (0	n ₁₁	n ₁₀	$n_{1.} = n_{11} + n_{10}$		
and threshold1)				• FCST: Probability of precip	
p_2 = midpoint of	n ₂₁	n ₂₀	$n_{2} = n_{21} + n_{20}$		
(threshold1 and				[0.00, 0.25, 0.50, 0.75, 1.00]	
threshold2)					
				==0.25	
	•		•	OBS: Accumulated precip	
p_i = midpoint of	n _{i1}	n _{i0}	$n_{j=}n_{j1}+n_{j0}$	> 0.00	
(threshold i and 1)			, <u>,</u> , <u>,</u>	> 0.00	
Total	$n_{.1} = \Sigma n_{i1}$	$n_{.0} = \Sigma n_{i0}$	$T = \Sigma n_i$	1	
iotai	11.1 - 2011	11.0 - 2110			

One observation threshold

Verifying Probabilities: Example

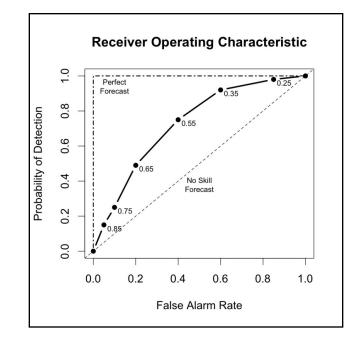
• Verify probability of precip with total precip:

• Configuration file settings:

```
fcst = {
  field = [
    { name = "POP";
    level = [ "ZO" ];
    //cat_thresh = [ >=0.0, >=0.25, >=0.50, >=0.75, >=1.00 ];
    cat_thresh = [ ==0.25 ];
    prob = TRUE;
  }
];
```

```
obs = {
  field = [
    {
    name = "APCP";
    level = [ "A12" ];
    cat_thresh = [ >0.0 ];
    }
 ];
}
```

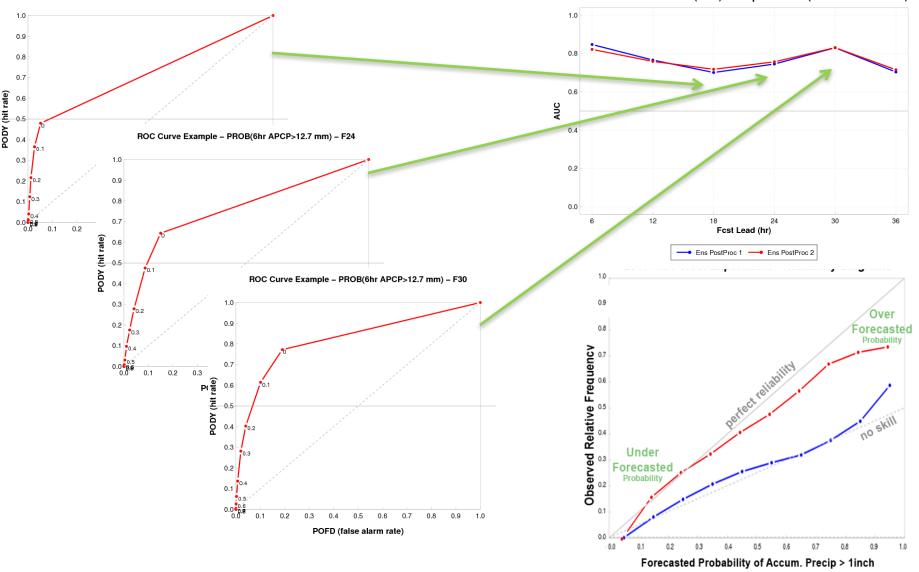
Copyright 2018, University Corporation for Atmospheric Research, all rights reserved


Grid-Stat: Probability Config.

- Many configurable parameters only set a few:
 - APCP_24... is name of ens mean in NetCDF output of Ensemble-Stat
 - prob = TRUE important
 - cat_thresh used for Nx2 PCT table and reliability and roc curves
 - Use 24hr Accumulation in GRIB file threshold at >10 mm
 - Generate probabilistic statistics and Economic Cost/Loss

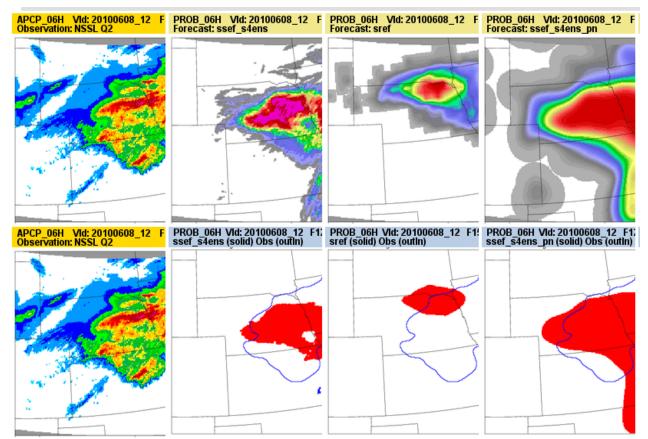
```
fcst = \{
  field = [
    ł
                 = "APCP 24 A24 ENS FREQ ge10.000";
     name
                = ["(*,*)"];
     level
     prob
                 = TRUE;
     cat thresh = [>=0.0, >=0.1, >=0.2, >=0.3, >=0.4,
                     >=0.5, >=0.6, >=0.8, >=1.0];
     //cat thresh = [ ==0.1 ];
 ];
}
                                 output flag = {
obs = \{
                                    fho
                                            = NONE;
  field = [
                                    ctc
                                            = NONE;
    Ł
                                    cts
                                            = NONE;
     name
                   "APCP":
                                    mctc
                                            = NONE;
                   [ "A24" ];
     level
                                    mcts
                                            = NONE;
     cat thresh = [ >10.000 ];
                                    cnt
                                           = NONE;
                                    sl112 = NONE;
  ];
                                    v1112
                                           = NONE;
                                    pct
                                            = BOTH;
                                    pstd
                                            = BOTH;
                                    pjc
                                            = BOTH;
                                    prc
                                            = BOTH;
                                    eclv
                                            = BOTH;
                                    nbrctc = NONE;
                                    nbrcts = NONE;
                                    nbrcnt = NONE;
                                    grad
                                            = NONE;
```

Grid Stat for Probability: Run


- Output written to .stat file and, if desired, to individual text files:
 - PCT Probability Contingency Table Counts
 - PSTD Probability Contingency Table Scores
 - Brier Score, Reliability, Resolution, Uncertainty, Area Under ROC
 - PJC Joint/Continuous Statistics of Probabilistic Variables
 - Calibration, Refinement, Likelihood, Base Rate, Reliability points
 - PRC ROC Curve Points for Probabilistic Variables
 - ECLV Economic Cost/Loss Values

Grid Stat Probability: Examples

ROC Curve Example - PROB(6hr APCP>12.7 mm) - F18


Area Under ROC Curve (AUC) Example – PROB(6hr APCP>12.7 mm)

wright 2019 University Corporation for Atmospheric Pessarch, all rights reserved

A teaser... Spatial Methods Application

You can use MODE on probability fields also...

In this case: Probability field threshold = 50% Observed field threshold > 12.7 mm (or 0.5")