MODE Customization and Output

Verifying with Objects

StageII Objects with WRF Outlines

Presenter: Tina Kalb

MODE Example

MODE Input and Usage

- Input Files: Gridded forecast and observation
- GRIB1, GRIB2 (Unified Post-Processor, NCEP, other)
- NetCDF (PCP-Combine, wrf_interp, CF-compliant)
- Usage: mode
- fcst_file
- obs_file
- config_file
- [-config_merge merge_config_file]
- [-outdir path]
- [-log file]
- [-v level]

fcst_file	Gridded forecast file
obs_file	Gridded observation file
config_file	ASCII configuration file
-config_merge	Second configuration file for fuzzy engine merging
-outdir	Output directory to be used
-log	Optional log file
-v	Level of logging

Config File

https://dtcenter.org/met/users/support/online tutorial/METv6.1/config/MODEConfig default

```
// Run all permutations of radius and threshold
//
quilt = TRUE;
//
// Forecast and observation fields to be verified
//
fcst = {
    field = {
        name = "prAnom";
        level = "(*,*)";
    }
    file_type = NETCDF_NCCF;
    censor_thresh = [];
    censor_val
    = [];
    = [];
    conv_radius = [0,2,4,8]; // in grid squares
    conv_thresh
    vld thresh
    area__thresh = NA;
    = [<=-0.5,<=-0.75,<=-1.0,<=-1.25,>=0.5,>=0.75,>=1.0,>=1.2
    inten__perc_value = 100;
    inten_perc_thresh = NA;
    merge_thresh = [>=1.25,>=1.25,>=1.25,>=1.25,>=1.25,>=1.25,>=1.25,>=1.
    merge_flag = ENGINE;
}
field = {
        name = "prAnom";
        level = "(*,*)";
    }
    file_type = NETCDF_NCCF;
    censor_thresh = [];
    censor val = [];
    conv_radius }=[0,2,4,8]; // in grid squares
    conv_thresh = [<=-0.5,<=-0.75,<=-1.0,<=-1.25,>=0.5,>=0.75,>=1.0,>=1.25];
    vld thresh
    = 0.5;
    area_thresh
    = NA;
    inten_perc_value = 100
    inten_perc_thresh = NA;
    merge_thresh = [>=1.25,>=1.25,>=1.25,>=1.25,>=1.25,>=1.25,>=1.25,>=1.25];
    merge_flag
    = [>=1.25,>=1.25,>=1.25,>=1.25,>=1.25,>=1.25,>=1.25,>=1.25];
    = ENGINE;
```


Config File

```
// Fuzzy engine interest functions
//
interest_function = {
centroid_dist =
    ( 0.0,1.0 )
    ( 60.0/grid_res, 1.0 )
    ( 600.0/grid_res, 0.0 )
);
boundary_dist = (
    ( 0.0, 1.0 )
        ( 400.0/grid_res, 0.0 )
    );
    convex_hull_dist = (
        ( - 0.0, 1.0 )
);
angle_diff = (
    ( 0.0, 1.0 )
    ( 30.0, 1.0 )
    ( 90.0, 0.0 )
    );
corner = 0.8;
ratio_if = (
    (- 0.0, 0.0 )
        ( corner, 1.0 )
        ( 1.0, 1.0)
    );
area_ratio = ratio_if;
int_area_ratio = (
    (0.00, 0.00 )
    ( 0.10, 0.50 )
    ( 0.25, 1.00 )
    ( 1.00, 1.00 )
    );
complexity_ratio = ratio_if;
inten_perc_ratio = ratio_if;
```


MODE Output

- PostScript
- object pictures, definitions
- matching/merging strategy
- total interest for each object pair

- attributes of simple, paired objects, clusters
- size, shape, position, separation, total interest
- verification scores (CSI, bias, etc.) for objects
netCDF
- gridded object fields
- view with ncview


```
//
// NetCDF matched pairs, PostScript,
// and contingency table output files
//
ps_plot_flag = TRUE;
nc_pairs_flag = {
    latlon = TRUE;
    raw = TRUE;
    object_raw = TRUE;
    object_id = TRUE;
    cluster_id = TRUE;
    polylines = TRUE;
}
ct_stats_flag = TRUE;
```

IODE: APCP_24_A24_ENS_MEAN at A24 vs APCP_24 at A2

Page 2 and 3 of PostScript:

-Band shows which Simple Objects are merged (aka Cluster) -Colors show matching between Fcst and Obs.

Forecast

Observation

Forecast Objects with Observation Outlines

Page 4 of PostScript

Objects overlapped
In two different views...

Which do you prefer?

