

An Update on the Community Effort for Convection Allowing Model (CAM) Scorecarding

Tara Jensen, Tina Kalb, Tatiana Burek, Adam Clark, Burkely Gallo, Brett Roberts, Israel Jirak, John Halley Gotway, Jason Levit, Curtis Alexander, Geoff Manikin, Patrick Skinner and the rest of the UFS CAM Working Group

> AMS 29th WAF/25th NWP Conferences Denver, CO June 4-8 2018

> > National Center for Atmospheric Research

CAM Scorecard Project NCAR

Identify fields, techniques and metrics to measure skill for Convection Allowing Models

Determine the best set to include on a scorecard

- Set up a system to have this available during the Hazardous Weather Testbed
- Iterate until we get it right

Funded by the United States Weather Research Program

A verification toolkit designed for flexible yet systematic evaluation (supported to the community via the DTC)

- Originally developed to replicated the EMC mesoscale verification system
- Over 85 traditional statistics using both point and gridded datasets
- Multiple interpolation methods
- Computation of confidence intervals
- Able to read in GRIB1, GRIB2 and CFcompliant NetCDF
- Applied to many spatial and temporal scales
- 3500+ users, both US & Int'I

Object Based and Spatial Methods

Geographical Representation of Errors

90th Percentile of difference between two models

Synthesis Tools

NWP Index

MET+ Scorecard

Computing Significance

- Based on Pairwise Differences
- P-value computation
 - Student-T that relaxes to a normal
 - Bootstrapping available and used here

Model 1 Model 2

▲ GFDLFV3 is better than NSSLFV3 at the 99.9% significance level

GFDLFV3 is better than NSSLFV3 at the 99% significance level

GFDLFV3 is better than NSSLFV3 at the 95% significance level

No statistically significant difference between GFDLFV3 and NSSLFV3

GFDLFV3 is worse than NSSLFV3 at the 95% significance level

- ▼ GFDLFV3 is worse than NSSLFV3 at the 99% significance level
- ▼ GFDLFV3 is worse than NSSLFV3 at the 99.9% significance level

Not statistically relevant

Working with UFS CAM WG

NCAR

Forecast Field	ld Vertical Attribu	ute	Temporal Attribute	Validation Source	Methodology	Scores	Stratifications							
Temperature	2-m		Instantaneous	METARs	Grid-to-Point	RMSE, BIAS	Forecast Length [0-36 hr], D	iurnal [0-23 Z], Domain [W and E CO						
Dewpoint	2-m		Instantaneous	METARs	Grid-to-Point	RMSE, BIAS	Forecast Length [0-36 hr], Diurnal [0-23 Z], Domain [W and							
Wind	10-m		Instantaneous	METARs	Grid-to-Point	RMSE, BIAS	Forecast Length [0-36 hr], D	iurnal [0-23 Z], Domain [W and E CO						
,	Attributes	Environ	mental	Severe	PrecipW	/inter	Aviation	(+)						
CAPE/CIN	Mixed, Most-Un	stable, Surface-Based	Instantaneous	RAOB	Grid-to-Point	RMSE, BIAS	Forecast Length [0-36 hr], D	iurnal [0-23 Z], Domain [W and E C(
SRH	0-1, 0-3 km AGI	L	Instantaneous	RAOB	Grid-to-Point	RMSE, BIAS	Forecast Length [0-36 hr], D	iurnal [0-23 Z], Domain [W and E C0						
PBL Depth	Top of PBL		Instantaneous	WSR-88D	Grid-to-Grid	RMSE, BIAS	Forecast Length [0-36 hr], D	iurnal [0-23 Z], Domain [W and E C						
		D. 1.146.1												
	Tributes Environmental	evere PrecinWinte	r Aviation (+)											

DTC UFS Test Plan and Metrics Workshop: Jul 30-Aug 1 in College Park, MD https://dtcenter.org/news/2018/

