Model Evaluation Tools Version 7.0 (METV7.0)
User’s Guide

Developmental Testbed Center
Boulder, Colorado

Tressa Fowler, John Halley Gotway, Kathryn Newman,
Tara Jensen, Barbara Brown, and Randy Bullock
with contributions from Julie Prestopnik, Eric Gilleland, Howard Soh,

Minna Win-Gildenmeister and James Frimel

March 2018

Contents

17

[1.1 Purpose and organization of the User’'s Guide| 0oL, 17
[1.2 The Developmental Testbed Center (DTC)|, 18
1.3 MET goals and design philosophy|. o 18
I1.4 MET components|. e e 19
1.6 Future development plans|o o 22
I1.6 Code support] e e e e e e e e e e 23
[2 Software Installation/Getting Started| 24
2.1 Introductionl. Lo e 24
2.2 Supported architectures| 24
2.3 Programming languages| L 24
2.4 Required compilers and scripting languages|o oL oo 25
2.5 Required libraries and optional utilities]o oo 25
2.6 Installation of required libraries|o o 26
2.7 Installation of optional utilities| oo 28
2.8 MET directory structure | o e 28
2.9 Bulding the ME'T package] 30
[2.10 Sample test cases| Lo e 35

CONTENTS 9

(3 MET Data I/O| 36
3.1 Input data formats| e e 36
B.2 Intermediate data formatslo 37
8.3 Output data formats| e 38
3.4 Data format summary| L. e e e e e e 39
8.5 Configuration File Detaals| o o o 42

8.5.1 MET Configuration File Options| o o .. 43
8.5.2 MET-TC Configuration File Options|. o o .. 107

4 Re-Formatting of Point Observations| 122

D 57\ 7o) P 122
.11 pb2nc Usage|. e 122
[4.1.2 pb2nc configuration file|o L 124
4.1.3 pb2ncoutput| e e 129

M2 ASCII2NC tooll o e e 130
[4.2.1 ascu2nc usagel. e e e e e e e e e 130
4.2.2 ascii2nc configuration file] oL Lo oL 132
4.2.3 ascuZncoutput| Lo 133

4.3 MADIS2NC tooll o 133
4.3.1 madis2nc usage]o e e e e e e e 133
4.3.2 madis2nc output]| L e e e e e e e 135

B4 TIDAR2ZNC tooll o o e 135
4.4.1 lidar2nc usage] L e e e e 135

4.4.2 lidar2nc output]| L e e e 136

CONTENTS

[Re-Formatting of Gridded Fields|

b.1 Pcp-Combine tool]

p.1.1 pcp combine usage| Ll

p.1.2 pcp combine output|.o oL

b.2 Regrid data planetool|o

p.2.1 regrid data planeusage| Lo

p.2.2 Automated regridding within tools| oo oo

5.3 Shift data planetool|

[p.3.1 shift data planewusage] oo oo

b4 MODIS regrid tool] o e

4.1 modis regrid usage|

p.5.1 wwmca plot usage|.

0.5.2 wwmeca regrid usage|.o L e e

9.5.3 wwmca regrid configuration file| o000 o000

[6 Regional Verification using Spatial Masking|

7 Point-Stat Tool

7.2 Scientific and statistical aspects|o Lo Lo

[7.2.1 Imterpolation/matching methods| Lo

138

138

138

142

143

143

145

145

145

147

147

149

150

151

152

154

154

154

159

160

CONTENTS 4

[(.2.3 Statistical measuresl L e 164
[(.2.4 OStatistical confidence intervalsl oo oo 0oL 166
[c.3 Practical information|.o o 169
[7.3.1 point stat usage|o 169
[7.3.2 point stat configuration file]. oo o oo oo 171
[/.3.3 point stat output| L 173

8 Grid-Stat Tooll 187
81 Introduction| oL 187
8.2 Scientific and statistical aspects|. L e 187
8.2.1 Statistical measures| L Lo e 187
18.2.2 Statistical confidence intervalsl oo 0000000 oL 189
8.2.3 Grid weighting]o e e e 189
8.2.4 Neighborhood methods| o 190
8.2.5 Fourier Decomposition |o Lo 190
82.6 Gradient Statistics|. oL 191
8.3 Practical informationl.o Lo 191
8.3.1 grid stat usage|. L 191
[8.3.2 grid stat configuration file]o oo 193
8.3.3 grid stat output| L oL 197

9 Ensemble Stat Tooll 204
9.1 Introductionl. 204
9.2 Practical Information|.o oo 204
[9.2.1 ensemble stat usage| 204
9.2.2 ensemble stat configuration file| o 000000000000 206

9.2.3 ensemble stat output| oL Lo 211

CONTENTS 5

(10 Wavelet-Stat Tooll 215
[10.1 Introductionl. L L e 215
|110.2 Scientific and statistical aspects | L 216

[10.2.1 Themethod|. o 216
110.2.2 The spatial domain constraints| Lo L 222
110.2.3 Aggregation of statistics on multiple cases| 224
[10.3 Practical informationl. L 225
[10.3.1 wavelet stat usage|. 225
[10.3.2 wavelet stat configuration file] 0o 0oL 226
[10.3.3 wavelet stat output| oo 228

A1 GST Toolsl 232

ML GSID2MPRIEOON . - v v v oot e e e e e e e e e e e 232
I11.1.1 gsid2mpr usage| L e e e e e e e e 233
I11.1.2 gsid2mpr output| e e 234

11.2 GSIDENS20RANK tooll 236
I11.2.1 gsidens2orank usage| Lo e e e e e e e e e e 236
[11.2.2 gsidens2orank output| e e 237

[12 Stat-Analysis Tool 240
[12.1 Introductionl. L 240
[12.2 Scientific and statistical aspects| Lo oL L 240

1221 Filter STAT lines| 0 oo 240
[12.2.2 Summary statistics for columns| Lo oL 241
112.2.3 Aggregated values from multiple STAT lines|. o000 .. 241

112.2.4 Aggregate STAT lines and produce aggregated statistics| 242

CONTENTS 6

112.2.5 Skill Score Index, including GO Index|. oL 242
12.2.6 Wind Direction Statisticsl o oo o 243
[12.3 Practical informationl. Lo 244
[12.3.1 stat _analysisusage| o 244
[12.3.2 stat analysis configuration file] oo oo oo 245
112.3.3 stat-analysis tool output|. L o 254

[L3 Series-Analysis Tool| 257
3.1 Introductionl. L e 257
[[3.2 Practical Tnformationl. e 257
[13.2.1 series analysisusage|. 258
[13.2.2 series analysisoutput| o L e 259
[13.2.3 series analysis configuration file] o oo 00000000 260

263
4.1 Introductionl. L e e 263
[14.2 Scientific and statistical aspects| L L e 264
114.2.1 Resolving objects|. o e 264
14.2.2 Attributes|. e 265
[14.2.3 Fuzzy logicl e 267
[14.2.4 Summary statistics| oL e e e 268
[14.3 Practical information|.o oL 268
[14.3.1 mode usage| L e 268
114.3.2 mode configuration file|.o Lo 270

[14.3.3 mode output| 278

CONTENTS 7

15 -Analysis Too 288
[I5.1 Tntroductionl. o e 288
|115.2 Scientific and statistical aspects|.o oL Lo 288
@53 Practicalinformationl. 289

[15.3.1 mode analysis usage|.o 289
[15.3.2 mode analysis configuration filef o o000 o000 299
[15.3.3 mode analysis output| oL e 299

16 MODE Time Domain Tooll 300

@61 Introductionl. 300
I6.11 Motivationl e 300
116.2 Scientific and statistical aspects|.o oL Lo 302
0621 Attributed 302
[6.2.2 Convolutionl. 302
116.2.3 3D Single Attributes| oL 303
0624 3D Pair Attributes 305
[16.2.5 2D Constant-Time Attributes 306
116.2.6 Matching and Merging| L 307
[I6.3 Practical informationl. 308
[16.3.1 MTD mput| e 308
116.3.2 MTD usage| o e e e e e e 309
116.3.3 MTD configuration file|. o 310

116.3.4 mtd output| e e e e 313

CONTENTS 8

317
7.1 Introductionl. o L e 317
[17.2 MET-TC components| e 317
117.3 Input data format| L e 318
117.4 Output data format| L 320

I8 TC-Dland Tool 322
8.1 Introductionl. L e 322
[18.2 Input/output format|o 322
[18.3 Practical informationl. L e 323

18.3.1 tc dland usage| 323

19 TC-Pairs Tool 325
9.1 Introductionl. L 325
[19.2 Practical informationl. L 325

[19.2.1 tc_palrs usage| e e e e 325
[19.2.2 tc_pairs configuration file] o oo oo 327
[19.2.3 tc_pairsoutput| 332

20 T'C-Stat Tooll 335
20.1 Introductionl. L e e 335
[20.2 Statistical aspects| o Lo 335

20.2.1 Filter TCOST limes|. o o0 oo 335
[20.2.2 Summary statistics for columns| L Lo oo 336
[20.2.3 Rapid Intensification/Weakening| Lo o Lo 337
[20.2.4 Probability of Rapid Intensification|. o oo oo 337
20.3 Practical informationl. 337
[20.3.1 tc stat usage|o 337
[20.3.2 tc_stat configuration file] oo o oo 339

[20.3.3 tc_stat output|o 345

CONTENTS

[21 Plotting and Graphics Support|

21.1 Plotting Utilities| o

[21.1.1 plot point obsusagel

[21.1.2 plot data planeusagel

[21.1.3 plot mode field usage]

21.2 Examples ot plotting ME'T output|

121.2.1 Grid-Stat tool examples| 0oL

21.2.2 MODE tool examples|

21.2.3 TC-Stat tool example|

A FAQs & How do I ... 7|

IA.1 Frequently Asked Questions| L.

|A.2 Troubleshootingl. Lo

IA.3 Wheretoget help| oL

[D_Confidence Intervals |

EFE WWMCA Tools |

348

348

348

349

351

352

352

353

355

367

367

368

369

369

370

370

370

371

373

373

380

389

394

396

399

403

Foreword: A note to MET users

This user’s guide is provided as an aid to users of the Model Evaluation Tools (MET). MET is a set of
verification tools developed by the Developmental Testbed Center (DTC) for use by the numerical weather
prediction community - and especially users and developers of the Weather Research and Forecasting (WRF)
model - to help them assess and evaluate the performance of numerical weather predictions.

It is important to note here that MET is an evolving software package. Previous releases of MET have
occurred each year since 2008. This documentation describes the 7.0 release from March 2018. Intermediate
releases may include bug fixes. MET is also be able to accept new modules contributed by the community.
If you have code you would like to contribute, we will gladly consider your contribution. Please send email
to: met_help@ucar.edu. We will then determine the maturity of new verification method and coordinate

the inclusion of the new module in a future version.

This User’s Guide was prepared by the developers of the MET, including Tressa Fowler, John Halley Gotway,
Randy Bullock, Kathryn Newman, Julie Prestopnik, Lisa Goodrich, Tara Jensen, Barbara Brown, Howard
Soh, Tatiana Burek, Minna Win-Gildenmeister, George McCabe, Paul Prestopnik, Eric Gilleland, Nancy
Rehak, Paul Oldenburg, Anne Holmes, Lacey Holland, David Ahijevych and Bonny Strong.

New for MET v7.0

METv7.0 includes some major enhancements, including the addition of vector statistics for winds, finer

control of configuration options, message type groups, and WMO mean summary statistics.

Enhancements to Existing Tools:

e Distribute the latest set of bugfixes, details not listed here.
e Vector statistics for winds

— Add vector wind speeds to the existing VL1L2 line type (F_ SPEED BAR and O _SPEED BAR)

— Add a new VCNT line type containing statistics for wind vectors.

10

mailto:

CONTENTS 11

— Enhance STAT-Analysis to parse the updated VL1L2 line type, parse the new VCNT line type,
and derive VONT statistics from input VL1L2 lines.

— Enhance STAT-Analysis to read U/V matched pair (MPR) lines and derive VL1L2 or VCNT
output lines.

o Conlfig file options

— Refactor config file logic for Point-Stat, Grid-Stat, and Ensemble-Stat.

— Whenever possible, parse config file options separately for each verification task rather than pars-

ing from the top level.

— See default config files for the list of options which may be specified separately for each "obs.field"

entry.

— Parse the "regrid" option separately for each field so that regridding logic can be customized for
each field (e.g. use BUDGET for precipitation and BILIN for temperature).

— Add "message type_group" config file option to define message types that should be processed
together as a group. Enhance PB2NC, Point-Stat, and Ensemble-Stat to parse and process groups

of message types.
e PB2NC

— Add specialized processing for AIRNOW message types to use the TPHR value as the accumula-
tion interval and the QCIND value as the quality control value.

e STAT-Analysis

— Enhance the existing summary job type.

— Print debug messages and warnings when summary includes multiple values for each header

column.

— Add three new output columns for WMO-approved means of daily scores (WMO _TYPE, WMO_MEAN;
and WMO_WEIGHTED MEAN).

— Process columns of data from multiple input line types when the following format is used “-column
LINE _TYPE:COLUMN?”.

— Add -derive job command option to automatically compute statistics on the fly from input partial
sums (SL1L2/SAL1L2 -> CNT, VL1L2 -> VCNT, and CTC -> CTS).

e Point-Stat

— Append the shape to the INTERP MTHD column but omit it for NEAREST, BILIN, and
BUDGET methods.

o Grid-Stat
— Add "nbrhd.field" config file option to control the computation of fractional coverage fields.
e Ensemble-Stat

— Add "nc_var_str" config file option to customize NetCDF variable names.

CONTENTS

Add "ensemble flag.latlon" config file option.

e MTD

Rename output files using a more explicit naming convention:
* Rename * 3d_ss.txt to * 3d_simple_single.txt.
* Rename * 3d_sc.txt to * 3d_simple cluster.txt.
* Rename * 3d ps.txt to * 3d pair_single.txt.
* Rename * 3d pc.txt to * 3d_pair_cluser.txt.
Update output file conventions to match the logic of MODE:
* Rename the "OBJ ID" column to "OBJECT ID".
* Rename the "CLUSTER_ID" column to "OBJECT CAT".
Change object naming conventions for "OBJECT ID" and "OBJECT _CAT™:
FROM: F_#,0 #,F # O _#,CF_#,C0O_#,and CF_# CF_#

TO: F##4#, O##4#, Fat#4t_ O#4t#, CFH##4#, CO##4, and CF###_CO###
Where ##+# is a 3-digit object number with leading 0’s.

*

*

*

* Indicate unmatched objects with a 3-digit "000" object number.

Only write pair information to * pair_cluster.txt for matches.

12

TERMS OF USE

IMPORTANT!

USE OF THIS SOFTWARE IS SUBJECT TO THE FOLLOWING TERMS AND CONDITIONS:

1. License. Subject to these terms and conditions, University Corporation for Atmospheric Research
(UCAR) grants you a non-exclusive, royalty-free license to use, create derivative works, publish, distribute,
disseminate, transfer, modify, revise and copy the Model Evaluation Tools (MET) software, in both object

and source code (the “Software”).

You shall not sell, license or transfer for a fee the Software, or any work that in any manner contains the
Software.

2. Disclaimer of Warranty on Software. Use of the Software is at your sole risk. The Software is pro-
vided "AS IS" and without warranty of any kind and UCAR EXPRESSLY DISCLAIMS ALL WAR-
RANTIES AND/OR CONDITIONS OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT
OF A THIRD PARTY’S INTELLECTUAL PROPERTY, MERCHANTABILITY OR SATISFAC-
TORY QUALITY AND FITNESS FOR A PARTICULAR PURPOSE. THE PARTIES EXPRESSLY
DISCLAIM THAT THE UNIFORM COMPUTER INFORMATION TRANSACTIONS ACT (UCITA)
APPLIES TO OR GOVERNS THIS AGREEMENT. No oral or written information or advice given
by UCAR or a UCAR authorized representative shall create a warranty or in any way increase the
scope of this warranty. Should the Software prove defective, you (and neither UCAR nor any UCAR
representative) assume the cost of all necessary correction.

3. Limitation of Liability. UNDER NO CIRCUMSTANCES, INCLUDING NEGLIGENCE, SHALL
UCAR BE LIABLE FOR ANY DIRECT, INCIDENTAL, SPECIAL, INDIRECT OR CONSEQUEN-
TIAL DAMAGES INCLUDING LOST REVENUE, PROFIT OR DATA, WHETHER IN AN ACTION
IN CONTRACT OR TORT ARISING OUT OF OR RELATING TO THE USE OF OR INABILITY
TO USE THE SOFTWARE, EVEN IF UCAR HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

13

CONTENTS 14

4. Compliance with Law. All Software and any technical data delivered under this Agreement are subject
to U.S. export control laws and may be subject to export or import regulations in other countries. You
agree to comply strictly with all applicable laws and regulations in connection with use and distribution
of the Software, including export control laws, and you acknowledge that you have responsibility to

obtain any required license to export, re-export, or import as may be required.