Observation Objects with Forecast Outlines

Page 5 of PostScript -
 Summary information for clusters in the domain

Cluster Object Information

Forecast: Threshold Merging

Page 6+ of PostScript

Raw Field and Double Thresholding For Merging Process

Convolution Threshold (>=25.4mm)
Double Thresholding Value (>=22.5mm)

Summary Score for Forecast

Median of the Max. Interest (MMI*)

* Davis et al., 2009: The Method for Object-based

Diagnostic Evaluation (MODE) Applied to WRF
Forecasts from the 2005 SPC Spring Program. Weather and Forecasting

MMI $=$ median $\{0.90,0.80,0.90,0.80,0.55\}=0.80$ copyright 2018, UCAR, all rights reserved

Summary Score for Forecast

Median of the Max. Interest (MMI*)

Interest Matrix

observed

* Davis et al., 2009: The Method for Object-based

Diagnostic Evaluation (MODE) Applied to WRF
Forecasts from the 2005 SPC Spring Program. Weather and Forecasting

MMI $=$ median $\{0.90,0.80,0.90,0.80,0.55\}=0.80$ copyright 2018, UCAR, all rights reserved

Median of the Max. Interest (MMI) Quilt Plot

MMI as a function of convolution radius (grid squares) and threshold (mm) for 24-h forecast of 1-h rainfall

- Each pixel is a MODE run.
- This graphic is not in MET, but R code on MET website.

MODE Output

- PostScript
- object pictures, definitions
- matching/merging strategy
- total interest for each object pair
- ASCII Text
- attributes of simple, paired objects, clusters
- size, shape, position, separation, total interest
- verification scores (CSI, bias, etc.) for objects
- netCDF
- gridded object fields
- view with ncview


```
//
// NetCDF matched pairs, PostScript,
// and contingency table output files
//
ps_plot_flag = TRUE;
nc_pairs_flag = {
    latlon = TRUE;
    raw = TRUE;
    object_raw = TRUE;
    object_id = TRUE;
    cluster_id = TRUE;
    polylinēs = TRUE;
}
ct_stats_flag = TRUE;
```


ASCII Output

Object Attribute file

 (*_obj.txt)- Header with fields names and object definition info
- Object ID and Category
- Simple Object Attributes
- Simple Obj. Centroid info, Length, Width, Area, etc...
- Matched Pair/Composite information
- Centroid Distance, Angle Difference, Symmetric Difference, etc...

Contingency Table Stat file

 (*_cts.txt)- Header with fields names and object definition info
- Contingency Table counts
- hits, false alarms, misses and correct negs (FY|FN_OY|ON notation)
- Contingency Table statistics such
- BASER, FBIAS, GSS, CSI, PODY, FAR etc...
- NA's for not relevent output

ASCII Output

Object Attribute file (*_obj.txt)

OBJECT_ID	OBJECT_CAT	CENTROID_X	CENTROID_Y	CENTROID_LAT	CENTROID_LON	AXIS_ANG	LENGTH	WIDTH	AREA
F001	CF000	1088.10939	419.8381	35.38308	-91.24656	35.0499	159.73583	69.37881	6625
0001	C0000	1072.24122	767.62874	44.75884	-90.95277	48.23578	202.68348	82.43007	10024
0002	C0000	899.80285	567.40078	39.53595	-97.47192	48.70561	39.12947	25.76823	707
F001_0001	CF000_C0000	NA							
F001_0002	CF000_C0000	NA							

Contingency Table Stat file (*_cts.txt)

OBTYPE	FIELD	TOTAL	FY_OY	FY_ON	FN_OY	FN_ON	BASER	FMEAN	ACC	FBIAS	PODY	PODN	POFD
GPCP	RAW	1714176	51313	51666	95113	1516084	0.085421	0.060075	0.91437	0.70328	0.35044	0.96704	0.032956
GPCP	OBJECT	1714176	48522	49626	82152	1533876	0.076231	0.057257	0.92312	0.75109	0.37132	0.96866	0.031339

Use of MODE Pair Attributes

Centroid Distance: Quantitative measure of forecast spatial Displacement.

Axis Angle: For non-circular Objects, measure of orientation errors.
Small is good

Area Ratio: Provides an objective measure of whether there is an over- or underprediction of areal extent of forecast. Close to 1 is good

Use of MODE Pair Attributes

Symmetric Difference:
Non-Intersecting Area

Symmetric Diff: Summary statistic for how well Forecast and Observed objects match.
Small is good

P50 | P90 Int: Objective measures of Median (50 th percentile) and near-Peak ($90^{\text {th }}$ percentile) intensities in objects. Ratio close To 1 is good

Total Interest: Summary statistic derived from fuzzy logic engine with user-defined Interest Maps for all these attributes plus some others. Close to 1 is good

Use of MODE Pair Attributes

Symmetric Diff: Summary statistic for how well Forecast and Observed objects match.

