Introduction to MODE Verifying with Objects

Presenter: Tara Jensen

copyright 2017 , UCAR, all rights reserved

MODE Object Identification

Smoothing radius (in grid squares)

Accumulation threshold (in mm)

* User-defined parameters in configuration file

MODE Example

Example – REFC > 30 dBZ – Impact of smooting radius

MODE Input and Usage

- Input Files
 - Gridded forecast and observation files
 - GRIB1 output of Unified Post-Processor (or other)
 - GRIB2 from NCEP (or other)
 - NetCDF from PCP-Combine, wrf_interp, or CF-compliant

• Usage: mode

- fcst_file
- obs_file
- config_file
- [-config_merge merge_config_file]
- [-outdir path]
- [-log file]
- [-v level]

Config File

 <u>https://dtcenter.org/met/users/support/online_tutorial/METv6.0/config/MODE</u> <u>Config_default</u>

```
Run all permutations of radius and threshold
quilt = FALSE;
                                          // Handle missing data
  Forecast and observation fields to be verifi
                                          mask missing flag = NONE;
fcst = {
  field = \{
                                          11
     name = "APCP";
                                          // Match objects between the forecast and observation fields
     level = "A03";
                                          11
                                          match flag = MERGE BOTH;
  raw thresh
                = NA;
                                          11
  conv radius = 60.0/grid res; // in grid
                                          // Maximum centroid distance for objects to be compared
  conv thresh = >=5.0;
                                          11
  vld thresh
                 = 0.5;
                                          max centroid dist = 800.0/grid res;
  area thresh
                 = NA;
  inten perc value = 100;
                                          inten perc thresh = NA;
  merge thresh
                = >=1.25;
                                          11
  merge flag
             = THRESH;
                                          // Verification masking regions
                                          11
obs = fcst;
                                          mask = \{
                                             grid
                                                      = "";
                                             grid flag = NONE; // Apply to NONE, FCST, OBS, or BOTH
                                             poly
                                                      = "";
                                             poly flag = NONE; // Apply to NONE, FCST, OBS, or BOTH
```

Config File

 <u>https://dtcenter.org/met/users/support/online_tutorial/METv6.0/config/MODE</u> <u>Config_default</u>

```
11
// Fuzzy engine weights
11
weight = {
   centroid_dist = 2.0;
   boundary dist = 4.0;
   convex_hull_dist = 0.0;
   angle_diff = 1.0;
  aspect_diff = 0.0;
  area_ratio = 1.0;
   int_area_ratio = 2.0;
   curvature_ratio = 0.0;
   complexity ratio = 0.0;
   inten_perc_ratio = 0.0;
   inten perc value = 50;
}
```

```
//
// Fuzzy engine interest functions
//
interest_function = {
```

MODE Output

PostScript

- object pictures, definitions
- matching/merging strategy
- total interest for each object pair
- ASCII Text

- attributes of simple, paired objects and clusters
 - size, shape, position, separation, total interest
- verification scores (CSI, bias, etc.) for "objectified" fields
- netCDF
 - gridded object fields
 - view with ncview

IODE: APCP_24_A24_ENS_MEAN at A24 vs APCP_24 at A2

Page 2 and 3 of PostScript:
Band shows which Simple Objects are merged (aka Cluster)
Colors show matching between Fcst and Obs.

Page 4 of PostScript

Objects overlapped In two different views...

Which do you prefer?

Forecast Objects with Observation Outlines

Observation Objects with Forecast Outlines

Page 5 of PostScript -Summary information for clusters in the domain

Cluster Object Information

Use of Pair Attributes defined by MODE

Centroid Distance: Provides a quantitative sense of spatial displacement of forecast. *Small is good*

Axis Angle: For non-circular objects – gives measure of orientation errors. Small is good

Area Ratio: Provides an objective measure of whether there is an over- or underprediction of areal extent of forecast. *Close to 1 is good*

copyright 2015, UCAR, all rights reserved

Use of Pair Attributes defined by MODE

Symmetric Diff: May be a good summary statistic for how well Forecast and Observed objects match. *Small is good*

Total Interest: Summary statistic derived from fuzzy logic engine with user-defined Interest Maps for all these attributes plus some others. *Close to 1 is good*

objective measures of

Median (50th percentile)

and near-Peak (90th percentile)

intensities found in objects.