5. No Endorsement /No Support. The names UCAR/NCAR, National Center for Atmospheric Research
and the University Corporation for Atmospheric Research may not be used in any advertising or
publicity to endorse or promote any products or commercial entity unless specific written permission is
obtained from UCAR. The Software is provided without any support or maintenance, and without any

obligation to provide you with modifications, improvements, enhancements, or updates of the Software.

6. Controlling Law and Severability. This Agreement shall be governed by the laws of the United States
and the State of Colorado. If for any reason a court of competent jurisdiction finds any provision, or
portion thereof, to be unenforceable, the remainder of this Agreement shall continue in full force and
effect. This Agreement shall not be governed by the United Nations Convention on Contracts for the

International Sale of Goods, the application of which is hereby expressly excluded.

7. Termination. Your rights under this Agreement will terminate automatically without notice from UCAR
if you fail to comply with any term(s) of this Agreement. You may terminate this Agreement at any
time by destroying the Software and any related documentation and any complete or partial copies
thereof. Upon termination, all rights granted under this Agreement shall terminate. The following

provisions shall survive termination: Sections 2, 3, 6 and 9.

8. Complete Agreement. This Agreement constitutes the entire agreement between the parties with
respect to the use of the Software and supersedes all prior or contemporaneous understandings regarding
such subject matter. No amendment to or modification of this Agreement will be binding unless in
writing and signed by UCAR.

9. Notices and Additional Terms. Copyright in Software is held by UCAR. You must include, with each

copy of the Software and associated documentation, a copy of this Agreement and the following notice:

“The source of this material is the Research Applications Laboratory at the National Center for Atmo-
spheric Research, a program of the University Corporation for Atmospheric Research (UCAR) pursuant to
a Cooperative Agreement with the National Science Foundation; (€)2007-2017 University Corporation for

Atmospheric Research. All Rights Reserved."

CONTENTS 15

The following notice shall be displayed on any scholarly works associated with, related
to or derived from the Software:

"Model Evaluation Tools (MET) was developed at the National Center for Atmospheric Research
(NCAR) through grants from the National Science Foundation (NSF), the National Oceanic and
Atmospheric Administration (NOAA), the United States Air Force (USAF), and the United States
Department of Energy (DOE). NCAR is sponsored by the United States National Science

Foundation."

By using or downloading the Software, you agree to be bound by the terms and conditions of

this Agreement.
The citation for this User’s Guide should be:

T. Fowler, J. Halley Gotway, K. Newman, T. Jensen, Brown, B., and R. Bullock, 2017:
The Model Evaluation Tools v7.0 (METv7.0) User’s Guide. Developmental Testbed Center.
Available at: http://www.dtcenter.org/met /users/docs/users_guide/MET _Users_ Guide_v7.0.pdf. 407 pp.

Acknowledgments

We thank the the National Science Foundation (NSF) along with three organizations within the National
Oceanic and Atmospheric Administration (NOAA): 1) Office of Atmospheric Research (OAR); 2) Next
Generation Global Predition System project (NGGPS); and 3) United State Weather Research Program
(USWRP), the United States Air Force (USAF), and the United States Department of Energy (DOE) for
their support of this work. Funding for the development of MET-TC is from the NOAA’s Hurricane Forecast
Improvement Project (HFIP) through the Developmental Testbed Center (DTC). Funding for the expansion
of capability to address many methods pertinent to global and climate simulations was provided by NOAA’s
Next Generation Global Prediction System (NGGPS) and NSF Earth System Model 2 (EaSM2) projects. We
would like to thank James Franklin at the National Hurricane Center (NHC) for his insight into the original
development of the existing NHC verification software. Thanks also go to the staff at the Developmental
Testbed Center for their help, advice, and many types of support. We released METv1.0 in January 2008
and would not have made a decade of cutting-edge verification support without those who participated in
the original MET planning workshopsand the now dis-banded verification advisory group (Mike Baldwin,
Matthew Sittel, Elizabeth Ebert, Geoff DiMego, Chris Davis, and Jason Knievel).

The National Center for Atmospheric Research (NCAR) is sponsored by NSF. The DTC is sponsored by the
National Oceanic and Atmospheric Administration (NOAA), the United States Air Force, and the National
Science Foundation (NSF). NCAR is sponsored by the National Science Foundation (NSF).

16

Chapter 1

Overview of MET

1.1 Purpose and organization of the User’s Guide

The goal of this User’s Guide is to provide basic information for users of the Model Evaluation Tools (MET)
to enable users to apply MET to their datasets and evaluation studies. MET has been specifically designed
for application to the Weather Research and Forecasting (WRF) model (see http://www.wrf-model.org/
index.php for more information about the WRF). However, MET may also be used for the evaluation of
forecasts from other models or applications if certain file format definitions (described in this document) are

followed.

The MET User’s Guide is organized as follows. Chapter [I] provides an overview of MET and its components.
Chapter [2| contains basic information about how to get started with MET - including system requirements,
required software (and how to obtain it), how to download MET, and information about compilers, libraries,
and how to build the code. Chapter [3] - [f] focuses on the data needed to run MET, including formats
for forecasts, observations, and output. These chapters also document the reformatting and masking tools
available in MET. Chapters [7] - focus on the main statistics modules contained in MET, including the
Point-Stat, Grid-Stat, Ensemble-Stat, Wavelet-Stat and GSI Diagnostic Tools. These chapters include an
introduction to the statistical verification methodologies utilized by the tools, followed by a section containing
practical information, such as how to set up configuration files and the format of the output. Chapters|[12|and
focus on the analysis modules, Stat-Analysis and Series-Analysis, which aggregate the output statistics
from the other tools across multiple cases. Chapters [14] - [I6] describe a suite of object-based tools, including
MODE, MODE-Analysis, and MODE-TD. Chapters - 7?7 describe tools focused on tropical cyclones,
including MET-TC Overview, TC-Dland, TC-Pairs and TC-Stat. Finally, Chapter includes plotting
tools included in the MET release for checking and visualizing data, as well as some additional tools and
information for plotting MET results. The appendices provide further useful information, including answers
to some typical questions (Appendix @ How do L.. ?); and links and information about map projections,
grids, and polylines (Appendix [B). Appendices [C] and [D] provide more information about the verification
measures and confidence intervals that are provided by MET. Sample code that can be used to perform

analyses on the output of MET and create particular types of plots of verification results is posted on

17

http://www.wrf-model.org/index.php
http://www.wrf-model.org/index.php

CHAPTER 1. OVERVIEW OF MET 18

the MET website (http://www.dtcenter.org/met/users/)). Note that the MET development group also
accepts contributed analysis and plotting scripts which may be posted on the MET website for use by the
community. It should be noted there are References plus a List of Tables and Figures between Chapter
and Appendices.

The remainder of this chapter includes information about the context for MET development, as well as
information on the design principles used in developing MET. In addition, this chapter includes an overview

of the MET package and its specific modules.

1.2 The Developmental Testbed Center (DTC)

MET has been developed, and will be maintained and enhanced, by the Developmental Testbed Center (DTC;
http://www.dtcenter.org/|). The main goal of the DTC is to serve as a bridge between operations and
research, to facilitate the activities of these two important components of the numerical weather prediction
(NWP) community. The DTC provides an environment that is functionally equivalent to the operational
environment in which the research community can test model enhancements; the operational community
benefits from DTC testing and evaluation of models before new models are implemented operationally.
MET serves both the research and operational communities in this way - offering capabilities for researchers
to test their own enhancements to models and providing a capability for the DTC to evaluate the strengths

and weaknesses of advances in NWP prior to operational implementation.

The MET package will also be available to DTC visitors and to the WRF modeling community for testing

and evaluation of new model capabilities, applications in new environments, and so on.

1.3 MET goals and design philosophy

The primary goal of MET development is to provide a state-of-the-art verification package to the NWP
community. By "state-of-the-art" we mean that MET will incorporate newly developed and advanced ver-
ification methodologies, including new methods for diagnostic and spatial verification and new techniques
provided by the verification and modeling communities. MET also utilizes and replicates the capabilities
of existing systems for verification of NWP forecasts. For example, the MET package replicates existing
National Center for Environmental Prediction (NCEP) operational verification capabilities (e.g., I/O, meth-
ods, statistics, data types). MET development will take into account the needs of the NWP community -
including operational centers and the research and development community. Some of the MET capabilities
include traditional verification approaches for standard surface and upper air variables (e.g., Equitable Threat
Score, Mean Squared Error), confidence intervals for verification measures, and spatial forecast verification
methods. In the future, MET will include additional state-of-the-art and new methodologies.

The MET package has been designed to be modular and adaptable. For example, individual modules can
be applied without running the entire set of tools. New tools can easily be added to the MET package

due to this modular design. In addition, the tools can readily be incorporated into a larger "system" that

http://www.dtcenter.org/met/users/
http://www.dtcenter.org/

CHAPTER 1. OVERVIEW OF MET 19

may include a database as well as more sophisticated input/output and user interfaces. Currently, the MET

package is a set of tools that can easily be applied by any user on their own computer platform.

The MET code and documentation is maintained by the DTC in Boulder, Colorado. The MET package is
freely available to the modeling, verification, and operational communities, including universities, govern-

ments, the private sector, and operational modeling and prediction centers.

1.4 MET components

The major components of the MET package are represented in Figure The main stages represented are
input, reformatting, plotting, intermediate output, statistical analyses, and output and aggregation/analysis.
The MET-TC package functions independently of the other MET modules, as inducated in the Figure. Each
of these stages is described further in later chapters. For example, the input and output formats are discussed
in Chapter 2 as well as in the chapters associated with each of the statistics modules. MET input files are

represented on the far left.

The reformatting stage of MET consists of the Gen-Vx-Mask, PB2NC, ASCII2NC, Pcp-Combine, MADIS2NC,
MODIS regrid, WWMCA Regrid, and Ensemble Stat tools. The PB2NC tool is used to create NetCDF
files from input PrepBufr files containing point observations. Likewise, the ASCII2NC tool is used to create
NetCDF files from input ASCII point observations. Many types of data from the MADIS network can be
formatted for use in MET by the MADIS2NC tool. MODIS and WWMCA files are regridded and formatted
into NetCDF files by their respective tools. These NetCDF files are then used in the statistical analysis step.
The Gen-Vx-Mask and Pcp-Combine are optional. The Gen-Vx-Mask tool will create a bitmapped masking
area in one of two ways. The first is from a user specified polygon, i.e. a text file containing a series of
latitudes / longitudes. This mask can then be used to efficiently limit verification to the interior of a user
specified region. Similarly, the Gen-Vx-Mask tool can create a circular masking region, frequency used with
radar observations. The Pcp-Combine tool accumulates precipitation amounts into the time interval selected
by the user - if a user would like to verify over a different time interval than is included in their forecast
or observational dataset. The Ensemble-Stat tool will combine many forecasts into an ensemble mean or
probability forecast. Additionally, if observations are included ensemble rank histogram and probability

integral transform information is produced.

Several optional plotting utilities are provided to assist users in checking their output from the data prepro-
cessing step. Plot point obs will create a postscript plot showing the locations of point observations. This
can be quite useful for assessing whether the latitude and longitude of observation stations was specified
correctly. Plot data plane produces a similar plot for gridded data. For users of the MODE object based
verification methods, the plot _mode_field utility will create graphics of the MODE object output. Finally,
WWMCA plot produces a plot of the raw WWMCA data file.

The main statistical analysis components of the current version of MET are: Point-Stat, Grid-Stat, Series-
Analysis, Ensemble-Stat, MODE, MODE-TD (MTD), and Wavelet-Stat. The Point-Stat tool is used for
grid-to-point verification, or verification of a gridded forecast field against a point-based observation (i.e.,

surface observing stations, ACARS, rawinsondes, and other observation types that could be described as a

CHAPTER 1. OVERVIEW OF MET 20

MET Overview v7.0
Input Reformat Plot Statistics Analysis MET-TC
Gridded --
Forecast
Analysis [
T

ASCII Land
NetCDF Data

4 File

NetCDF

b

NetCDF
DLand

MODIS
Data

vl

Gridded
NetCDF

WWMCA
Data

ASCII L _PS »

Point STAT TCST
L~ o ASCII
PrepBufr NetCDF

Point NetCDF —
L/ it STAT

ASCII
NetCDF

MADIS
Point
|
Lidar
HDF

Obs

-l
z
23
=Rl

ASCII

G5I
Diag

Figure 1.1: Basic representation of current MET structure and modules. Colored areas rep-
resent software and modules included in MET, and gray areas represent input and output
files.

point observation). In addition to providing traditional forecast verification scores for both continuous and
categorical variables, confidence intervals are also produced using parametric and non-parametric methods.
Confidence intervals take into account the uncertainty associated with verification statistics due to sampling
variability and limitations in sample size. These intervals provide more meaningful information about forecast
performance. For example, confidence intervals allow credible comparisons of performance between two

models when a limited number of model runs is available.

Sometimes it may be useful to verify a forecast against gridded fields (e.g., Stage IV precipitation analyses).
The Grid-Stat tool produces traditional verification statistics when a gridded field is used as the observational
dataset. Like the Point-Stat tool, the Grid-Stat tool also produces confidence intervals. The Grid-Stat tool
also includes "neighborhood" spatial methods, such as the Fractional Skill Score (Roberts and Lean 2008).
These methods are discussed in Ebert (2008). The Grid-Stat tool accumulates statistics over the entire

domain.

Users wishing to accumulate statistics over a time, height, or other series separately for each grid location
should use the Series-Analysis tool. Series-Analysis can read any gridded matched pair data produced by

the other MET tools and accumulate them, keeping each spatial location separate. Maps of these statistics

CHAPTER 1. OVERVIEW OF MET 21
can be useful for diagnosing spatial differences in forecast quality.

The MODE (Method for Object-based Diagnostic Evaluation) tool also uses gridded fields as observational
datasets. However, unlike the Grid-Stat tool, which applies traditional forecast verification techniques,
MODE applies the object-based spatial verification technique described in Davis et al. (2006a,b) and Brown
et al. (2007). This technique was developed in response to the "double penalty" problem in forecast
verification. A forecast missed by even a small distance is effectively penalized twice by standard categorical
verification scores: once for missing the event and a second time for producing a false alarm of the event
elsewhere. As an alternative, MODE defines objects in both the forecast and observation fields. The objects
in the forecast and observation fields are then matched and compared to one another. Applying this technique
also provides diagnostic verification information that is difficult or even impossible to obtain using traditional
verification measures. For example, the MODE tool can provide information about errors in location, size,

and intensity.

The MODE-TD tool extends object-based analysis from two-dimensional forecasts and observations to in-
clude the time dimension. In addition to the two dimensional information provded by MODE, MODE-TD
can be used to examine even more features including displacement in time, and duration and speed of moving

areas of interest.

The Wavelet-Stat tool decomposes two-dimensional forecasts and observations according to the Intensity-
Scale verification technique described by Casati et al. (2004). There are many types of spatial verification
approaches and the Intensity-Scale technique belongs to the scale-decomposition (or scale-separation) ver-
ification approaches. The spatial scale components are obtained by applying a wavelet transformation to
the forecast and observation fields. The resulting scale-decomposition measures error, bias and skill of the
forecast on each spatial scale. Information is provided on the scale dependency of the error and skill, on the
no-skill to skill transition scale, and on the ability of the forecast to reproduce the observed scale structure.
The Wavelet-Stat tool is primarily used for precipitation fields. However, the tool can be applied to other
variables, such as cloud fraction.

Though Ensemble-Stat is a preprocessing tool for creation of ensemble forecasts from a group of files, it also

produces several types of ensemble statistics. Thus, it is included as a statistics tool in the flowchart.

Results from the statistical analysis stage are output in ASCII, NetCDF and Postscript formats. The Point-
Stat, Grid-Stat, and Wavelet-Stat tools create STAT (statistics) files which are tabular ASCII files ending
with a ".stat" suffix. In earlier versions of MET, this output format was called VSDB (Verification System
DataBase). VSDB, which was developed by the NCEP, is a specialized ASCII format that can be easily
read and used by graphics and analysis software. The STAT output format of the Point-Stat, Grid-Stat, and
Wavelet-Stat tools is an extension of the VSDB format developed by NCEP. Additional columns of data and
output line types have been added to store statistics not produced by the NCEP version.

The Stat-Analysis and MODE-Analysis tools aggregate the output statistics from the previous steps across
multiple cases. The Stat-Analysis tool reads the STAT output of Point-Stat, Grid-Stat, Ensemble-Stat, and
Wavelet-Stat and can be used to filter the STAT data and produce aggregated continuous and categorical
statistics. The MODE-Analysis tool reads the ASCII output of the MODE tool and can be used to produce

CHAPTER 1. OVERVIEW OF MET 22

summary information about object location, size, and intensity (as well as other object characteristics) across

one or more cases.

Tropical cyclone forecasts and observations are quite different than numerical model forecasts, and thus they
have their own set of tools. The MET-TC package includes three modules: TC-DLAND, TC-PAIRS, and
TC-STAT. The TC-DLAND module calculates the distance to land from all locations on a specified grid.
This information can be used in later modules to eliminate tropical cyclones that are over land from being
included in the statistics. TC-PAIRS matches up tropical cyclone forecasts and observations and writes all
output to a file. In TC-STAT, these forecast / observation pairs are analyzed according to user preference
to produce statistics.