2018-dtc-community-unified-forecast-system-test-plan-metrics-workshop

HWT/SFE 2018 Operations

- Deterministic CAMs
 - GFDL FV3
 - NSSL FV3
 - HRRRv3
- CAM Ensembles
 - HRRRE
 - HREFv2

Focused on a small subset of HWT guidance

Fields:

- Reflectivity at various dBZ thresholds*
- Probability of reflectivity exceeding a threshold*
- Accumulated precipitation over 1-h, 3-h, and 6-h
- Surrogate severe (probabilistic) using different UH thresholds
- Also testing different neighborhood sizes

Preliminary Results from Weeks 1-5

 Images from SFE 2018 homepage under the objective verification tab (https://hwt.nssl.noaa.gov/sfe/2018/)

The NOAA Hazardous Weather Testbed

Example Product – Reflectivity

for GFDLFV3 and NSSLFV3

Reflectivity

2018-04-30 00:00:00 - 2018-06-01 00:00:00

									Dail	y Don	nain					
				12 hr	14 hr	16 hr	18 hr	20 hr	22 hr	24 hr	26 hr	28 hr	30 hr	32 hr	34 hr	36 hr
			>=25.0	•	•	•						•				
			>=30.0	•	•	•				•	•	•	•			
Fraction Skill Score	Compo	site Peflectivity	>=35.0	•	•	•	•			•	•	•	•			
Praction skill score	compo			•	+	•	•				*	•	•			
	[-		•	•				•	•		+		
			>=50.0				+							+		
			>=25.0			•										
			>=30.0	+	•	•										
CSI	Compo	Composite Reflectivity		•	•	*										
CSI	compo															
	Γ															

	GFDLFV3 is better than NSSLFV3 at the 99.9% significance level
*	GFDLFV3 is better than NSSLFV3 at the 99% significance level
	GFDLFV3 is better than NSSLFV3 at the 95% significance level
	No statistically significant difference between GFDLFV3 and NSSLFV3
	GFDLFV3 is worse than NSSLFV3 at the 95% significance level
•	GFDLFV3 is worse than NSSLFV3 at the 99% significance level
•	GFDLFV3 is worse than NSSLFV3 at the 99.9% significance level
	Not statistically relevant

NSSLFV3 generally better

for GFDLFV3 and HRRR

2018-04-30 00:00:00 - 2018-06-01 00:00:00

								Dail	y Don	nain					
			12 hr	14 hr	16 hr	18 hr	20 hr	22 hr	24 hr	26 hr	28 hr	30 hr	32 hr	34 hr	36 hr
		>=25.0	•	•			-		+	•	•	+			
Fraction Skill Score		>=30.0	•	•	•		•		•	•	•	•			
	Composito Boffoctivity	>=35.0	•	•	•				•	•	•	+			
	Composite Reflectivity	>=40.0	•	+	•	*			•	*	*				
		>=45.0	•		*				•	•	*				
		>=50.0	•	+			•		•	•					
		>=25.0	•	+											
		>=30.0	•	•											
	Composito Reflectivity	>=35.0	•	*											
CSI	Composite Reflectivity	>=40.0	•												
		>=45.0													
		>=50.0													

		GFDLFV3 is better than HRRR at the 99.9% significance level
		GFDLFV3 is better than HRRR at the 99% significance level
HKKK		GFDLFV3 is better than HRRR at the 95% significance level
generally		No statistically significant difference between GFDLFV3 and HRRR
better		GFDLFV3 is worse than HRRR at the 95% significance level
Detter	٠	GFDLFV3 is worse than HRRR at the 99% significance level
	۲	GFDLFV3 is worse than HRRR at the 99.9% significance level
		Not statistically relevant

for NSSLEV3 and HRRR

2018-04-30 00:00:00 - 2018-06-01 00:00:00

								Dail	y Don	nain					
			12 hr	14 hr	16 hr	18 hr	20 hr	22 hr	24 hr	26 hr	28 hr	30 hr	32 hr	34 hr	36 hr
		>=25.0				*									
Fraction Skill Score		>=30.0													
	Composite Reflectivity	>=35.0													
	Composite Reliectivity	>=40.0													•
		>=45.0													•
		>=50.0													
		>=25.0													
		>=30.0													
CSI	Composite Reflectivity	>=35.0													
	Composite Reflectivity	>=40.0													
		>=45.0													
		>=50.0													