Ratio close To 1 is good

Angle_diff & **Total Interest** 0.90

Sym_diff

Total Int.

less so

higher

Total Interest: Summary statistic derived from fuzzy logic engine with user-defined Interest Maps for all these attributes plus some others. Close to 1 is good

Summary Score for Forecast Median of the Max. Interest (MMI*)

* Davis et al., 2009: The Method for Object-based Diagnostic Evaluation (MODE) Applied to WRF Forecasts from the 2005 SPC Spring Program. Weather and Forecasting

MMI = median { 0.90, 0.80, 0.90, 0.80, 0.55 } = 0.80

copyright 2015, UCAR, all rights reserved

Summary Score for Forecast Median of the Max. Interest (MMI*)

copyright 2015, UCAR, all rights reserved

and Forecasting

Median of the Max. Interest (MMI) Quilt Plot

MMI as a function of convolution radius (grid squares) and threshold (mm) for

- 24-h forecast of 1-h rainfall
- Each pixel is a MODE run.
- This graphic is not in MET, but R code on MET website.

Scoring MODE Object Forecasts

use total interest threshold to separate matched objects, or "hits" from false alarms and misses

MODE Output

PostScript

- object pictures, definitions
- matching/merging strategy
- total interest for each object pair

ASCII Text

- attributes of simple, paired objects and clusters
 - size, shape, position, separation, total interest
- verification scores on smoothed and thresholded fields (objects)
 Noter 1.93c David W. Pierce 22 August 2006 (laplaying Total precipitation No scan avia
- netCDF
 - gridded object fields
 - view with ncview

ASCII Output

Object Attribute file (*.obj)

- Header with fields names and object definition info
- Object ID and Category
- Simple Object Attributes such as Simple Obj. Centroid info, Length, Width, Area, etc...
- Matched Pair/Composite information including Centroid Distance, Angle Difference, Symmetric Difference, etc...

Contingency Table Stat file (*.cts)

- Header with fields names and object definition info
- Contingency Table counts such as number of hits, false alarms, misses and correct negs (in FY|FN_OY|ON notation)
- Contingency Table statistics such as BASER, FBIAS, GSS, CSI, PODY, FAR etc...

How netCDF could be used

copyright 2015, UCAR, all rights reserved

Example May 11, 2013

DTC SREF Tests – ARW Members

Spread increases With Time

MODE Analysis Tool

mode_analysis

MODE_Analysis Usage

Usage: mode analysis -lookin path -summary or -bycase [-column name] [-dump row filename] [-out filename] [-log filename] [-v level] [-help] [MODE FILE LIST] [-config config file] or [MODE LINE OPTIONS]

MODE LINE OPTIONS

Object Toggles

-fcst versus -obs

Selects lines pertaining to forecast objects or observation objects

-single versus -pair Selects single object lines or pair lines

-simple versus -cluster Selects simple object lines or cluster

-matched versus -unmatched Selects matched simple object lines or unmatched simple object lines.

Other Options (each option followed by value)

-model, -fcst|obs_thr, -fcst_var, etc...
-area_min|max, -intersection_area_min|max, etc...
-centroid_x_min|max, -centroid_y_min|max, -axis_ang_min|max, -int10_min|max, -centroid_dist_min|max, -angle_diff_min|max, etc...

MODE Analysis Tool -*summary* Example

Command Line

```
mode_analysis -summary \
    -lookin mode_output/wrf4ncep/40km/ge03.\
    -fcst -cluster \
    -area_min 100 \
    -column centroid_lat -column centroid_lon \
    -column area \
    -column axis_ang \
    -column length
```

Provides summary statistics for Forecast Clusters with minimum area of 100 grid-sq for the specified MODE output columns

Output

Total mode lines read = 393 Total mode lines kept = 17

Field	N	Min	Max	Mean	StdDev	P10	P25	P50	P75	P90	Sum
centroid_lat	17	31.97	46.24	38.65	3.81	33.89	36.13	38.54	40.12	43.99	657.00
centroid_lon	17	-103.89	-85.20	-96.32	5.91	-103.15	-102.65	-96.26	-93.95	-86.78	-1637.49
area	17	180.00	8393.00	2955.06	2246.49	624.80	1206.00	2662.00	3958.00	5732.20	50236.00
axis_ang	17	-88.63	85.66	12.62	64.35	-70.77	-63.86	35.04	74.37	79.24	214.60
length	17	25.25	234.76	124.41	60.99	48.85	65.37	116.67	169.37	204.57	2114.90