The following chapters of this MET User’s Guide contain usage statements for each tool, which may be
viewed if you type the name of the tool. Alternatively, the user can also type the name of the tool followed
by -help to obtain the usage statement. Each tool also has a -version command line option associated with
it so that the user can determine what version of the tool they are using.

1.5 Future development plans

MET is an evolving verification software package. New capabilities are planned in controlled, successive
version releases. Bug fixes and user-identified problems will be addressed as they are found and posted
to the known issues section of the MET Users web page (www.dtcenter.org/met/users/support)). Plans
are also in place to incorporate many new capabilities and options in future releases of MET. Some of the
planned additions are listed below.

Additional statistical capabilities

Additional spatial forecast verification methods

Additional hurricane verification fields and methods

Enhanced support for time series verification

Additional methods for verification of climate and seasonal forecasts

Additional analysis capabilities and plotting routines

e Post to the MET website sample analysis and plotting routines that may include

Boxplots

Discrimination plots

— Reliability diagrams

Scatter/density plots

www.dtcenter.org/met/users/support

CHAPTER 1. OVERVIEW OF MET 23

— Color-fill/contour maps of statistics

— Height series

Histograms

Taylor diagrams

— Performance diagrams

1.6 Code support

MET support is provided through a MET-help e-mail address: met_help@ucar.edu. We will endeavor to
respond to requests for help in a timely fashion. In addition, information about MET and tools that can be
used with MET are provided on the MET Users web page (http://www.dtcenter.org/met/users/).

We welcome comments and suggestions for improvements to MET, especially information regarding errors.
Comments may be submitted using the MET Feedback form available on the MET website. In addition,
comments on this document would be greatly appreciated. While we cannot promise to incorporate all
suggested changes, we will certainly take all suggestions into consideration.

-help and -version command line options are available for all of the MET tools. Typing the name of the

tool with no command line options also produces the usage statement.

The MET package is a "living" set of tools. OQur goal is to continually enhance it and add to its capabilities.
Because our time, resources, and talents are limited, we welcome contributed code for future versions of
MET. These contributions may represent new verification methodologies, new analysis tools, or new plotting

functions. For more information on contributing code to MET, please contact met_help@ucar.edu.

http://www.dtcenter.org/met/users/
met_help@ucar.edu

Chapter 2

Software Installation/Getting Started

2.1 Introduction

This chapter describes how to install the MET package. MET has been developed and tested on Linux
operating systems. Support for additional platforms and compilers may be added in future releases. The
MET package requires many external libraries to be available on the user’s computer prior to installation.
Required and recommended libraries, how to install MET, the MET directory structure, and sample cases

are described in the following sections.

2.2 Supported architectures

The MET package was developed on Debian Linux using the GNU compilers and the Portland Group (PGI)
compilers. The MET package has also been built on several other Linux distributions using the GNU, PGI,
and Intel compilers. Past versions of MET have also been ported to IBM machines using the IBM compilers,
but we are currently unable to support this option as the development team lacks access to an IBM machine
for testing. Other machines may be added to this list in future releases as they are tested. In particular, the

goal is to support those architectures supported by the WRF model itself.

The MET tools run on a single processor. Therefore, none of the utilities necessary for running WRF on
multiple processors are necessary for running MET. Individual calls to the MET tools have relatively low
computing and memory requirements. However users will likely be making many calls to the tools and

passing those individual calls to several processors will accomplish the verification task more efficiently.

2.3 Programming languages

The MET package, including MET-TC, is written primarily in C/C++ in order to be compatible with an
extensive verification code base in C/C++ already in existence. In addition, the object-based MODE and

24

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 25

MODE-TD verification tools relies heavily on the object-oriented aspects of C++. Knowledge of C/C++
is not necessary to use the MET package. The MET package has been designed to be highly configurable
through the use of ASCII configuration files, enabling a great deal of flexibility without the need for source
code modifications.

NCEP’s BUFRLIB is written entirely in Fortran. The portion of MET that handles the interface to the
BUFRLIB for reading PrepBufr point observation files is also written in Fortran.

The MET package is intended to be a tool for the modeling community to use and adapt. As users make up-
grades and improvements to the tools, they are encouraged to offer those upgrades to the broader community
by offering feedback to the developers.

2.4 Required compilers and scripting languages

The MET package was developed and tested using the GNU g-++/gfortran compilers, the Portland Group
(PGI) pgCC or pge++ and pgfd0 compilers, and the Intel icc/ifort compilers. As additional compilers are
successfully tested, they will be added to the list of supported platforms/compilers.

The GNU make utility is used in building all executables and is therefore required.

The MET package consists of a group of command line utilities that are compiled separately. The user may
choose to run any subset of these utilities to employ the type of verification methods desired. New tools
developed and added to the toolkit will be included as command line utilities.

In order to control the desired flow through MET, users are encouraged to run the tools via a script. Some
sample scripts are provided in the distribution; these examples are written in the Bourne shell. However,

users are free to adapt these sample scripts to any scripting language desired.

2.5 Required libraries and optional utilities

Three external libraries are required for compiling/building MET and should be downloaded and installed
before attempting to install MET. Additional external libraries required for building advanced features in
MET are discussed in Section [2.6] :

1. NCEP’s BUFRLIB is used by MET to decode point-based observation datasets in PrepBufr format.
BUFRLIB is distributed and supported by NCEP and is freely available for download from NCEP’s

website at http://www.nco.ncep.noaa.gov/sib/decoders/BUFRLIB. BUFRLIB requires C and Fortran-

90 compilers that should be from the same family of compilers used when building MET.

2. Several tools within MET use Unidata’s NetCDF libraries for writing output NetCDF files. NetCDF
libraries are distributed and supported by Unidata and are freely available for download from Unidata’s

http://www.nco.ncep.noaa.gov/sib/decoders/BUFRLIB

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 26

website at http://www.unidata.ucar.edu/software/netcdf. The same family of compilers used to
build NetCDF should be used when building MET. MET is now compatible with the enhanced data
model provided in NetCDF version 4. The support for NetCDF version 4 requires HDF5 which is
freely available for download at https://support.hdfgroup.org/HDF5/.

3. The GNU Scientific Library (GSL) is used by MET when computing confidence intervals. GSL is dis-
tributed and supported by the GNU Software Foundation and is freely available for download from the
GNU website at http://www.gnu.org/software/gsl.

4. The Zlib is used by MET for compression when writing postscript image files from tools (e.g. MODE,
Wavelet-Stat, Plot-Data-Plane, and Plot-Point-Obs). Zlib is distributed and supported Zlib.org and is
freely available for download from the Zlib website at http://www.z1lib.net!.

Two additional utilities are strongly recommended for use with MET:

1. The Unified Post-Processor is recommended for post-processing the raw WRF model output prior to ver-
ifying the model forecasts with MET. The Unified Post-Processor is freely available for download from
the "downloads" section of the WRF-NMM user’s website at http://www.dtcenter.org/wrf-nmm/
users. MET can read data on a standard, de-staggered grid and on pressure or regular levels in the
vertical. The Unified Post-Processor outputs model data in this format from both WRF cores, the
NMM and the ARW. However, the Unified Post-Processor is not strictly required as long as the user
can produce gridded model output on a standard de-staggered grid on pressure or regular levels in the

vertical. Two-dimensional fields (e.g., precipitation amount) are also accepted for some modules.

2. The copygb utility is recommended for re-gridding model and observation datasets in GRIB version 1
format to a common verification grid. The copygb utility is distributed as part of the Unified Post-
Processor and is available from other sources as well. While earlier versions of MET required that all
gridded data be placed on a common grid, MET version 5.1 added support for automated re-gridding
on the fly. After version 5.1, users have the option of running copygb to regrid their GRIB1 data ahead
of time or leveraging the automated regridding capability within MET.

2.6 Installation of required libraries

As described in Section some external libraries are required for building the MET:

1. NCEP’s BUFRLIB is used by the MET to decode point-based observation datasets in PrepBufr format.
Once you have downloaded and unpacked the BUFRLIB tarball, refer to the README BUFRLIB
file. When compiling the library using the GNU C and Fortran compilers, users are strongly encouraged
to use the -DUNDERSCORE and -fno-second-underscore options. Also, MET expects the BUFRLIB
archive file to be named "libbufr.a". Therefore, compiling the BUFRLIB using the GNU compilers
consists of the following 3 steps:

http://www.unidata.ucar.edu/software/netcdf
https://support.hdfgroup.org/HDF5/
http://www.gnu.org/software/gsl
http://www.zlib.net
http://www.dtcenter.org/wrf-nmm/users
http://www.dtcenter.org/wrf-nmm/users

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 27

* gcc -c -DUNDERSCORE *.c
* gfortran -c -DUNDERSCORE -fno-second-underscore *.f *.F

* ar crv libbufr.a *.o
Compiling the BUFRLIB using the PGI C and Fortran-90 compilers consists of the following 3 steps:

* pgcc -c -DUNDERSCORE *.c
* pgf90 -c -DUNDERSCORE -Mnosecond_underscore *.f *.F

* ar crv libbufr.a *.o
Compiling the BUFRLIB using the Intel icc and ifort compilers consists of the following 3 steps:

* icc -c -DUNDERSCORE *.c
* ifort -c -DUNDERSCORE *.f *.F

* ar crv libbufr.a *.o

2. Unidata’s NetCDF libraries are used by several tools within MET for writing output NetCDF files. The
same family of compilers used to build NetCDF should be used when building MET. Users may also
find some utilities built for NetCDF such as ncdump and ncview useful for viewing the contents of
NetCDF files. Detailed installation instructions are available from Unidata at http://www.unidata.
ucar.edu/software/netcdf/docs/netcdf-install/. Support for Net CDF version 4 requires HDF5.
Detailed installation instructions for HDF5 are available at https://support.hdfgroup.org/HDF5/

release/obtainsrc.html.

3. The GNU Scientific Library (GSL) is used by MET for random sampling and normal and binomial
distribution computations when estimating confidence intervals. Precompiled binary packages are
available for most GNU/Linux distributions and may be installed with root access. When installing
GSL from a precompiled package on Debian Linux, the developer’s version of GSL must be used;
otherwise, use the GSL version available from the GNU website (http://www.gnu.org/software/
gsl/). MET requires access to the GSL source headers and library archive file at build time.

4. For users wishing to compile MET with GRIB2 file support, NCEP’s GRIB2 Library in C (g2clib)
must be installed, along with jasperlib, libpng, and zlib. (http://www.nco.ncep.noaa.gov/pmb/
codes/GRIB2). Please note that compiling the GRIB2C library with the -D 64BIT __ option
requires that MET also be configured with CFLAGS="-D __ 64BIT __". Compiling MET and
the GRIB2C library inconsistently may result in a segmentation fault when reading GRIB2 files. MET
expects the GRIB2C library to be named libgrib2c.a, which may be set in the GRIB2C makefile as
LIB=libgrib2c.a.

5. Users wishing to compile MODIS-regrid and/or lidar2nc will need to install both the HDF4 and HDF-
EOS2 libraries available from the HDF group websites (http://www.hdfgroup.org/products/hdf4)
and (http://www.hdfgroup.org/hdfeos.html).

6. The MODE-Graphics utility requires Cairo and FreeType. Thus, users who wish to compile this util-
ity must install both libraries, available from (http://cairographics.org/releases) and (http:
//www.freetype.org/download.html). In addition, users will need to download Ghostscript font

data required at runtime (http://sourceforge.net/projects/gs-fonts).

http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-install/
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-install/
https://support.hdfgroup.org/HDF5/release/obtainsrc.html
https://support.hdfgroup.org/HDF5/release/obtainsrc.html
http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
http://www.nco.ncep.noaa.gov/pmb/codes/GRIB2
http://www.nco.ncep.noaa.gov/pmb/codes/GRIB2
http://www.hdfgroup.org/products/hdf4
http://www.hdfgroup.org/hdfeos.html
http://cairographics.org/releases
http://www.freetype.org/download.html
http://www.freetype.org/download.html
http://sourceforge.net/projects/gs-fonts

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 28

2.7 Installation of optional utilities

As described in the introduction to this chapter, two additional utilities are strongly recommended for use
with MET.

1. The Unified Post-Processor is recommended for post-processing the raw WRF model output prior to
verifying the data with MET. The Unified Post-Processor may be used on output from both the ARW
and NMM cores. Please refer to online documentation for instructions on how to install and use
the Unified Post-Processor. Installation instructions for the Unified Post-Processor can be found in
Chapter 7 of the WRF-NMM User’s Guide or online at http://www.dtcenter.org/wrf-nmm/users/
docs/user_guide/V3/users_guide_nmm_chap7.pdf .

2. The copygb utility is recommended for re-gridding model and observation datasets in GRIB format to a
common verification grid. The copygb utility is distributed as part of the Unified Post-Processor and
is available from other sources as well. Please refer to the "Unified Post-processor" utility mentioned

above for information on availability and installation.

2.8 MET directory structure

Once you have downloaded the MET tarball and unzipped and unpacked its contents, the top-level MET

directory structure follows this outline:

http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/V3/users_guide_nmm_chap7.pdf
http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/V3/users_guide_nmm_chap7.pdf

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 29

met-5.1/

aclocal .m4
config.guess
config.h.in
config.sub
configure
configure.ac
data/
depcomp
doc/
install-sh
internal_tests/
Makefile.am
Makefile.in
Make-include
missing
out/
README
scripts/
config/
examples/
mk/
Rscripts/
include/

src/

The top-level MET directory consists of a README file, Makefiles, configuration files, and several subdi-
rectories. The top-level Makefile and configuration files control how the entire toolkit is built. Instructions
for using these files to build MET can be found in Section [2.9

When MET has been successfully built and installed, the installation directory contains two subdirectories.
The bin/ directory contains executables for each module of MET as well as several plotting utilities. The
share/met/ directory contains many subdirectories with data required at runtime and a subdirectory of
sample R scripts utilities. The colortables/, map/, and ps/ subdirectories contain data used in creating
PostScript plots for several MET tools. The poly/ subdirectory contains predefined lat/lon polyline regions
for use in selecting regions over which to verify. The polylines defined correspond to verification regions
used by NCEP as described in Appendix B. The config/ directory contains default configuration files for
the MET tools. The table_files/ and tc_data/ subdirectories contain GRIB table definitions and tropical
cyclone data, respectively. The Rscripts/ subdirectory contains a handful of plotting graphic utilities for
MET-TC. These are the same Rscripts that reside under the top-level MET scripts/Rscripts directory, other
than it is the installed location.

The data/ directory contains several configuration and static data files used by MET. The sample fcst/ and

sample obs/ subdirectories contain sample data used by the test scripts provided in the scripts/ directory.

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 30
The doc/ directory contains documentation for MET, including the MET User’s Guide.

The out/ directory will be populated with sample output from the test cases described in the next section.
The src/ directory contains the source code for each of the tools in MET.

The scripts/ directory contains test scripts that are run by make test after MET has been successfully built,
and a directory of sample configuration files used in those tests located in the scripts/config/ subdirectory.
The output from the test scripts in this directory will be written to the out/ directory. Users are encouraged

to copy sample configuration files to another location and modify them for their own use.

The share/met /Rscripts directory contains a handful of sample R scripts, include plot tcmpr.R, which
provides graphic utilities for MET-TC. For more information on the graphics capabilities, see Section 21.2.3]
of this User’s Guide.

2.9 Building the MET package

Building the MET package consists of three main steps: (1) install the required libraries, (2) configure the
environment variables, and (3) configure and execute the build.

Install the required libraries.

o Please refer to Section [2.6] and 2.7 on how to install the required and optional libraries.

e If installing the required and optional libraries in a non-standard location, the user may need to tell
MET where to find them. This can be done by setting or adding to the LD _LIBRARY PATH to
included the path to the library files.

Set Environment Variables

The MET build uses environment variables to specify the locations of the needed external libraries. For each
library, there is a set of three environment variables to describe the locations: $SMET _<lib>, $MET _<lib>INC
and SMET _<lib>LIB.

The $MET _<lib> environment variable can be used if the external library is installed such that there is a
main directory which has a subdirectory called "lib" containing the library files and another subdirectory
called "include" containing the include files. For example, if the NetCDF library files are installed in
/opt/netcdf/lib and the include files are in /opt/netcdf/include, you can just define the SMET NETCDF

environment variable to be " /opt/netcdf".

The $SMET _<lib>INC and $MET <lib>LIB environment variables are used if the library and include files
for an external library are installed in separate locations. In this case, both environment variables must be
specified and the associated SMET _<lib> variable will be ignored. For example, if the NetCDF include

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 31

files are installed in /opt/include/netcdf and the library files are in /opt/lib/netcdf, then you would set
SMET_NETCDFINC to "/opt/include/netcdf" and SMET _NETCDFLIB to "/opt/lib/netcdf".

The following environment variables should also be set:

- Set SMET NETCDF to point to the main NetCDF directory, or set SMET NETCDFINC to point to
the directory with the NetCDF include files and set SMET NETCDFLIB to point to the directory with the
NetCDF library files.

- Set SMET _HDF5 to point to the main HDF5 directory.