	•	NSSLFV3 is better than HRRR at the 99.9% significance level
Very little		NSSLFV3 is better than HRRR at the 99% significance level
		NSSLFV3 is better than HRRR at the 95% significance level
difference –		No statistically significant difference between NSSLFV3 and HRRR
HRRR better		NSSLFV3 is worse than HRRR at the 95% significance level
	•	NSSLFV3 is worse than HRRR at the 99% significance level
when there is	•	NSSLFV3 is worse than HRRR at the 99.9% significance level
		Not statistically relevant

Summarizing the Scorecard?

for GFDLFV3 and NSSLFV3 2018-04-30 00:00:00 - 2018-06-01 00:00:00

GFDL-FV3 vs. NSSL-FV3 CAM Scorecard

for GFDLFV3 and NSSLFV3

2018-04-30 00:00:00 - 2018-06-01 00:00:00

				Daily Domain											Daily Domain																
			12 hr	r 14 hr	16 hr	18 hr	20 hr	22 hr	24 hr	26 hr	28 hr	30 hr	32 hr	34 hr	36 hr				12 hr	14 hr	16 hr	18 hr	20 hr	22 hr	24 hr	26 hr	28 hr	30 hr	32 hr	34 hr	36 hr
		>=25.0	•	•	•						•							>=25.0	•	•							•				
		>=30.0	•	•	•				+	•	•	•						>=30.0	•	•	•				.	•	•				
artish Chill Course	Commonsite Deflectivit	>=35.0	•	•	•	•			+	+	•	•				Frankling Field Frank		>=35.0	•	•	•	.				+	•				
action skill score	Composite Reflectivit	y >=40.0	•	-	•	•				+	•	+				Fraction Skill Score	composite kenedivity	>=40.0	•	.	•	•				•	•				
		>=45.0	•		•	•				+	•							>=45.0	.		•	•				Ŧ	•		+		
		>=50.0				+							-					>=50.0				.							-		
		>=25.0			•													>=25.0		•											
		>=30.0	+	•	•													>=30.0	•	•	+										
		>=35.0	•	•														>=35.0	•	•							÷				
CSI	Composite Reflectivit	>=40.0														PODY	Composite Reflectivity	>=40.0	+								Ŧ				
		>=45.0																>=45.0													
		>=50.0																>=50.0													
						-				-	 ז							>=25.0			.										
	▲ GFDL	FV3 is bett	er tha	n NSSLF	V3 at 1	the 99.	9% sig	nifican	ce leve									>=30.0													
	▲ GFDL	V3 is bett	er tha	n NSSLF	V3 at 1	the 999	6 signi	ficance	level		3					FAR	Composite Deflectivity	>=35.0													
	GFDL	FV3 is bett	er tha	n NSSLF	V3 at 1	the 959	6 signi	ficance	e level								Composite Reliectivity	>=40.0													
	No st	atistically s	signific	cant difi	erence	e betwe	en GF	DLFV3	and NS	SLFV3								>=45.0													
	GFDL	FV3 is wor	se tha	n NSSLF	'V3 at 1	the 959	6 signi	ficance	e level									>=50.0													
	▼ GFDL	FV3 is wor	se tha	n NSSLF	'V3 at 1	the 999	6 signi	ficance	level									>=25.0							•	•					
	▼ GFDL	FV3 is wor	se tha	n NSSLF	V3 at 1	the 99.	9% sig	nifican	ce leve	I								>=30.0													
	Not s	atistically	releva	int												EDIAS	Composito Reflectivity	>=35.0													
																FDIAS	Composite Reflectivity	>=40.0												*	
																		>=45.0													
																		>=50.0													
																		>=25.0			•										
																		>=30.0	•	•	•										
																CSI	Composite Peflectivity	>=35.0	•	•	•										
																Col	Composite Reliectivity	>=40.0													

Question: Do more statistics help?