Total Interest: Summary statistic derived from fuzzy logic engine with user-defined Interest Maps for all these attributes plus some others. Close to 1 is good

Scoring MODE Objects

use total interest threshold to separate matched objects, or "hits" from false alarms and misses

Traditional Categorical
Statistics
critical success index (CSI) = Hit
Hit + Miss + False Alarm
bias $=\frac{\text { Hit + False Alarm }}{\text { Hit }+ \text { Miss }}$
sometimes area-weighted

How netCDF could be used

Employ a different plotting approach to show matched clusters

Display actual intensities inside objects (in this case Reflectivity)

Plots generated using NCL

MODE Example: Traditional

Object \#3
Fcst Area: 6302 Obs Area: 4020 Centroid Dist: 12.4 Int Area: 3189
Interest: 0.98

No False alarms or misses

MODE Example: El Nino Climate

December-February

- Not individual forecasts
- Quantify differences in each anomaly type separately

Effect of Radius and Threshold

Increasing Threshold

MODE Analysis Tool

- mode_analysis

MODE_Analysis Usage

Usage: mode_analysis
-lookin path
-summary or -bycase
[-column name]
[-dump_row filename]
[-out filename]
[-log filename]
[-v level]
[-help]
[MODE FILE LIST]
[-config config_file] or [MODE LINE OPTIONS]

MODE LINE OPTIONS

Object Toggles

-fcst versus -obs
Selects lines pertaining to forecast objects or observation objects
-single versus -pair
Selects single object lines or pair lines
-simple versus -cluster
Selects simple object lines or cluster
-matched versus -unmatched
Selects matched simple object lines or unmatched simple object lines.

Other Options (each option followed by value)

 -model, -fcst|obs_thr, -fcst_var, etc...-area_min|max, -intersection_area_min|max , etc...
-centroid_x_min|max , -centroid_y_min|max,
-axis_ang_min|max, -int10_min|max,
-centroid_dist_min|max, -angle_diff_min|max, etc...

MODE_Analysis Config File

MODE Analysis Tool -summary Example

Command Line

```
mode_analysis -summary \
    -lookin mode_output/wrf4ncep/40km/ge03.\
    -fcst -cluster \
    -area_min 100 \
    -column centroid_lat -column centroid_lon \
    -column area \
    -column axis_ang \
    -column length
mode_analysis -summary \}
-lookin mode_output/wrf4ncep/40km/ge03.
-fcst -cluster \}
-area_min 100 \}
-column centroid_lat -column centroid_lon \}
-column area \}
-column axis_ang \}
-column length
```


Provides summary statistics for Forecast Clusters with minimum area of 100 grid-sq for the specified MODE output columns

Output

Total mode lines read $=393$
Total mode lines kept $=17$

Field	N	Min	Max	Mean	StdDev	P10	P25	P50	P75	P90	Sum
centroid_lat	17	31.97	46.24	38.65	3.81	33.89	36.13	38.54	40.12	43.99	657.00
centroid_lon	17	-103.89	-85.20	-96.32	5.91	-103.15	-102.65	-96.26	-93.95	-86.78	-1637.49
area	17	180.00	8393.00	2955.06	2246.49	624.80	1206.00	2662.00	3958.00	5732.20	50236.00
axis_ang	17	-88.63	85.66	12.62	64.35	-70.77	-63.86	35.04	74.37	79.24	214.60
length	17	25.25	234.76	124.41	60.99	48.85	65.37	116.67	169.37	204.57	2114.90

MODE Analysis Tool -bycase Example

```
Command Line
mode_analysis -bycase -lookin mode_output/wrf4ncep/40km/ge03. -single -simple
```


Output

Total mode lines read $=393$
Total mode lines kept $=141$

Fcst Valid Time		Area Matched Area Unmatched \# Fcst Matched \# Fcst Unmatched \# Obs Matched \# Obs Unmatched					
Apr 26, 2005	00:00:00	3210	1046	2	4	1	1
May 13, 2005	00:00:00	8892	9320	2	19	1	2
May 14, 2005	00:00:00	16994	4534	7	4	5	3
May 18, 2005	00:00:00	6057	852	3	2	2	1
May 19, 2005	00:00:00	1777	1624	1	5	2	1
May 25, 2005	00:00:00	8583	928	4	2	4	2
Jun 1, 2005	00:00:00	12456	2657	5	6	6	2
Jun 3, 2005	00:00:00	7561	102	11	1	5	0
Jun 4, 2005	00:00:00	11464	5715	6	12	4	3

Provides tallied information for all Simple Objects for each case in directory

Example - REFC > 30 dBZ Impact of smoothing radius

Example May 11, 2013

DTC SREF Tests - ARW Members

Spread

increases With Time

9km-std_merge
APCP(r15)gt2.54

MODE Example: Fcst Analogs

Area ratio: 1.19
Centroid dist: 27.92
Angle Diff: 25.00

Area ratio: 0.81

Centroid dist: 58.15
Angle Diff: 20.41

Area ratio: 1.09
Centroid dist: 205.00
Angle Diff: 34.20