- Set SMET BUFR to point to the main BUFR directory, or set $MET BUFRLIB to point to the directory
with the BUFR library files. Because we don’t use any BUFR, library include files, you don’t need to specify
$SMET BUFRINC.

- Set SMET _GSL to point to the main GSL directory, or set $MET GSLINC to point to the directory with
the GSL include files and set $MET GSLLIB to point to the directory with the GSL library files.

- If compiling support for GRIB2, set SMET _GRIB2CINC and $MET _GRIB2CLIB to point to the main
GRIB2C directory which contains both the include and library files. These are used instead of SMET GRIB2C
since the main GRIB2C directory does not contain include and lib subdirectories.

- If compiling MODIS-Regrid and/or lidar2nc, set $SMET HDF to point to the main HDF4 directory, or set
$MET HDFINC to point to the directory with the HDF4 include files and set $MET HDFLIB to point
to the directory with the HDF4 library files. Also, set $SMET HDFEOS to point to the main HDF EOS
directory, or set $SMET HDFEOSINC to point to the directory with the HDF EOS include files and set
$MET _ HDFEOSLIB to point to the directory with the HDF EOS library files.

- If compiling MODE Graphics, set SMET _CAIRO to point to the main Cairo directory, or set $MET CAIROINC
to point to the directory with the Cairo include files and set $MET CAIROLIB to point to the direc-
tory with the Cairo library files. Also, set SMET FREETYPE to point to the main FreeType direc-
tory, or set SMET FREETYPEINC to point to the directory with the FreeType include files and set
$MET FREETYPELIB to point to the directory with the FreeType library files.

- When running MODE Graphics, set SMET FONT DIR to the directory containing font data required
at runtime. A link to the tarball containing this font data can be found on the MET website.

For ease of use, you should define these in your .cshrc or equivalent file.

Configure and execute the build

Example: To configure MET to install all of the available tools in the "bin" subdirectory of your current

directory, you would use the following commands:

1. ./configure --prefix=‘pwd¢ --enable-grib2 --enable-modis \

--enable-mode_graphics --enable-lidar2nc

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 32

2. Type ’make install >& make_install.log &’
3. Type ’tail -f make_install.log’ to view the execution of the make.

4. When make is finished, type ’CNTRL-C’ to quit the tail.

If all tools are enabled and the build is successful, the "<prefix>/bin" directory (where <prefix> is the
prefix you specified on your configure command line) will contain 27 executables:

- ascii2nc

- ensemble_stat

- gen_vx_mask

- grid_stat

- gsid2mpr

- gsidens2orank

- lidar2nc

- madis2nc

- mode

- mode_analysis

- modis_regrid

- mtd

- pb2nc

- pcp_combine

- plot_data_plane
- plot_mode_field
- plot_point_obs
- point_stat

- regrid_data_plane
- series_analysis
- shift_data_plane
- stat_analysis

- tc_dland

- tc_pairs

- tc_stat

- wavelet_stat

- wwmca_plot

- wwmca_regrid

NOTE: Several compilation warnings may occur which are expected. If any errors occur, please refer to the

appendix on troubleshooting for common problems.

-help and -version command line options are available for all of the MET tools. Typing the name of the

tool with no command line options also produces the usage statement.

The configure script has command line options to specify where to install MET and which MET utilities to
install. Include any of the following options that apply to your system:

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 33
—prefix=PREFIX

By default, MET will install all the files in "/usr/local/bin". You can specify an installation prefix other
than " /usr/local" using "—prefix", for instance "—prefix=$HOME" or "—prefix=‘pwd*".

—enable-grib2

Enable compilation of utilities using GRIB2
—disable-block4

Disable use of BLOCK4 in the compilation. Use this if you have trouble using PrepBufr files.
—disable-ascii2nc

Disable compilation of ascii2nc
—disable-ensemble stat

Disable compilation of ensemble _stat
—disable-gen vx mask

Disable compilation of gen vx mask
—disable-grid _stat

Disable compilation of grid _stat
—enable-lidar2nc

Enable compilation of lidar2nc
—disable-madis2nc

Disable compilation of madis2nc
—disable-mode

Disable compilation of mode
—disable-mode analysis

Disable compilation of mode analysis
—disable-pb2nc

Disable compilation of pb2nc

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED
—disable-pcp combine

Disable compilation of pcp combine
—disable-plot data plane

Disable compilation of plot _data_plane
—disable-plot data plane

Disable compilation of plot data_plane
—disable-regrid data plane

Disable compilation of regrid data_plane
—disable-shift data plane

Disable compilation of shift data_plane
—disable-plot point obs

Disable compilation of plot _point_obs
—disable-point__stat

Disable compilation of point _stat
—disable-stat analysis

Disable compilation of stat analysis
—disable-wavelet stat

Disable compilation of wavelet stat
—disable-series analysis

Disable compilation of series analysis
—disable-wwmca

Disable compilation of wwmca
—enable-modis

Enable compilation of modis

—enable-mode graphics

34

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 35

Enable compilation of mode graphics
—disable-mode time domain

Disable compilation of mode time domain
—disable-tc_ utils

Disable compilation of tc_ utils
—disable-gsi tools

Disable compilation of gsi_tools

Make Targets

The autoconf utility provides some standard make targets for the users. In MET, the following standard
targets have been implemented and tested:

1. all - compile all of the components in the package, but don’t install them.

2. install - install the components (where is described below). Will also compile if "make all" hasn’t been

done yet.
3. clean - remove all of the temporary files created during the compilation.
4. uninstall - remove the installed files. For us, these are the executables and the files in $MET _BASE.
MET also has the following non-standard targets:

5. test - runs the scripts/test_all.sh script. You must run "make install" before using this target.

2.10 Sample test cases

Once the MET package has been built successfully, the user is encouraged to run the sample test scripts

provided. They are run using make test in the top-level directory. Execute the following commands:

1. Type ’make test >& make test.log &’ to run all of the test scripts in the directory. These test scripts
use test data supplied with the tarball. For instructions on running your own data, please refer to the
MET User’s Guide.

2. Type ’tail -f make test.log’ to view the execution of the test script.

3. When the test script is finished, type '"CNTRL-C’ to quit the tail. Look in "out" to find the output files
for these tests. Each tool has a separate, appropriately named subdirectory for its output files.

4. In particular, check that the PB2NC tool ran without error. If there was an error, run "make clean" then

rerun your configure command adding "—disable-block4" to your configure command line and rebuild
MET.

Chapter 3

MET Data I/0

Data must be preprocessed prior to using for verification. Several MET tools exist for this purpose. In addi-
tion to preprocessing observations, some plotting utilities for data checking are also provided and described
at the end of this chapter. Both the input and output file formats are described in this chapter. Sections
and are primarily concerned with re-formatting input files into the intermediate files required by some
MET modules. These steps are represented by the first three columns in the MET flowchart depicted in
Figure Output data formats are described in later Section Common configuration files options are
described in Section [3.5] Description of software modules used to reformat the data may now be found in
Chapters [4 and

3.1 Input data formats

The MET package can handle gridded input data in one of three formats: GRIB version 1, GRIB version 2, or
netCDF classic format (CF compliant). MET supports standard NCEP, USAF, UKMet Office and ECMWF
grib tables along with custom, user defined grib tables and the extended PDS including ensemble member
metadata. See[3.5.1]for more information. Point observation files may be supplied in either PrepBufr, ASCII,
or MADIS format. Note that MET does not require the Unified Post-Processor to be used, but does require
that the input GRIB data be on a standard, de-staggered grid on pressure or regular levels in the vertical.
While the Grid-Stat, Wavelet-Stat, and MODE tools can be run on a gridded field at virtually any level, the

Point-Stat tool can only be used to verify forecasts at the surface or on pressure levels.

When comparing two gridded fields with the Grid-Stat, Wavelet-Stat, Ensemble-Stat, MODE, or MODE-TD
tools, the input model and observation datasets must be on the same grid. MET will regrid files according
to user specified options. Alternately, outside of MET, the copygb utility is recommended for re-gridding
GRIB files. To preserve characteristics of the observations, it is generally preferred to re-grid the model data

to the observation grid, rather than vice versa.

Input point observation files in PrepBufr format are available through NCEP. The PrepBufr observation

files contain a wide variety of point-based observation types in a single file in a standard format. However,

36

CHAPTER 3. MET DATA I/0 37

some users may wish to use observations not included in the standard PrepBufr files. For this reason, prior
to performing the verification step in the Point-Stat tool, the PrepBufr file is reformatted with the PB2NC
tool. In this step, the user can select various ways of stratifying the observation data spatially, temporally,
and by type. The remaining observations are reformatted into an intermediate NetCDF file. The ASCII2NC
tool may be used to convert ASCII point observations that are not available in the PrepBufr files into this
NetCDF format for use by the Point-Stat verification tool. Users with METAR or RAOB data from MADIS
can convert these observations into NetCDF format with the MADIS2NC tool, then use them with the
Point-Stat verification tool.

Tropical cyclone forecasts and observations are typically provided in a specific ASCIT format, in A Deck and
B Deck files.

3.2 Intermediate data formats

MET uses NetCDF as an intermediate file format. The Ensemble-Stat, WWMCA-Tool, Pcp-Combine,
Gen-Vx-Mask, PB2NC, MADIS2NC, and ASCII2NC tools write intermediate files in NetCDF format.

The Pcp-Combine tool operates in three different modes. It may be used to sum accumulated precipitation
from several GRIB files into a single NetCDF file containing the desired accumulation period. It may also
be used to add or subtract the accumulated precipitation in two gridded data files directly. The command

line arguments for the Pcp-Combine tool vary depending on the mode in which it is run.

The user may choose to: (1) combine the model accumulations to match the observation accumulation period,
(2) combine the observation accumulations to match the model accumulation period, or (3) combine both
the model and observation accumulations to some new period desired for verification. In performing this
summation, the user may not specify an accumulation interval smaller than the accumulation period in the
input files. However, if the input model and observation files already contain accumulated precipitation with
the same desired accumulation period, then pcp combine need not be run. Each time the Pcp-Combine
tool is called, a NetCDF file is written containing the requested accumulation period.

The Gen-Vx-Mask tool is used to define a bitmapped masking region that can be used by the statistics
tools as a verification subdomain. It is generally more efficient to use the NetCDF output of this tool to define
a masking region than using a complex polyline directly in the other MET tools. However, the NetCDF
output can only be applied to datasets on a common domain. It must be regenerated for each domain used.

The PB2NC tool is used to reformat the input PrepBufr files containing point observations. This tool
stratifies the observations as requested in a configuration file and writes out the remaining observations in a
NetCDF format. The NetCDF output of the PB2NC tool is used as input to the verification step performed
in the Point-Stat tool.

The ASCII2NC tool simply reformats ASCII point observations into the NetCDF format needed by the
Point-Stat tool. The output NetCDF file from the ASCII2NC tool has a format that is identical to the
format of the output from the PB2NC tool.

CHAPTER 3. MET DATA I/0 38

Similarly, the LIDAR2NC tool reformats CALIPSO satellite HDF files into a NetCDF output file similar
in format to ASCII2NC and PB2NC.

3.3 Output data formats

The MET package currently produces output in the following basic file formats: STAT files, ASCII files,
NetCDF files, PostScript plots, and png plots from the Plot-Mode-Field utility.

The STAT format consists of tabular ASCII data that can be easily read by many analysis tools and software
packages. MET produces STAT output for the Grid-Stat, Point-Stat, Ensemble-Stat and Wavelet-
Stat tools. STAT is a specialized ASCII format containing one record on each line. However, a single STAT
file may contain multiple line types. Several header columns at the beginning of each line remain the same
for each line type. However, the remaining columns after the header change for each line type. STAT files
can be difficult for a human to read as the quantities represented for many columns of data change from line

to line.

For this reason, ASCII output is also available as an alternative for the Grid-Stat, Point-Stat, and Wavelet-
Stat tools. The ASCII files contain exactly the same output as the STAT files but each STAT line type
is grouped into a single ASCII file with a column header row making the output more human-readable.
The configuration files control which line types are output and whether or not the optional ASCII files are

generated.

The MODE tool creates two ASCII output files as well (although they are not in a STAT format). It gener-
ates an ASCII file containing contingency table counts and statistics comparing the model and observation
fields being compared. The MODE tool also generates a second ASCII file containing all of the attributes
for the single objects and pairs of objects. Each line in this file contains the same number of columns, and

those columns not applicable to a given line type contain fill data.

The TC-Pairs and TC-Stat modules produce ASCII output, similar in style to the STAT files, but with
TC relevant fields.

Many of the tools generate gridded NetCDF output. Generally, this output acts as input to other MET
tools or plotting programs. The point observation preprocessing tools produce NetCDF output as input to
the statistics tools. Full details of the contents of the Net CDF files is found in the Sectionbelow. [3.4]

The MODE, Wavelet-Stat and plotting tools produce PostScript plots summarizing the spatial approach
used in the verification. The PostScript plots are generated using internal libraries and do not depend on an
external plotting package. The MODE plots contain several summary pages at the beginning, but the total
number of pages will depend on the merging options chosen. Additional pages will be created if merging is
performed using the double thresholding or fuzzy engine merging techniques for the forecast and observation
fields. The number of pages in the Wavelet-Stat plots depend on the number of masking tiles used and
the dimension of those tiles. The first summary page is followed by plots for the wavelet decomposition of
the forecast and observation fields. The generation of these PostScript output files can be disabled using

command line options.

CHAPTER 3. MET DATA I/0 39

Users can use the optional plotting utilities Plot-Data-Plane, Plot-Point-Obs, and Plot-Mode-Field to pro-
duce graphics showing forecast, observation, and MODE object files.

3.4 Data format summary

The following is a summary of the input and output formats for each of the tools currently in MET. The
output listed is the maximum number of possible output files. Generally, the type of output files generated

can be controlled by the configuration files and/or the command line options:

1. PB2NC Tool

* Input: One PrepBufr point observation file and one configuration file.

* QOutput: One NetCDF file containing the observations that have been retained.
2. ASCII2NC Tool

* Imput: One or more ASCII point observation file(s) that has (have) been formatted as expected
p p p ,

and optional configuration file.

* Qutput: One NetCDF file containing the reformatted observations.
3. MADIS2NC Tool

* Input: One MADIS point observation file.

* Qutput: One NetCDF file containing the reformatted observations.
4. LIDAR2NC Tool

* Input: One CALIPSO satellite HDF file

* Qutput: One NetCDF file containing the reformatted observations.
5. Pcp-Combine Tool

* Input: Two or more gridded model or observation files (in GRIB format for “sum” command, or
any gridded file for “add” or “subtract” commands) containing accumulated precipitation to be

combined to create a new accumulation interval.

* Qutput: One NetCDF file containing the summed accumulation interval.
6. Regrid-Data-Plane Tool

* Input: One gridded model or observation field and one gridded field to provide grid specification if
desired.

* Qutput: One NetCDF file containing the regridded data field.

7. Shift-Data-Plane Tool

CHAPTER 3. MET DATA I/0 40

* Input: One gridded model or observation field.
* Qutput: One NetCDF file containing the shifted data field.

8. MODIS-Regrid Tool

* Input: One gridded model or observation field and one gridded field to provide grid specification.
* Qutput: One NetCDF file containing the regridded data field.

9. Gen-VX-Mask Tool

* Input: One gridded model or observation file and one ASCII file defining a Lat/Lon masking
polyline.

* Qutput: One NetCDF file containing a bitmap for the masking region defined by the polyline over
the domain of the gridded input file.

10. Point-Stat Tool

* Input: One gridded model file, at least one point observation file in NetCDF format (as the output
of the PB2NC, MADIS2NC, or ASCII2NC tool), and one configuration file.

* Qutput: One STAT file containing all of the requested line types, and several ASCII files for each
line type requested.

11. Grid-Stat Tool

* Input: One gridded model file and one gridded observation file, and one configuration file.

* Qutput: One STAT file containing all of the requested line types, several ASCII files for each line
type requested, and one NetCDF file containing the matched pair data and difference field for

each verification region and variable type/level being verified.
12. Ensemble Stat Tool

* Input: An arbitrary number of gridded model files and one or more optional files containing obser-

vations. Point and gridded observations are both accepted.

* Qutput: One NetCDF file containing requested ensemble forecast information. If observations are
provided, one STAT file containing all requested line types, and several ASCII files for each line
type requested.

13. Wavelet-Stat Tool

* Input: One gridded model file, one gridded observation file and one configuration file.

* Qutput: One STAT file containing the “ISC” line type, one ASCII file containing intensity-scale
information and statistics, one NetCDF file containing information about the wavelet decomposi-
tion of forecast and observed fields and their differences, and one PostScript file containing plots

and summaries of the intensity-scale verification.

14. GSID2MPR Tool

CHAPTER 3. MET DATA I/0 41

* Input: One or more binary GSI diagnostic files (conventional or radiance) to be reformatted.

* Qutput: One ASCII file in matched pair format.

15. GSID20RANK Tool

* Input: One or more binary GSI diagnostic files (conventional or radiance) to be reformatted.