GFDLFV3 is better than NSSLFV3 at the 99.9% significance level GFDLFV3 is better than NSSLFV3 at the 99% significance level GFDLFV3 is better than NSSLFV3 at the 95% significance level No statistically significant difference between GFDLFV3 and NSSLFV3 GFDLFV3 is worse than NSSLFV3 at the 95% significance level GFDLFV3 is worse than NSSLFV3 at the 99% significance level GFDLFV3 is worse than NSSLFV3 at the 99.9% significance level	
GFDLFV3 is better than NSSLFV3 at the 99% significance level GFDLFV3 is better than NSSLFV3 at the 95% significance level No statistically significant difference between GFDLFV3 and NSSLFV3 GFDLFV3 is worse than NSSLFV3 at the 95% significance level GFDLFV3 is worse than NSSLFV3 at the 99% significance level GFDLFV3 is worse than NSSLFV3 at the 99.9% significance level	GFDLFV3 is better than NSSLFV3 at the 99.9% significance level
GFDLFV3 is better than NSSLFV3 at the 95% significance level No statistically significant difference between GFDLFV3 and NSSLFV3 GFDLFV3 is worse than NSSLFV3 at the 95% significance level GFDLFV3 is worse than NSSLFV3 at the 99% significance level GFDLFV3 is worse than NSSLFV3 at the 99.9% significance level	GFDLFV3 is better than NSSLFV3 at the 99% significance level
No statistically significant difference between GFDLFV3 and NSSLFV3 GFDLFV3 is worse than NSSLFV3 at the 95% significance level GFDLFV3 is worse than NSSLFV3 at the 99% significance level GFDLFV3 is worse than NSSLFV3 at the 99.9% significance level	GFDLFV3 is better than NSSLFV3 at the 95% significance level
GFDLFV3 is worse than NSSLFV3 at the 95% significance level GFDLFV3 is worse than NSSLFV3 at the 99% significance level GFDLFV3 is worse than NSSLFV3 at the 99.9% significance level	No statistically significant difference between GFDLFV3 and NSSLFV3
GFDLFV3 is worse than NSSLFV3 at the 99% significance level GFDLFV3 is worse than NSSLFV3 at the 99.9% significance level	GFDLFV3 is worse than NSSLFV3 at the 95% significance level
GFDLFV3 is worse than NSSLFV3 at the 99.9% significance level	GFDLFV3 is worse than NSSLFV3 at the 99% significance level
	GFDLFV3 is worse than NSSLFV3 at the 99.9% significance level

Not statistically relevant

>=45.0

>=50.0

Example Product – Updraft Helicity

Surrogate Severe Based on Updraft Helicity Evaluated Using Practically Perfect Prog

Not statistically relevant

Not statistically relevant

Not statistically relevant

Immediate Future Work

- Complete HWT SFE 2018 evaluation
- Enhance MET+ to compute additional Severe Weather specific fields
- Work with community to formulate CAM Severe scorecard (version1)
- Extend CAM scorecard to other fields beyond "Severe" as specified by UFS CAM Working Group
- Participate in HWT SFE 2019

Questions?

- Emails: jensen@ucar.edu; kalb@ucar.edu
- MET Help: <u>met_help@ucar.edu</u>
- MET Info: <u>https://dtcenter.org/met/users/</u>
- HWT 2018 Experiment Page: <u>https://hwt.nssl.noaa.gov/sfe/2018/</u> Select "Objective Verification" page

This totality of MET+ work is funded by the NGGPS program, USWRP R2O grants, and DTC partners (NOAA, Air Force and NSF)