MODE Analysis Tool -bycase Example

Command Line

mode_analysis -bycase -lookin mode_output/wrf4ncep/40km/ge03. -single -simple

Output

Total mode lines read = 393 Total mode lines kept = 141

	Fc	st Va	lid Time	Area Matched	Area Unmatched	# Fcst Matched	# Fcst Unmatched	# Obs Matched	# Obs Unmatched
Apr	26,	2005	00:00:00	3210	1046	2	4	1	1
May	13,	2005	00:00:00	8892	9320	2	19	1	2
May	14,	2005	00:00:00	16994	4534	7	4	5	3
May	18,	2005	00:00:00	6057	852	3	2	2	1
May	19,	2005	00:00:00	1777	1624	1	5	2	1
May	25,	2005	00:00:00	8583	928	4	2	4	2
Jun	1,	2005	00:00:00	12456	2657	5	6	6	2
Jun	З,	2005	00:00:00	7561	102	11	1	5	0
Jun	4,	2005	00:00:00	11464	5715	6	12	4	3

Provides tallied information for all Simple Objects for each case in directory

Introduction to MODE-TD

Attributes (Think of object as 2D slice)

MODE-TD Input/Output

- Input Files
 - Gridded forecast and observation files
 - GRIB1 output of Unified Post-Processor (or other)
 - GRIB2 from NCEP (or other)
 - NetCDF from PCP-Combine, wrf_interp, or CF-compliant
- Output:
 - Single attributes for 2D simple objects (_2d.txt)
 - Single attributes for 3D composite objects (_3d_sc.txt)
 - Pair attributes for 3D simple objects (_3d_ss.txt)
 - Pair attributes for 3D composite objects (_3d_pc.txt)
 - Pair attributes for 3D simple objects (_3d_ps.txt)
 - Object NetCDF file (_obj.nc)

MODE-TD Usage

- Usage: mtd
 - -fcst file_1 ... file_n | file_list
 - -obs file_1 ... file_n | file_list
 - -config config_file [-outdir path] [-log file] [-v level]

mtd -fcst fcst_files/*.grb \
-obs obs_files/*.grb \
-config MTDConfig_default \
-outdir out_dir/mtd \

bin/mtd \

-fcst data/sample_fcst/2005080700/wrfprs_ruc13_03.tm00_G212 \ data/sample_fcst/2005080700/wrfprs_ruc13_06.tm00_G212 \ data/sample_fcst/2005080700/wrfprs_ruc13_09.tm00_G212 \ data/sample_fcst/2005080700/wrfprs_ruc13_12.tm00_G212 \ data/sample fcst/2005080700/wrfprs ruc13 15.tm00 G212 \ data/sample_fcst/2005080700/wrfprs_ruc13_18.tm00_G212 \ data/sample_fcst/2005080700/wrfprs_ruc13_21.tm00_G212 \ data/sample_fcst/2005080700/wrfprs_ruc13_24.tm00_G212 \ -obs data/tutorial/sample obs/ST2ml 3h/sample obs 2005080703V 03A.nc \ data/tutorial/sample obs/ST2ml 3h/sample obs 2005080706V 03A.nc \ data/tutorial/sample_obs/ST2ml_3h/sample_obs_2005080709V_03A.nc \ data/tutorial/sample_obs/ST2ml_3h/sample_obs_2005080712V_03A.nc \ data/tutorial/sample obs/ST2ml 3h/sample obs 2005080715V 03A.nc \ data/tutorial/sample_obs/ST2ml_3h/sample_obs_2005080718V_03A.nc \ data/tutorial/sample_obs/ST2ml_3h/sample_obs_2005080721V_03A.nc \ data/tutorial/sample obs/ST2ml 3h/sample obs 2005080724V 03A.nc \ -outdir tutorial/out/mtd \ -config tutorial/config/MTDConfig_tutorial \

Examples

MODE Time-Domain

MODE Time-Domain

f000 – f240	Max Inten	Volume	Centroid(x,y,t)	Velocity
Fcst Object 4	103927	111493	336, 57, 4.19	2.85
Analysis Object 3	103914	113692	335, 59, 4.27	2.79

MTD on probability fields

Objects formed on Prob > 0%

MODE-TD applied to drought index for NSF EaSM project

Comparison Between Methods

2D MODE ERRORS

- Location
- Intensity
- Shape
- Size
- Orientation

2D MODE Output

- NetCDF with 2D objects
- Text with 2D object attributes
- Postscript file with Objects

MTD ERRORS

- Timing
- Velocity
- Duration
- Buildup and Decay

3D MODE Output

- NetCDF with 2D and 3D objects
- Text with 3D object attributes
- Text with 2D object attributes

MCS in Texas during March 2007

Slide Courtesy of Andreas Prein, NCAR/MMM

JJA Storm tracks

- Realistic representation of storm tracks
- Underestimation of storms in Central U.S. by up to -70 %

Slide Courtesy of Andreas Prein, NCAR/MMM

Storm Tracks

Present Climate

Future Climate

Slide Courtesy of Andreas Prein, NCAR/MMM