* Output: One ASCII file in orank format.
16. Stat-Analysis Tool

* Input: One or more STAT files output from the Point-Stat, Grid-Stat, or Ensemble Stat, or Wavelet-
Stat tools and, optionally, one configuration file containing specifications for the analysis job(s)
to be run on the STAT data.

* Output: ASCII output of the analysis jobs will be printed to the screen unless redirected to a file
using the “-out” option.

17. Series Analysis Tool

* Input: An arbitrary number of gridded model files and gridded observation files and one or more

optional files containing observations.

* Output: One NetCDF file containing requested output statistics on the same grid as the input files.
18. MODE Tool

* Input: One gridded model file and one gridded observation file and one or two configuration files.

* Qutput: One ASCII file containing contingency table counts and statistics, one ASCII file containing
single and pair object attribute values, one NetCDF file containing object indices for the gridded
simple and cluster object fields, and one PostScript plot containing a summary of the features-

based verification performed.
19. MODE-Analysis Tool

* Input: One or more MODE object statistics files from the MODE tool and, optionally, one config-

uration file containing specification for the analysis job(s) to be run on the object data.
* Output: ASCII output of the analysis jobs will be printed to the screen unless redirected to a file
using the “-~out” option.

20. MODE-TD Tool

* Input: Two or more gridded model file and two or more gridded observation file and one or two

configuration files.

* Qutput: Three ASCII files containing 2D single object and 3D single and pair object attribute
values and one NetCDF file containing object indices for the gridded simple and cluster object
fields.

21. TC-Dland Tool

CHAPTER 3. MET DATA I/0 42

* Input: One file containing the longitude (degrees W negative) and latitude (degrees N positive) of

all the coastlines and islands considered to be a significant landmass.
* Qutput: One NetCDF format file containing a gridded field representing the distance to the nearest
coastline or island, as specified in the input file

22. TC-Pair Tool

* Input: Two ATCF format files containing output from a tropical cyclone tracker and one configu-
ration file. One file would be for the forecast, or “A”-deck. The other is expected to be the NHC
Best Track Analysis, but could also be any ATCF format reference.

* Qutput: ASCII output with the suffix .tcstat
23. TC-Stat Tool

* Input: One or more TCSTAT files output from the Point-Stat, Grid-Stat, or Ensemble Stat, or
Wavelet-Stat tools and, optionally, one configuration file containing specifications for the analysis
job(s) to be run on the TCSTAT data.

* Qutput: ASCII output of the analysis jobs will be printed to the screen unless redirected to a file
using the “-out” option.

24. Plot-Point-Obs Tool

* Input: One NetCDF file with point observations in it. Most likely the output from ascii2nc, pb2nc,

madis2nc.

* Output: One postscript file containing a plot of the requested field.
25. Plot-Data-Plane Tool

* Inmput: One gridded data file to be plotted.

* Output: One postscript file containing a plot of the requested field.
26. Plot-MODE-Field Tool

* Input: One or more MODE output files to be used for plotting and one configuration file.

* Qutput: One NetCDF file with the requested MODE objects plotted. Options for objects include
raw, simple or cluster and forecast or observed objects.

3.5 Configuration File Details

Part of the strength of MET is the leveraging of capability across tools. There are several config options

that are common to many of the tools. They are described in this section.

Many of the MET tools use a configuration file to set parameters. This prevents the command line from

becoming too long and cumbersome and makes the output easier to duplicate.

CHAPTER 3. MET DATA I/0 43

Settings common to multiple tools are described in the following sections while those specific to individual
tools are explained in the chapters for those tools. In addition, these configuration settings are described
in the share/met/config/README file and the share/met/config/README-TC file for the MET-Tropical

Cyclone tools.

3.5.1 MET Configuration File Options

The information listed below may also be found in the data/config/README file.

LI111777
//

// Configuration file overview.

//
LI111777

The configuration files that control many of the MET tools contain formatted
ASCII text. This format has been updated for METv4.0 and continues to be used

in subsequent releases.

Settings common to multiple tools are described in the top part of this README
file and settings specific to individual tools are described beneath the common
settings. Please refer to the MET User’s Guide in the "doc" directory for more

details about the settings if necessary.

A configuration file entry is an entry name, followed by an equal sign (=),
followed by an entry value, and is terminated by a semicolon (;). The
configuration file itself is one large dictionary consisting of entries, some of

which are dictionaries themselves.

The configuration file language supports the following data types:
- Dictionary:
- Grouping of one or more entries enclosed by curly braces {}.
- Array:
- List of one or more entries enclosed by square braces [].
- Array elements are separated by commas.
- String:
- A character string enclosed by double quotation marks "".
- Integer:
- A numeric integer value.
- Float:
- A numeric float value.

- Boolean:

CHAPTER 3. MET DATA I/0

- A boolean value (TRUE or FALSE).
- Threshold:
- A threshold type (<, <=, ==, !-, >=, or >) followed by a numeric value.
- The threshold type may also be specified using two letter abbreviations
(1t, le, eq, ne, ge, gt).
- Multiple thresholds may be combined by specifying the logic type of AND
(&&) or OR (||). For example, ">=5&&<=10" defines the numbers between 5
and 10 and "==1]||==2" defines numbers exactly equal to 1 or 2.
- Piecewise-Linear Function (currently used only by MODE):
- A list of (x, y) points enclosed in parenthesis ().
- The (x, y) points are *NOT* separated by commas.
- User-defined function of a single variable:
- Left side is a function name followed by variable name in parenthesis.
- Right side is an equation which includes basic math functions (+,-,*,/),
built-in functions (listed below), or other user-defined functiomns.
- Built-in functions include:
sin, cos, tan, sind, cosd, tand, asin, acos, atan, asind, acosd, atand,
atan2, atan2d, arg, argd, log, exp, logl0, explO, sqrt, abs, min, max,

mod, floor, ceil, step, nint, sign

The context of a configuration entry matters. If an entry cannot be found in
the expected dictionary, the MET tools recursively search for that entry in the
parent dictionaries, all the way up to the top-level configuration file
dictionary. If you’d like to apply the same setting across all cases, you can
simply specify it once at the top-level. Alternatively, you can specify a
setting at the appropriate dictionary level to have finer control over the

behavior.

In order to make the configuration files more readable, several descriptive
integer types have been defined in the ConfigConstants file. These integer

names may be used on the right-hand side for many configuration file entries.

Each of the configurable MET tools expects a certain set of configuration
entries. Examples of the MET configuration files can be found in data/config

and scripts/config.

When you pass a configuration file to a MET tool, the tool actually parses up
to four different configuration files in the following order:
(1) Reads share/met/config/ConfigConstants to define constants.
(2) If the tool produces PostScript output, it reads
share/met/config/ConfigMapData to define the map data to be plotted.
(3) Reads the default configuration file for the tool from share/met/config.

(4) Reads the user-specified configuration file from the command line.

44

CHAPTER 3. MET DATA I/0

Many of the entries from step (3) are overwritten by the user-specified entries
from step (4). Therefore, the configuration file you pass in on the command

line really only needs to contain entries that differ from the defaults.

Any of the configuration entries may be overwritten by the user-specified
configuration file. For example, the map data to be plotted may be included in
the user-specified configuration file and override the default settings defined

in the share/met/config/ConfigMapData file.

The configuration file language supports the use of environment variables. They
are specified as ${ENV_VAR}, where ENV_VAR is the name of the environment
variable. When scripting up many calls to the MET tools, you may find it
convenient to use them. For example, when applying the same configuration to
the output from multiple models, consider defining the model name as an
environment variable which the controlling script sets prior to verifying the
output of each model. Setting MODEL to that environment variable enables you

to use one configuration file rather than maintianing many very similar ones.

An error in the syntax of a configuration file will result in an error from the

MET tool stating the location of the parsing error.

The MET_BASE variable is defined in the code at compilation time as the path

to the MET shared data. These are things like the default configuration files,
common polygons and color scales. MET_BASE may be used in the MET configuration
files when specifying paths and the appropriate path will be substituted in.

If MET_BASE is defined as an environment variable, its value will be used

instead of the one defined at compilation time.

The MET_GRIB_TABLES environment variable can be set to specify the location of
custom GRIB tables. It can either be set to a specific file name or to a
directory containing custom GRIB tables files. These file names must begin with
a "gribl" or "grib2" prefix and end with a ".txt" suffix. Their format must
match the format used by the default MET GRIB table files, described below.

The custom GRIB tables are read prior to the default tables and their settings

take precedence.

At runtime, the MET tools read default GRIB tables from the installed

share/met/table_files directory, and their file formats are described below:

GRIB1 table files begin with "gribl" prefix and end with a ".txt" suffix.
The first line of the file must contain "GRIB1".

The following lines consist of 4 integers followed by 3 strings:

45

CHAPTER 3. MET DATA I/0

column 1: GRIB code (e.g. 11 for temperature)

column 2: center id (e.g. 07 for US Weather Service- National Met. Center)
column 3: subcenter id

column 4: parameter table version number

column 5: variable name

column 6: variable description

column 7: units

References:

http://www.nco.ncep.noaa.gov/pmb/docs/on388
http://www.wmo. int/pages/prog/www/WMOCodes/Guides/GRIB/GRIB1-Contents.html

GRIB2 table files begin with "grib2" prefix and end with a ".txt" suffix.
The first line of the file must contain "GRIB2".

The following lines consist of 8 integers followed by 3 strings.

column 1: Section O Discipline

column 2: Section 1 Master Tables Version Number

column 3: Section 1 Master Tables Version Number, low range of tables
column 4: Section 1 Master Table Version Number, high range of tables
column 5: Section 1 originating center

column 6: Local Tables Version Number

column 7: Section 4 Template 4.0 Parameter category

column 8: Section 4 Template 4.0 Parameter number

column 9: variable name

column 10: variable description

column 11: units

References:

http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_doc.shtml

LI111777
//

// Configuration settings used by the MET tools.

/7
LIT11777

LI1117707777777777771777
//

// Settings common to multiple tools

//
LI111777

//

CHAPTER 3. MET DATA I/0

// The "exit_on_warning" entry in ConfigConstants may be set to true or false.
// If set to true and a MET tool encounters a warning, it will immediately exit
// with bad status after writing the warning message.

//

exit_on_warning = FALSE;

//

// The "nc_compression" entry in ConfigConstants defines the compression level
// for the NetCDF variables. Setting this option in the config file of one of
// the tools overrides the default value set in ConfigConstants. The

// environment variable MET_NC_COMPRESS overrides the compression level

// from configuration file. The command line argument "-compress n" for some
// tools overrides it.

// The range is 0 to 9.

// - 0 is to disable the compression.

// - 1 to 9: Lower number is faster, higher number is better.

nc_compression = 0;

//

// The "output_precision" entry in ConfigConstants defines the precision

// (number of significant decimal places) to be written to the ASCII output
// files. Setting this option in the config file of one of the tools will
// override the default value set in ConfigConstants.

/7

output_precision = 5;

// The "tmp_dir" entry in ConfigConstants defines the directory for the

// temporary files. The directory must exist and be writable. The environment
// variable MET_TMP_DIR overrides the default value at the configuration file.
// Some tools override the temporary directory by the command line argument
// "-tmp_dir <diretory_name>".

tmp_dir = "/tmp";

//

// The "message_type_group_map" entry is an array of dictionaries, each

// containing a "key" string and "val" string. This defines a mapping of message
// type group names to a comma-separated list of values. This map is defined in
// the config files for PB2NC, Point-Stat, or Ensemble-Stat. Modify this map to
// define sets of message types that should be processed together as a group.

// The "SURFACE" entry must be present to define message types for which surface
// verification logic should be applied.

//

47

CHAPTER 3. MET DATA I/0

mesage_type_group_map = [

1;

//

{ key =

{
{
{

key
key
key

"SURFACE"; val =
"ANYAIR"; wval =
"ANYSFC"; wval =
"ONLYSF"; val =

48

"ADPSFC, SFCSHP ,MSONET" ; 3,
"ATRCAR,AIRCFT";
"ADPSFC,SFCSHP , ADPUPA ,PROFLR ,MSONET"; },
"ADPSFC, SFCSHP" ;

3,

}

// The "message_type_map" entry is an array of dictionaries, each containing

// a "key" string and "val" string.

// to output message types.

This defines a mapping of input strings

This mapping is applied in ASCII2NC when

// converting input little_r report types to output message types. This mapping

// is also supported in PBN2NC as a way of renaming input PREPBUFR message types.

//

message_type_map = [

1;

//
//
//
//
//

{

S A U g e e iy

key
key
key
key
key
key
key
key
key

"FM-12 SYNOP";
"FM-13 SHIP";
"FM-15 METAR";
"FM-18 BUOY";
"FM-281 QSCAT";
"FM-32 PILOT";
"FM-35 TEMP";
"FM-88 SATOB";
"FM-97 ACARS";

val
val
val
val
val
val
val
val

val

"ADPSFC"; }
"SFCSHP"; }
"ADPSFC"; }
"SFCSHP"; }
"ASCATW"; }
"ADPUPA"; }
"ADPUPA"; }
"SATWND"; }
"AIRCFT"; }

b
s
>
>
2
b
>
B

The "model" entry specifies a name for the model being verified. This name

is written to the MODEL column of the ASCII output generated. If you’re

verifying multiple models, you should choose descriptive model names (no

whitespace) to distinguish between their output.

// e.g. model = "GFS";

//

model = "WRF";

/7
//
!/
//
/7
//
//
!/

The "desc" entry specifies a user-specified description for each verification

task.

generated.

This string is written to the DESC column of the ASCII output

It may be set separately in each "obs.field" verification task

entry or simply once at the top level of the configuration file. If you’re

verifying the same field multiple times with different quality control

flags, you should choose description strings (no whitespace) to distinguish

between their output.

CHAPTER 3. MET DATA I/0 49

// e.g. desc = "QC_9";
//
desc = "NA";

/7

// The "obtype" entry specifies a name to describe the type of verifying gridded
// observation used. This name is written to the OBTYPE column in the ASCII

// output generated. If you’re using multiple types of verifying observations,
// you should choose a descriptive name (no whitespace) to distinguish between
// their output. When verifying against point observations the point

// observation message type value is written to the OBTYPE column. Otherwise,
// the configuration file obtype value is written.

/7

obtype = "ANALYS";

/7
// The "regrid" entry is a dictionary containing information about how to handle
// input gridded data files. The "regrid" entry specifies regridding logic

// using the following entries:

//

// - The "to_grid" entry may be set to NONE, FCST, 0BS, a named grid, the path
// to a gridded data file defining the grid, or an explicit grid specification
// string.

// - to_grid = NONE; To disable regridding.

// - to_grid = FCST; To regrid observations to the forecast grid.

// - to_grid = 0BS; To regrid forecasts to the observation grid.

// - to_grid = "G218"; To regrid both to a named grid.

// - to_grid = "path"; To regrid both to a grid defined by a file.

// - to_grid = "spec"; To define a grid specified as follows:

// - lambert Nx Ny lat_11 lon_11 lon_orient D_km R_km standard_parallel_1
// [standard_parallel_2]

// - stereo Nx Ny lat_11 lon_11 lon_orient D_km R_km lat_scale N|S

// - latlon Nx Ny lat_11 lon_11 delta_lat delta_lon

// - mercator Nx Ny lat_11 lon_11 lat_ur lon_ur

/7

// - The "vld_thresh" entry specifies a proportion between 0 and 1 to define
// the required ratio of valid data points. When regridding, compute

// a ratio of the number of valid data points to the total number of

// points in the neighborhood. If that ratio is less than this threshold,
// write bad data for the current point.

//

// - The "method" entry defines the regridding method to be used.

// - Valid regridding methods:

CHAPTER 3. MET DATA I/0

// - MIN for the minimum value
// - MAX for the maximum value
// - MEDIAN for the median value
// - UW_MEAN for the unweighted average value
// - DW_MEAN for the distance-weighted average value (weight = distance~-2)
// - LS_FIT for a least-squares fit
// - BILIN for bilinear interpolation (width = 2)
// - NEAREST for the nearest grid point (width = 1)
// - BUDGET for the mass-conserving budget interpolation
// - FORCE to compare gridded data directly with no interpolation
// as long as the grid x and y dimensions match.
// - UPPER_LEFT for the upper left grid point (width = 1)
// - UPPER_RIGHT for the upper right grid point (width = 1)
// - LOWER_RIGHT for the lower right grid point (width = 1)
// - LOWER_LEFT for the lower left grid point (width = 1)
//
// The BEST interpolation option is not valid for regridding.
//
// - The "width" entry specifies a regridding width, when applicable.
// - width = 4; To regrid using a 4x4 box or circle with diameter 4.
//
// - The "shape" entry defines the shape of the neighborhood.
// Valid values are "SQUARE" or "CIRCLE"
//
regrid = {
to_grid = NONE;
method = NEAREST;
width = 1;
vld_thresh = 0.5;
shape = SQUARE;
}
//

// The "fcst" entry is a dictionary containing information about the field(s)

// to be verified. This dictionary may include the following entries:

//

// - The "field" entry is an array of dictionaries, each specifying a
// verification task. Each of these dictionaries may include:

//

// - The "name" entry specifies a name for the field.

//

// - The "level" entry specifies level information for the field.

//

CHAPTER 3. MET DATA I/0

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
!/
//
//
//
//

- Setting "name" and "level" is file-format specific. See below.

- The "prob" entry in the forecast dictionary defines probability

information. It may either be set as a boolean (i.e. TRUE or FALSE)

or as a dictionary defining probabilistic field information.

When set as a boolean to TRUE, it indicates that the "fcst.field" data
should be treated as probabilities. For example, when verifying the
probabilistic NetCDF output of Ensemble-Stat, one could configure the
Grid-Stat or Point-Stat tools as follows:

fcst = {
field = [{ name "APCP_24_A24_ENS_FREQ_gt0.0";
level = "(*,%)";

prob = TRUE; } 1;

Setting "prob = TRUE" indicates that the "APCP_24_A24_ENS_FREQ_gt0.0"

data should be processed as probabilities.

When set as a dictionary, it defines the probabilistic field to be
used. For example, when verifying GRIB files containing probabilistic
data, one could configure the Grid-Stat or Point-Stat tools as

follows:

fecst = {
field = [{ name = "PROB"; level = "A24";
prob = { name = "APCP"; thresh_lo = 2.54; } 1},
{ name "PROB"; level = "P850";
prob = { name = "TMP"; thresh_hi = 273; } } 1;

The example above selects two probabilistic fields. In both, '"name"
is set to "PROB", the GRIB abbreviation for probabilities. The "level"
entry defines the level information (i.e. "A24" for a 24-hour
accumulation and "P850" for 850mb). The "prob" dictionary defines the
event for which the probability is defined. The "thresh_lo"

(i.e. APCP > 2.54) and/or "thresh_hi" (i.e. TMP < 273) entries are
used to define the event threshold(s).

Probability fields should contain values in the range
[0, 1] or [0, 100]. However, when MET encounters a probability field
with a range [0, 100], it will automatically rescale it to be [0, 1]

CHAPTER 3. MET DATA I/0 52

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
!/
//
//
//
//

before applying the probabilistic verification methods.

- Set "prob_as_scalar = TRUE" to override the processing of probability

data. When the "prob" entry is set as a dictionary to define the field
of interest, setting "prob_as_scalar = TRUE" indicates that this data
should be processed as regular scalars rather than probabilities.

For example, this option can be used to compute traditional 2x2
contingency tables and neighborhood verification statistics for
probability data. It can also be used to compare two probability
fields directly. When this flag is set, probability values are
automatically rescaled from the range [0, 100] to [0, 1].

The "convert" entry is a user-defined function of a single variable for
processing input data values. Any input values that are not bad data

are replaced by the value of this function. The convert function is

applied prior to regridding or thresholding. This function may include

any of the built-in math functions (e.g. sqrt, logl0O) described above.
Several standard unit conversion functions are already defined in
data/config/ConfigConstants.
Examples of user-defined conversion functions include:

convert(x) = 2*x;

convert(a) = loglO(a);

convert(t) = max(1, sqrt(abs(t)));

convert(x) = K_to_C(x); where K_to_C(x) is defined in ConfigConstants
The "censor_thresh" entry is an array of thresholds to be applied

to the input data. The "censor_val" entry is an array of numbers

and must be the same length as "censor_thresh". These arguments must
appear together in the correct format (threshold and number). For each
censor threshold, any input values meeting the threshold criteria will be
reset to the corresponding censor value. An empty list indicates that

no censoring should be performed. The censoring logic is applied

prior to any regridding but after the convert function. All statistics

are computed on the censored data. These entries may be used to apply

quality control logic by resetting data outside of an expected range to

the bad data value of -9999. These entries are not indicated in the

metadata of any output files, but the user can set the '"desc" entry

accordingly.

Examples of user-defined conversion functions include:

censor_thresh = [>12000 J];

censor_val = [12000 1;

CHAPTER 3. MET DATA I/0

// - The "cat_thresh" entry is an array of thresholds to be used when

// computing categorical statistics.

//

// - The "cnt_thresh" entry is an array of thresholds for filtering

// data prior to computing continuous statistics and partial sums.

/7

// - The "cnt_logic" entry may be set to UNION, INTERSECTION, or SYMDIFF

// and controls the logic for how the forecast and observed cnt_thresh

// settings are combined when filtering matched pairs of forecast and

// observed values.

//

// - The "file_type" entry specifies the input file type rather than letting
// the code determine it itself. For valid file_type values, see "File types"
// in the data/config/ConfigConstants file. This entry should be defined

// within the "fcst" or "obs" dictionaries.

// e.g.

// fest = {

// file_type = NETCDF_NCCF;

//

/7 3

/7

// - The "wind_thresh" entry is an array of thresholds used to filter wind

// speed values when computing VL1L2 vector partial sums. Only those U/V

// pairs that meet this wind speed criteria will be included in the sums.

// Setting this threshold to NA will result in all U/V pairs being used.

//

// - The "wind_logic" entry may be set to UNION, INTERSECTION, or SYMDIFF

// and controls the logic for how the forecast and observed wind_thresh

// settings are combined when filtering matched pairs of forecast and

// observed wind speeds.

/7

// - The "eclv_points" entry specifies the economic cost/loss ratio points

// to be evaluated. For each cost/loss ratio specified, the relative value
// will be computed and written to the ECLV output line. This entry may

// either be specified as an array of numbers between O and 1 or as a single
// number. For an array, each array entry will be evaluated. For a single
// number, all evenly spaced points between 0 and 1 will be evaluated, where
// eclv_points defines the spacing. Cost/loss values are omitted for

// ratios of 0.0 and 1.0 since they are undefined.

/7

// - The "init_time" entry specifies the initialization time in YYYYMMDD[_HH[MMSS]]
// format. This entry can be included in the "fcst" entry as shown below or

// included in the "field" entry if the user would like to use different

CHAPTER 3. MET DATA I/0 54

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
!/
//
//
//
//

initialization times for different fields.

The "valid_time" entry specifies the valid time in YYYYMMDD [_HH[MMSS]]
format. This entry can be included in the "fcst" entry as shown below or
included in the "field" entry if the user would like to use different

valid times for different fields.

The "lead_time" entry specifies the lead time in HH[MMSS]
format. This entry can be included in the "fcst" entry as shown below or
included in the "field" entry if the user would like to use different

lead times for different fields.

It is only necessary to use the "init_time", "valid_time", and/or "lead_time"
settings when verifying a file containing data for multiple output times.
For example, to verify a GRIB file containing data for many lead times, you

could use "lead_time" to specify the record to be verified.

File-format specific settings for the "field" entry:

- GRIB1 and GRIB2:
- For custom GRIB tables, see note about MET_GRIB_TABLES.
- The "name" entry specifies a GRIB code number or abbreviation.
- GRIB1 Product Definition Section:
http://www.nco.ncep.noaa.gov/pmb/docs/on388/table2.html
- GRIB2 Product Definition Section:
http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_doc.shtml
- The "level" entry specifies a level type and value:
- ANNN for accumulation interval NNN
- ZNNN for vertical level NNN
- ZNNN-NNN for a range of vertical levels
- PNNN for pressure level NNN in hPa
- PNNN-NNN for a range of pressure levels in hPa
- LNNN for a generic level type
- RNNN for a specific GRIB record number
- The "GRIB_lvl_typ" entry specifies the level type.
- The "GRIB_lvl_vall" and "GRIB_lvl_val2" entries specify the first
and second level values.
- The "GRIB_ens" entry is a string which specifies NCEP’s usage of the
extended PDS for ensembles. Set to "hi_res_ctl", "low_res_ctl", "+n",

or "-n" s

for the n-th ensemble member.
- The "GRIB1_ptv" entry specifies the GRIB1 parameter table version number.
- The "GRIB1_code" entry specifies the GRIB1 code (wgrib kpdsb value).

- The "GRIB1_center" entry specifies the originating center.

CHAPTER 3. MET DATA I/0 55

// - The "GRIB1_subcenter" entry specifies the originating subcenter.
// - The "GRIB2_disc" entry specifies the GRIB2 discipline code.
// - The "GRIB2_parm_cat" entry specifies the parameter category code.
// - The "GRIB2_parm" entry specifies the parameter code.
// - The "GRIB2_pdt" entry specifies the product definition template (Table 4.0).
// - The "GRIB2_process" entry specifies the generating process (Table 4.3).
// - The "GRIB2_cntr" entry specifies the originating center.
// - The "GRIB2_ens_type" entry specifies the ensemble type (Table 4.6).
// - The "GRIB2_der_type" entry specifies the derived product type (Table 4.7).
// - The "GRIB2_stat_type" entry specifies the statistical processing type (Table 4.10).
//
// - NetCDF (from MET tools, CF-compliant, p_interp, and wrf_interp):
// - The "name" entry specifies the NetCDF variable name.
// - The "level" entry specifies the dimensions to be used:
// - (i,...,j,*,%) for a single field, where i,...,Jj specifies fixed
// dimension values and *,* specifies the two dimensions for the
// gridded field.
// e.g.
// field = [
// {
// name = "QVAPOR";
// level = "(0,5,*%,%)";
/7 1},
// {
// name = "TMP_P850_ENS_MEAN";
// level = ["(x,x" 1,
// }
//
// 1;
//
//
fest = {
censor_thresh = [];
censor_val = [1;
cnt_thresh = [NAT;
cnt_logic = UNION;
wind_thresh = [NA];
wind_logic = UNION;
eclv_points = 0.05;
message_type = ["ADPSFC"];
init_time = "20120619_12";
valid_time = "20120620_00";

lead_time = "12";

CHAPTER 3. MET DATA I/0 56

//
!/
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
//
//
//
//
//

field = [
{
name = "APCP";
level = ["AO3" 1;
cat_thresh = [>0.0, >=5.0];
}
1

The "obs" entry specifies the same type of information as "fcst", but for
the observation data. It will often be set to the same things as "fcst",
as shown in the example below. However, when comparing forecast and
observation files of different format types, this entry will need to be set
in a non-trivial way. The length of the "obs.field" array must match the
length of the "fcst.field" array.

e.g.
obs = fcst;
or
fcst = {
censor_thresh = [];
censor_val = [1;
cnt_thresh = [NA];
cnt_logic = UNION;
wind_thresh = [NA J;
wind_logic = UNION;

field = [
{
name = "PWAT";
level = ["LO"];

cat_thresh = [>2.5 1;

obs = {
censor_thresh = [];

censor_val = [1;

CHAPTER 3. MET DATA I/0

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
!/
//
//
//
//

cnt_thresh = [NA];
cnt_logic = UNION;
wind_thresh = [NA];
wind_logic = UNION;
field = [
{
name = "IWV";
level = ["LO"];
cat_thresh = [>25.0 1;
}
1;

- The "message_type" entry is an array of point observation message types

to be used. This only applies to the tools that verify against point
observations. This may be specified once at the top-level "obs"

dictionary or separately for each "field" array element. In the example

shown above, this is specified in the "fcst" dictionary and copied to "obs".

Simplified vertical level matching logic is applied for surface message types.

Observations for the following message types are assumed to be at the surface:

ADPSFC, SFCSHP, MSONET

The "message_type" would be placed in the "field" array element if more

than one "message_type" entry is desired within the config file.

e.g.
fcst = {
censor_thresh = [];
censor_val = [1;
cnt_thresh = [NA];
cnt_logic = UNION;
wind_thresh = [NA];
wind_logic = UNION;
field = [
{
message_type = ["ADPUPA" 1;
sid_exc = [1;
name = "TMP";
level = ["p250", "P500", "P700", "P850", "P1000"];
cat_thresh = [<=273.0];

57

CHAPTER 3. MET DATA I/0

/7 +

/7

// message_type = ["ADPSFC"];

// sid_exc = ["KDEN", "KDET"];

// name = "TMP";

// level = ["zZ2" 1;

// cat_thresh = [<=273.0];

// 3

// 1;

/7 }

//

// - The "sid_exc" entry is an array of station ID groups indicating which

// station ID’s should be excluded from the verification tasks. Each element
// is either the name of a single station ID or the full path to a station ID
// group file name. A station ID group file consists of a name for the group
// followed by a list of station ID’s. All of the station ID’s indicated will
// be placed into one long list of station ID’s to be excluded.

// As with "message_type" above, the "sid_exc" setting can be placed in the
// in the "field" array element to control which station ID’s are excluded
// for each verification task.

/7

obs = fcst;

/7

// The "climo_mean" dictionary specifies climatology data to be read by the

// Grid-Stat, Point-Stat, and Ensemble-Stat tools. It consists of several

// entires defining the climatology file names and fields to be used.

/7

// - The "file_names" entry specifies one or more file names containing

// the gridded climatology data to be used.

/7

// The "field" entry is an array of dictionaries, specified the same

// way as those in the "fcst" and "obs" dictionaries. If the array has

// length zero, not climatology data will be read and all climatology

// statistics will be written as missing data. Otherwise, the array

// length must match the length of "field" in the "fcst" and "obs"

// dictionaries.

//

// The "regrid" dictionary defines how the climatology data should be

// regridded to the verification domain.

//

// The "time_interp_method" entry specifies how the climatology data should
// be interpolated in time to the forecast valid time:

CHAPTER 3. MET DATA I/0

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//

- NEAREST for data closest in time
- UW_MEAN for average of data before and after

- DW_MEAN for linear interpolation in time of data before and after

- The "match_day" entry may be set to TRUE or FALSE. When searching
climatology data, only consider times where the month matches the
forecast valid month. Set match_day to TRUE or FALSE to define whether
the climatology day must also match.

- match_day = FALSE for monthly climatology
- match_day = TRUE for daily climatology

- The "time_step" entry specifies the spacing of climatology data in
seconds. Set to 60*60*6 = 21600 for 6-hourly data or 60*60 = 3600
for hourly data.

climo_mean = {

//
//
/7
//
/7
//
!/
!/
/7
//

file_name = [];

field = [1;

regrid = {
method = NEAREST;
width =1;
vld_thresh = 0.5;

}

time_interp_method = DW_MEAN;
FALSE;
21600;

match_day

time_step

The "climo_stdev" dictionary specifies climatology standard deviation data to
be read by the Grid-Stat and Point-Stat tools. This data is used to subset
matched pairs into climatological bins based on where the observation value
falls within the climatological distribution. This dictionary is identical
to the "climo_mean" dictionary described above but points to files containing
climatological spread values rather than means. In the example below, this
dictionary is set by copying over the '"climo_mean" setting and then updating

the "file_name" entry.

climo_stdev = climo_mean;

climo_stdev = {

59

CHAPTER 3. MET DATA I/0 60

//
//
//
//
/7
//
//
//
!/
//
//
//
//
//

climo_cdf_bins

file_name = ["/path/to/climatological/standard/deviation"];

The "climo_cdf_bins" entry should be set either to an integer or an array of
floats between O and 1. When climatological mean and standard deviation data
are provided, this entry defines how matched pairs should be subset into
climatological bins. MET uses the climatological mean and standard deviation
to construct a normal PDF at each observation location. The total area under
the PDF is 1. When set to an integer, this entry specifies the number of
equal-area climatological bins to be used. For example, a value of 10
results in 10 bins, each representing 10% of the area under the PDF.
Alternatively, this entry may be set to an array of floats to explicitly
define non-equal area climatological bins. If set to an array, it must begin
with 0.0 and end with 1.0. Examples of both options are shown below.

Setting the number of bins to 1 effectively disables this logic.

1

climo_cdf_bins = [0.0, 0.10, 0.25, 0.75, 0.90, 1.0];

//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//

!/
//
/7
//
//
!/

The binned climatology logic described above is applied only when verifying
probability forecasts. When specifying climatology data for probability
forecasts, either supply a probabilistic climo_mean field or
non-probabilistic climo_mean and climo_stdev fields from which a normal

approximation of the climatological probabilities should be derived.

When climo_mean is set to a probability field with a range of [0, 1] and
climo_stdev is unset, the MET tools use the climo_mean probability values

directly to compute Brier Skill Score (BSS).

When climo_mean and climo_stdev are both set to non-probability fields, the
MET tools use the mean, standard deviation, and observation event threshold
to derive a normal approximation of the climatological probabilities. Those

derived probability values are used to compute BSS.

The "mask_missing_flag" entry specifies how missing data should be handled
in the Wavelet-Stat and MODE tools:

- "NONE" to perform no masking of missing data

- "FCST" to mask the forecast field with missing observation data

- "0BS" to mask the observation field with missing forecast data

- "BOTH" to mask both fields with missing data from the other

CHAPTER 3. MET DATA I/0 61

!/

mask_missing_flag = BOTH;

//
//
//
//
/7
!/
/7
//

The "obs_window" entry is a dictionary specifying a beginning ("beg"

entry) and ending ("end" entry) time offset values in seconds. It defines
the time window over which observations are retained for scoring. These time
offsets are defined relative to a reference time t, as [t+beg, t+end].

In PB2NC, the reference time is the PREPBUFR files center time. In

Point-Stat and Ensemble-Stat, the reference time is the forecast valid time.

obs_window = {

//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
//
//
//
//
!/
//
//
//
//
//

beg = -5400;

5400;

end

The "mask" entry is a dictionary that specifies the verification masking
regions to be used when computing statistics. Each mask defines a

geographic extent, and any matched pairs falling inside that area will be
used in the computation of statistics. Masking regions may be specified

in the following ways:

- The "grid" entry is an array of named grids. It contains a
comma-separated list of pre-defined NCEP grids over which to perform
verification. An empty list indicates that no masking grids should be
used. The standard NCEP grids are named "GNNN" where NNN indicates the
three digit grid number. Supplying a value of "FULL" indicates that the
verification should be performed over the entire grid on which the data
resides.
http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.html
The "grid" entry can be the gridded data file defining grid.

- The "poly" entry contains a comma-separated list of files that define
verification masking regions. These masking regions may be specified in
two ways: as a lat/lon polygon or using a gridded data file such as the

NetCDF output of the Gen-Vx-Mask tool.

- An ASCII file containing a lat/lon polygon.
Latitude in degrees north and longitude in degrees east.
The first and last polygon points are connected.
e.g. "MET_BASE/poly/EAST.poly" which consists of n points:
"poly_name latl lonl lat2 lon2... latn lonn"

CHAPTER 3. MET DATA I/0

/7
// Several masking polygons used by NCEP are predefined in the
// installed share/met/poly directory. Creating a new polygon is as
// simple as creating a text file with a name for the polygon followed
// by the lat/lon points which define its boundary. Adding a new masking
// polygon requires no code changes and no recompiling. Internally, the
// lat/lon polygon points are converted into x/y values in the grid. The
// lat/lon values for the observation points are also converted into x/y
// grid coordinates. The computations performed to check whether the
// observation point falls within the polygon defined is done in x/y
// grid space.
//
// - The NetCDF output of the gen_vx_mask tool.
//
// - Any gridded data file that MET can read may be used to define a
// verification masking region. Users must specify a description of the
// field to be used from the input file and, optionally, may specify a
// threshold to be applied to that field. Once this threshold is applied,
// any grid point where the resulting field is O, the mask is turned off.
// Any grid point where it is non-zero, the mask is turned on.
// e.g. "sample.grib {name = \"TMP\"; level = \"Z2\";} >273"
//
// - The "sid" entry is an array of strings which define groups of
// observation station ID’s over which to compute statistics. Each entry
// in the array is either a filename of a comma-separated list.
// - For a filename, the strings are whitespace-separated. The first
// string is the mask "name" and the remaining strings are the station
// ID’s to be used.
// - For a comma-separated list, optionally use a colon to specify a name.
// For "MY_LIST:SID1,SID2", name = MY_LIST and values = SID1 and SID2.
// - For a comma-separated list of length one with no name specified, the
// mask "name" and value are both set to the single station ID string.
// For "SID1", name = SID1 and value = SIDI1.
// - For a comma-separated list of length greater than one with no name
// specified, the name is set to MASK_SID and the values are the station
// ID’s to be used.
// For "SID1,SID2", name = MASK_SID and values = SID1 and SID2.
// - The "name" of the station ID mask is written to the VX_MASK column
// of the MET output files.
/7
mask = {

grid = ["FULL" 1;

poly

= ["MET_BASE/poly/LMV.poly",

62

CHAPTER 3. MET DATA I/0

/7
!/
/7
//
!/
//

ci_

//
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
//
//
//
//
//

"MET_BASE/out/gen_vx_mask/CONUS_poly.nc",
"MET_BASE/sample_fcst/2005080700/wrfprs_rucl13_12.tm00_G212 \
{name = \"TMP\"; level = \"Z2\";} >273"
1;
sid = ["CONUS.stations"];

The "ci_alpha" entry is an array of floats specifying the values for alpha

to be used when computing confidence intervals. Values of alpha must be

between 0 and 1. The confidence interval computed is 1 minus the alpha value.

Therefore, an alpha value of 0.05 corresponds to a 95} confidence interval.

alpha = [0.05, 0.10 1;

The "boot" entry defines the parameters to be used in calculation of
bootstrap confidence intervals. The interval variable indicates what method

should be used for computing bootstrap confidence intervals:

- The "interval" entry specifies the confidence interval method:
- "BCA" for the BCa (bias-corrected percentile) interval method is
highly accurate but computationally intensive.
- "PCTILE" uses the percentile method which is somewhat less accurate

but more efficient.

- The "rep_prop" entry specifies a proportion between O and 1 to define
the replicate sample size to be used when computing percentile
intervals. The replicate sample size is set to boot_rep_prop * n,

where n is the number of raw data points.

When computing bootstrap confidence intervals over n sets of matched
pairs, the size of the subsample, m, may be chosen less than or equal to
the size of the sample, n. This variable defines the size of m as a
proportion relative to the size of n. A value of 1 indicates that the

size of the subsample, m, should be equal to the size of the sample, n.

- The "n_rep" entry defines the number of subsamples that should be taken
when computing bootstrap confidence intervals. This variable should be
set large enough so that when confidence intervals are computed multiple
times for the same set of data, the intervals do not change much.
Setting this variable to zero disables the computation of bootstrap

confidence intervals, which may be necessary to run MET in realtime or

63

CHAPTER 3. MET DATA I/0 64

// near-realtime over large domains since bootstrapping is computationally
// expensive. Setting this variable to 1000 indicates that bootstrap

// confidence interval should be computed over 1000 subsamples of the

// matched pairs.

//

// - The "rng" entry defines the random number generator to be used in the

// computation of bootstrap confidence intervals. Subsamples are chosen at
// random from the full set of matched pairs. The randomness is determined
// by the random number generator specified. Users should refer to detailed
// documentation of the GNU Scientific Library for a listing of the random
// number generators available for use.

// http://www.gnu.org/software/gsl/manual/html_node/Random-Number-Generator-Performance.html
/7

// - The "seed" entry may be set to a specific value to make the computation
// of bootstrap confidence intervals fully repeatable. When left empty

// the random number generator seed is chosen automatically which will lead
// to slightly different bootstrap confidence intervals being computed each
// time the data is run. Specifying a value here ensures that the bootstrap
// confidence intervals will be reproducable over multiple runs on the same
// computing platform.

/7

boot = {

//
!/
/7
//
/7
//
/7
//
!/
!/
/7
//
//
//

interval = PCTILE;
rep_prop = 1.0;

n_rep = 0;

rng = "mt19937";

seed = .

The "interp" entry is a dictionary that specifies what interpolation or
smoothing (for the Grid-Stat tools) methods should be applied.

This dictionary may include the following entries:

- The "field" entry specifies to which field(s) the interpolation method
should be applied. This does not apply when doing point verification
with the Point-Stat or Ensemble-Stat tools:

- "FCST" to interpolate/smooth the forecast field.
- "OBS" to interpolate/smooth the observation field.
- "BOTH" to interpolate/smooth both the forecast and the observation.

- The "vld_thresh" entry specifies a number between O and 1. When

performing interpolation over some neighborhood of points the ratio of

CHAPTER 3. MET DATA I/0 65

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
!/
//
//
//
//

the number of valid data points to the total number of points in the
neighborhood is computed. If that ratio is less than this threshold,

the matched pair is discarded. Setting this threshold to 1, which is the
default, requires that the entire neighborhood must contain valid data.
This variable will typically come into play only along the boundaries of

the verification region chosen.

The "shape" entry may be set to SQUARE or CIRCLE to specify the shape

of the smoothing area.

The "type" entry is an array of dictionaries, each specifying an
interpolation method. Interpolation is performed over a N by N box
centered on each point, where N is the width specified. Each of these

dictionaries must include:

- The "width" entry is an integer which specifies the size of the
interpolation area. The area is either a square or circle containing
the observation point. The width value specifies the width of the
square or diameter of the circle. A width value of 1 is interpreted
as the nearest neighbor model grid point to the observation point.
For squares, a width of 2 defines a 2 x 2 box of grid points around
the observation point (the 4 closest model grid points), while a width
of 3 defines a 3 x 3 box of grid points around the observation point,
and so on. For odd widths in grid-to-point comparisons
(i.e. Point-Stat), the interpolation area is centered on the model
grid point closest to the observation point. For grid-to-grid

comparisons (i.e. Grid-Stat), the width must be odd.

- The "method" entry specifies the interpolation procedure to be

applied to the points in the box:

- MIN for the minimum value

- MAX for the maximum value

- MEDIAN for the median value

- UW_MEAN for the unweighted average value

- DW_MEAN for the distance-weighted average value
where weight = distance™-2

- LS_FIT for a least-squares fit

- BILIN for bilinear interpolation (width = 2)

- NEAREST for the nearest grid point (width = 1)

- BEST for the value closest to the observation

- UPPER_LEFT for the upper left grid point (width = 1)
- UPPER_RIGHT for the upper right grid point (width = 1)
- LOWER_RIGHT for the lower right grid point (width = 1)

CHAPTER 3. MET DATA I/0

// - LOWER_LEFT for the lower left grid point (width = 1)
/7
// The BUDGET and FORCE regridding options are not valid for
// interpolating. For grid-to-grid comparisons, the only valid options
// are MIN, MAX, MEDIAN, and UW_MEAN.
/7
interp = {

field = BOTH;

vld_thresh = 1.0;

shape = SQUARE;

type = [

{
method = UW_MEAN;
width = 1;
X

1;
3
//
// The "nbrhd" entry is a dictionary that is very similar to the "interp"
// entry. It specifies information for computing neighborhood statistics in
// Grid-Stat. This dictionary may include the following entries:
/7
// - The "field" entry specifies to which field(s) the computation of
// fractional coverage should be applied. Grid-Stat processes each
// combination of categorical threshold and neighborhood width to
// derive the fractional coverage fields from which neighborhood
// statistics are calculated. Users who have computed fractional
// coverage fields outside of MET can use this option to disable
// these computations. Instead, the raw input values will be
// used directly to compute neighborhood statistics:
// - "BOTH" to compute fractional coverage for both the forecast
// and the observation fields (default).
// - "FCST" to only process the forecast field.
// - "OBS" to only process the observation field.
// - "NONE" to process neither field.
//
// - The "vld_thresh" entry is described above.
/7
// - The "shape" entry defines the shape of the neighborhood.
// Valid values are "SQUARE" or "CIRCLE"

//

CHAPTER 3. MET DATA I/0

// - The "width" entry is as described above, and must be odd.
/7
// - The "cov_thresh" entry is an array of thresholds to be used when
// computing categorical statistics for the neighborhood fractional
// coverage field.
/7
nbrhd = {
field = BOTH;
vld_thresh = 1.0;
shape = SQUARE;
width =[11;
cov_thresh = [>=0.5 1;
}
//
// The "fourier" entry is a dictionary which specifies the application of the
// Fourier decomposition method. It consists of two arrays of the same length
// which define the beginning and ending wave numbers to be included. If the
// arrays have length zero, no Fourier decomposition is applied. For each array
// entry, the requested Fourier decomposition is applied to the forecast and
// observation fields. The beginning and ending wave numbers are indicated in
// the MET ASCII output files by the INTERP_MTHD column (e.g. WV1_0-3 for waves
// 0 to 3 or WV1_10 for only wave 10). This 1-dimensional Fourier decomposition
// is computed along the Y-dimension only (i.e. the columns of data). It is only
// defined when each grid point contains valid data. If either input field
// contains missing data, no Fourier decomposition is computed.
//
// The available wave numbers start at O (the mean across each row of data)
// and end at (Nx+1)/2 (the finest level of detail), where Nx is the X-dimension
// of the verification grid:
/7
// - The "wave_ld_beg" entry is an array of integers specifying the first
// wave number to be included.
//
// - The "wave_ld_end" entry is an array of integers specifying the last
// wave number to be included.
//

fourier = {

//

wave_1d_beg = [0, 4, 10 1;
[3, 9, 20 1;

wave_1d_end

CHAPTER 3. MET DATA I/0

// The "hira" entry is a dictionary that is very similar to the "interp" and

// "nbrhd" entries. It specifies information for applying the High Resolution
// Assessment (HiRA) verification logic in Point-Stat. HiRA is analogous to

// neighborhood verification but for point observations. The HiRA logic

// converts scalar forecast values into a fractional coverage value which

// Point-Stat evaluates as if it were a probability forecast. For each

// observation value, the forecast fractional coverage is computed as the ratio
// of forecast values around the observation that meet the categorical forecast
// threshold criteria. If applying HiRA, users should enable matched pair or
// probabilistic line types (MPR, PCT, PSTD, PJC, or PRC) in the output_flag

// dictionary. The number of HiRA output lines is determined by the number of
// categorical forecast thresholds and HiRA neighborhood widths chosen.

// This dictionary may include the following entries:

//
// - The "flag" entry is a boolean which toggles "hira"
// on (TRUE) and off (FALSE).
/7
// - The "width" entry specifies the neighborhood size. Since HiRA applies
// to point observations, the width may be even or odd.
/7
// - The "vld_thresh" entry is as described above.
//
// - The "cov_thresh" entry is an array of probabilistic thresholds used to
// populate the Nx2 probabilistic contingency table written to the PCT
// output line and used for computing probabilistic statistics.
//
// - The "shape" entry defines the shape of the neighborhood.
// Valid values are "SQUARE" or "CIRCLE"
//
hira = {
flag = FALSE;
width =[2, 3, 4,51;
vld_thresh = 1.0;
cov_thresh = [==0.25];
shape = SQUARE;
}
//

// The "output_flag" entry is a dictionary that specifies what verification

// methods should be applied to the input data. Options exist for each

// output line type from the MET tools. Each line type may be set to one of:
// - "NONE" to skip the corresponding verification method

// - "STAT" to write the verification output only to the ".stat" output file

68

CHAPTER 3. MET DATA I/0 69

!/
//
//

- "BOTH" to write to the ".stat" output file as well the optional
"_type.txt" file, a more readable ASCII file sorted by line type.

output_flag = {

//
//
//
//
//
//
//
//
//
//
//

fho = BOTH; // Forecast, Hit, Observation Rates
ctc = BOTH; // Contingency Table Counts
cts = BOTH; // Contingency Table Statistics
mctc = BOTH; // Multi-category Contingency Table Counts
mcts = BOTH; // Multi-category Contingency Table Statistics
cnt = BOTH; // Continuous Statistics
s1112 = BOTH; // Scalar L1L2 Partial Sums
salll2 = BOTH; // Scalar Anomaly L1L2 Partial Sums when climatological data is supplied
v1112 = BOTH; // Vector L1L2 Partial Sums
valll2 = BOTH; // Vector Anomaly L1L2 Partial Sums when climatological data is supplied
pct = BOTH; // Contingency Table Counts for Probabilistic Forecasts
pstd = BOTH; // Contingency Table Statistics for Probabilistic Forecasts with
// Dichotomous outcomes
pjc = BOTH; // Joint and Conditional Factorization for Probabilistic Forecasts
prc = BOTH; // Receiver Operating Characteristic for Probabilistic Forecasts
eclv = BOTH; // Economic Cost/Loss Value derived from CTC and PCT lines
mpr = BOTH; // Matched Pair Data

nbrctc = BOTH; // Neighborhood Contingency Table Counts
nbrcts = BOTH; // Neighborhood Contingency Table Statistics
nbrcnt = BOTH; // Neighborhood Continuous Statistics

isc = BOTH; // Intensity-Scale

rhist = BOTH; // Rank Histogram

phist = BOTH; // Probability Integral Transform Histogram
orank = BOTH; // Observation Rank

ssvar = BOTH; // Spread Skill Variance

grad = BOTH; // Gradient statistics (S1 score)

The "nc_pairs_flag" can be set either to a boolean value or a dictionary
in either Grid-Stat, Wavelet-Stat or MODE. The dictionary (with slightly
different entries for the various tools ... see the default config files)
has individual boolean settings turning on or off the writing out of the
various fields in the netcdf output file for the tool. Setting all

dictionary entries to false means the netcdf file will not be generated.

"nc_pairs_flag" can also be set to a boolean value. In this case, a value
of true means to just accept the default settings (which will turn on

the output of all the different fields). A value of false means no

CHAPTER 3. MET DATA I/0

// netcdf output will be generated.

/7

nc_pairs_flag = {
latlon = TRUE;
raw = TRUE;
diff = TRUE;
climo = TRUE;
weight = FALSE;
nbrhd = FALSE;
fourier = FALSE;
gradient = FALSE;
apply_mask = TRUE;

}

//

// The "nc_pairs_var_str" entry specifies a string for each verification task
// in Grid-Stat. This string is parsed from each "obs.field" dictionary entry
// and is used to customize the variable names written to the NetCDF matched
// pairs output file. The default is an empty string, meaning that no

// customization is applied to the output variable names. When the Grid-Stat
// config file contains two fields with the same name and level value, this

// entry is used to make the resulting variable names unique.

// e.g. nc_pairs_var_str = "MIN";

/7

nc_pairs_var_str = "";

//

// The "ps_plot_flag" entry is a boolean value for Wavelet-Stat and MODE
// indicating whether a PostScript plot should be generated summarizing
// the verification.

ps_plot_flag = TRUE;

//

// The "grid_weight_flag" specifies how grid weighting should be applied

// during the computation of continuous statistics and partial sums. It is

// meant to account for grid box area distortion and is often applied to global
// Lat/Lon grids. It is only applied for grid-to-grid verification in Grid-Stat
// and Ensemble-Stat and is not applied for grid-to-point verification.

// Three grid weighting options are currently supported:

//
// - "NONE" to disable grid weighting using a constant weight (default).
// - "COS_LAT" to define the weight as the cosine of the grid point latitude.

// This an approximation for grid box area used by NCEP and WMO.

CHAPTER 3. MET DATA I/0 71

// - "AREA" to define the weight as the true area of the grid box (km~2).

//

// The weights are ultimately computed as the weight at each grid point divided
// by the sum of the weights for the current masking region.

//

grid_weight_flag = NONE;

//

// The "rank_corr_flag" entry is a boolean to indicate whether Kendall’s Tau
// and Spearman’s Rank Correlation Coefficients (in the CNT line type) should
// be computed. Computing them over large datasets is computationally

// intensive and slows down the runtime significantly.

/7

rank_corr_flag = FALSE;

/7
// The "duplicate_flag" entry specifies how to handle duplicate point

// observations in Point-Stat and Ensemble-Stat:

//

// - "NONE" to use all point observations (legacy behavior)

// - "UNIQUE" only use a single observation if two or more observations match.
// Matching observations are determined if they contain identical

// latitude, longitude, level, elevation, and time information.

// They may contain different observation values or station IDs

/7

// The reporting mechanism for this feature can be activated by specifying
// a verbosity level of three or higher. The report will show information
// about where duplicates were detected and which observations were used
// in those cases.

//

duplicate_flag = NONE;

//

// The "obs_summary" entry specifies how to compute statistics on

// observations that appear at a single location (lat,lon,level,elev)
// in Point-Stat and Ensemble-Stat. Eight techniques are

// currently supported:

!/

// - "NONE" to use all point observations (legacy behavior)
// - "NEAREST" use only the observation that has the valid

// time closest to the forecast valid time

// - "MIN" use only the observation that has the lowest value

// - "MAX" use only the observation that has the highest value

CHAPTER 3. MET DATA I/0 72

// - "UW_MEAN" compute an unweighted mean of the observations

// - "DW_MEAN" compute a weighted mean of the observations based

// on the time of the observation

// - "MEDIAN" use the median observation

// - "PERC" use the Nth percentile observation where N = obs_perc_value
//

// The reporting mechanism for this feature can be activated by specifying
// a verbosity level of three or higher. The report will show information
// about where duplicates were detected and which observations were used
// in those cases.

//

obs_summary = NONE;

//
// Percentile value to use when obs_summary = PERC
//

obs_perc_value = 50;

//

// The "obs_quality" entry specifies the quality flag values that are to be
// retained and used for verification. An empty list signifies that all

// point observations should be used, regardless of their quality flag value.
// The quality flag values will vary depending on the original source of the
// observations. The quality flag values to retain should be specified as
// an array of strings, even if the values themselves are numeric.

//

obs_quality = ["1", "2n n3n_ ngm T,

//

// The "met_data_dir" entry specifies the location of the internal MET data
// sub-directory which contains data files used when generating plots. It
// should be set to the installed share/met directory so the MET tools can
// locate the static data files they need at run time.

//

met_data_dir = "MET_BASE";

//

// The "fcst_raw_plot" entry is a dictionary used by Wavelet-Stat and MODE
// containing colortable plotting information for the plotting of the raw
// forecast field:

//

// - The "color_table" entry specifies the location and name of the

// colortable file to be used.

CHAPTER 3. MET DATA I/0 73

/7

// - The "plot_min" and "plot_max" entries specify the range of data values.
// If they are both set to 0O, the MET tools will automatically rescale

// the colortable to the range of values present in the data. If they

// are not both set to O, the MET tools will rescale the colortable using
// their values.

//

fcst_raw_plot = {
color_table = "MET_BASE/colortables/met_default.ctable";
plot_min = 0.0;
plot_max = 0.0;

//
// The "obs_raw_plot", "wvlt_plot", and "object_plot" entries are dictionaries

// similar to the "fcst_raw_plot" described above.

//

//

// The "tmp_dir" entry is a string specifying the location where temporary
// files should be written.

//

tmp_dir = "/tmp";

/7

// The "output_prefix" entry specifies a string to be included in the output
// file name. The MET statistics tools construct output file names that

// include the tool name and timing information. You can use this setting

// to modify the output file name and avoid naming conflicts for multiple runs
// of the same tool.

/7

output_prefix = "";

//

// The "version" entry specifies the version number of the configuration file.
// The configuration file version number should match the version number of
// the MET code being run. This value should generally not be modified.

//

version = "V6.0";

[I110777777777777777777777177777777777777177777777777777777777777777777777777777
//

// Settings specific to individual tools

CHAPTER 3. MET DATA I/0 74

!/
LI1177

II071177077777777177777777777777777777777777777777777771777771777777777777177777
/7

// Ascii2NcConfig_default

//

// A configuration file may be passed to the ascii2nc tool with the "-config"

// command line argument. If not specified, the default configuration file

// will be used.

//
IIT717770771777771777777771777177777

//

// This feature was implemented to allow additional processing of observations
// with high temporal resolution. The "flag" entry toggles the "time_summary"

// on (TRUE) and off (FALSE). O0bs may be summarized across the user specified
// time period defined by the "beg" and "end" entries. The "step" entry defines
// the time between intervals in seconds. The "width" entry specifies the width

// of the summary interval in seconds.

//

// e.g. beg = "00";

// end = "235959";
// step = 300;

// width = 600;

//

// This example does a 10-minute time summary every 5 minutes throughout the

// day. The first interval will be from 23:55:00 the previous day through

// 00:04:59 of the current day. The second interval will be from 0:00:00

// through 00:09:59. And so on.

/7

// The summaries will only be calculated for the specified GRIB codes.

// The supported summaries are "min" (minimum), "max" (maximum), "range",

// "mean", '"stdev" (standard deviation), "median" and "p##" (percentile, with
// the desired percentile value specified in place of ##).

/7

// The "vld_freq" and "vld_thresh" options may be used to require that a certain
// ratio of observations must be present and contain valid data within the time
// window in order for a summary value to be computed. The "vld_freq" entry

// defines the expected observation frequency in seconds. For example, when

// summarizing l1-minute data (vld_freq = 60) over a 30 minute time window,

// setting "vld_thresh = 0.5" requires that at least 15 of the 30 expected

// observations be present and valid for a summary value to be written. The

CHAPTER 3. MET DATA I/0 75

!/
//
//
//
//
//
//
/7
ti

//
//
//
//
//

//
//
//
//
//
//
/7
//
//
//
!/
!/
//
//
//
//

default "vld_thresh = 0.0" setting will skip over this logic.

The variable names are saved to NetCDF file if they are given instead of
grib_codes which are not available for non GRIB input. The "obs_var" option
was added and works like "grib_code" option (string value VS. int value).
They are inclusive (union). All variables are included if both options

are empty. Note: grib_code 11 is equivalent to obs_var "TMP".

me_summary = {
flag = FALSE;

beg = "000000";
end = "235959";

step = 300;

width = 600;

grib_code = [11, 204, 211];

obs_var = [];

type = "min", "max", "range", "mean", "stdev", "median", "p80" 1;
vld_freq = 0;

vld_thresh = 0.0;

[ITT77777777777777777777717777777777777777777777777777177777777777771777777777

EnsembleStatConfig_default

[IT177

The "ens"

entry is a dictionary that specifies the fields for which ensemble
products should be generated. This is very similar to the "fcst" and "obs"

entries. This dictionary may include the following entries:

- The "censor_thresh" and "censor_val" entries are described above.

- The "ens_thresh" entry specifies a proportion between O and 1 to define
the required ratio of valid input ensemble member files. If the ratio
of valid input ensemble files to expected ones is too low, the tool

will error out.

- The "vld_thresh" entry specifies a proportion between 0 and 1 to
define the required ratio of valid data points. When computing
ensemble products, if the ratio of valid data values is too low, the

ensemble product will be set to bad data for that point.

CHAPTER 3. MET DATA I/0 76

!/
// - The "field" entry is as described above. However, in this case, the
// cat_thresh entry is used for calculating probabilities of exceeding
// the given threshold. In the default shown below, the probability of
// accumulated precipitation > 0.0 mm and > 5.0 mm will be calculated
// from the member accumulated precipitation fields and stored as an
// ensemble field.
//
ens = {
censor_thresh = [1;
censor_val = [1;
ens_thresh =1.0;
vld_thresh =1.0;
field = [
{
name = "APCP";
level = "AQ3";

cat_thresh = [>0.0, >=5.0];

/7
// The fcst and obs entries define the fields for which Ensemble-Stat should
// compute rank histograms, probability integral transform histograms,
// spread-skill variance, relative position histograms, economic value, and
// other statistics.
//
// The "ens_ssvar_bin_size" entry sets the width of the variance bins. Smaller
// bin sizes provide the user with more flexibility in how data are binned
// during analysis. The actual variance of the ensemble data will determine the
// number of bins written to the SSVAR output lines.
//
// The "ens_phist_bin_size" is set to a value between 0 and 1. The number of
// bins for the probability integral transform histogram in the PHIST line type
// is defined as the ceiling of 1.0 / ens_phist_bin_size. For example, a bin
// size of 0.05 results in 20 PHIST bins.
/7
fest = {
message_type = ["ADPUPA"];
ens_ssvar_bin_size = 1;

ens_phist_bin_size = 0.05;

CHAPTER 3. MET DATA I/0

field = [
{
name = "APCP";
level = ["AO3" 1;
}
1
}
//

// The "nc_var_str" entry specifies a string for each ensemble field and

// verification task in Ensemble-Stat. This string is parsed from each

// "ens.field" and "obs.field" dictionary entry and is used to customize

// the variable names written to the NetCDF output file. The default is an

// empty string, meaning that no customization is applied to the output variable
// names. When the Ensemble-Stat config file contains two fields with the same
// name and level value, this entry is used to make the resulting variable names
// unique.

// e.g. nc_var_str = "MIN";

/7

nc_var_str = "";

//

// The "obs_thresh" entry is an array of thresholds for filtering observation

// values prior to applying ensemble verification logic. The default setting

// of NA means that no observations should be filtered out. Verification output
// will be computed separately for each threshold specified. This option may be
// set separately for each obs.field entry.

//

obs_thresh = [NA];

//

// Setting "skip_const" to true tells Ensemble-Stat to exclude pairs where all the

// ensemble members and the observation have a constant value. For example,

// exclude points with zero precipitation amounts from all output line types.

// This option may be set separately for each obs.field entry. When set to false,
// constant points are included and the observation rank is chosen at random.

//

skip_const = FALSE;

//
// The "ensemble_flag" entry is a dictionary of boolean value indicating

// which ensemble products should be generated:

7

CHAPTER 3. MET DATA I/0 78

// - "mean" for the simple ensemble mean
// - "stdev" for the ensemble standard deviation
// - "minus" for the mean minus one standard deviation
// - "plus" for the mean plus one standard deviation
p p
// - "min" for the ensemble minimum
// - "max" for the ensemble maximum
// - "range" for the range of ensemble values
// - "vld_count" for the number of valid ensemble members
// - "frequency" for the ensemble relative frequency meeting a threshold
// - "rank" to write the rank for the gridded observation field to separate
// NetCDF output file.
p

// - "weight" to write the grid weights specified in grid_weight_flag to the
// rank NetCDF output file.
//
ensemble_flag = {

mean = TRUE;

stdev = TRUE;

minus = TRUE;

plus = TRUE;

min = TRUE;

max = TRUE;

range = TRUE;

vld_count = TRUE;
frequency = TRUE;
rank = TRUE;
weight = FALSE;

//
// Random number generator used for random assignment of ranks when they
// are tied.
// http://www.gnu.org/software/gsl/manual/html_node/Random-Number-Generator-Performance.html
//
rng = {
type = "mt19937";

seed = "";

LIT177
//

// MODEAnalysisConfig_default

//
LIT177

CHAPTER 3. MET DATA I/0 79

//
//
//
//
/7
//
/7
//

//
//
//
//
//

MODE line options are used to create filters that determine which MODE output lines
lines are read in and processed. The MODE line options are numerous. They fall into
seven categories: toggles, multiple set string options, multiple set integer optioms,
integer max/min options, date/time max/min options, floating-point max/min options, and
miscellaneous options. In order to be applied, the options must be uncommented (i.e.

remove the "//" marks) before running. These options are described in subsequent sections.

Toggles: The MODE line options described in this section are shown in pairs. These
toggles represent parameters that can have only one (or none) of two values. Any
of these toggles may be left unspecified. However, if neither option for toggle is

indicated, the analysis will produce results that combine data from both toggles.

// This may produce unintended results.

/7

//

// This toggle indicates whether forecast or observed lines should be used for analysis.
/7

fcst = FALSE;

obs = FALSE;

/7

// This toggle indicates whether single object or object pair lines should be used.
//

single = FALSE;

pair = FALSE;

/7

// This toggle indicates whether simple object or object cluster object lines should be used.
//

simple = FALSE;

cluster = FALSE;

//

// This toggle indicates whether matched or unmatched object lines should be used.
/7

matched = FALSE;

unmatched = FALSE;

//

CHAPTER 3. MET DATA I/0 80

// Multiple-set string options: The following options set various string attributes. They
// can be set multiple times on the command line but must be separated by spaces. Each of
// these options must be indicated as a string. String values that include spaces may be

// used by enclosing the string in quotation marks.

//

//

// This options specifies which model to use
//
//model = [];

//
// These two options specify thresholds for forecast and observations objects to be used in

// the analysis, respectively.

//
//fcst_thr = [1;
//obs_thr = [];
//

// These options indicate the names of variables to be used in the analysis for forecast
// and observed fields.

//

//fcst_var = [];

//obs_var = [];

//

// These options indicate vertical levels for forecast and observed fields to be used in
// the analysis.

//

//fcst_lev = [];

//obs_lev = [];

/!
// Multiple-set integer options: The following options set various integer attributes.

// Each of the following options may only be indicated as an integer.

//

//

// These options are integers of the form HH[MMSS] specifying an (hour-minute-second)
// lead time.

//

//fcst_lead [1;

//obs_lead = [1;

CHAPTER 3. MET DATA I/0 81

//

// These options are integers of the form HH[MMSS] specifying an (hour-minute-second)
// valid hour.

//

//fcst_valid_hour = [1;

//obs_valid_hour = [];

//
// These options are integers of the form HH[MMSS] specifying an (hour-minute-second)

// model initialization hour.

//
//fcst_init_hour = [];
//obs_init_hour = [];
//

// These options are integers of the form HHMMSS specifying an (hour-minute-second)

// accumulation time.

//
//fcst_accum = [1;
//obs_accum = [1;
//

// These options indicate the convolution radius used for forecast of observed objects,

// respectively.

//
//fcst_rad = [1;
//obs_rad = [1;
//

// Integer max/min options: These options set limits on various integer attributes.
// Leaving a maximum value unset means no upper limit is imposed on the value of

// the attribute. The option works similarly for minimum values.

//

/7
// These options are used to indicate minimum/maximum values for the area attribute

// to be used in the analysis.

//
//area_min = 0;
//area_max = 0;

//

CHAPTER 3. MET DATA I/0 82

// These options
// The area thres
// criteria.

//
//area_thresh_min

//area_thresh_max

//

// These options
// attribute.

//
//intersection_ar

//intersection_ar

//
// These options
//
//union_area_min

//union_area_max

//
// These options

// to be used in
//

are used to indicate minimum/maximum values accepted for the area thresh.

h is the area of the raw field inside the object that meets the threshold

refer to the minimum/maximum values accepted for the intersection area

ea_min = 0;

ea_max = 0;

refer to the minimum/maximum union area values accepted for analysis.

refer to the minimum/maximum values for symmetric difference for objects

the analysis.

//symmetric_diff_min = 0;
//symmetric_diff_max = 0;
//

// Date/time max/min options: These options set limits on various date/time attributes.

// The values can
// by a string of
// time. Second,
// minutes and se
// attributes is
// assumed to be

//

//
// These options
//
//fcst_valid_min
//fcst_valid_max

be specified in one of three ways: First, the options may be indicated
the form YYYMMDD_HHMMSS. This specifies a complete calendar date and
they may be indicated by a string of the form YYYYMMMDD_HH. Here, the
conds are assumed to be zero. The third way of indicating date/time

by a string of the form YYYMMDD. Here, hours, minutes, and seconds are

Zero.

indicate minimum/maximum values for the forecast valid time.

= nn,
b

CHAPTER 3. MET DATA I/0 83

//

// These options indicate minimum/maximum values for the observation valid time.
!/

//obs_valid_min = "";

//obs_valid_max = "";

//

// These options indicate minimum/maximum values for the forecast initialization time.
//

//fcst_init_min = "";

//fcst_init_max = "";

//

// These options indicate minimum/maximum values for the observation initialization time.
//

//obs_init_min = "";

//ObS_init_max = "u;

//

// Floating-point max/min options: Setting limits on various floating-point attributes.
// One may specify these as integers (i.e., without a decimal point), if desired. The

// following pairs of options indicate minimum and maximum values for each MODE attribute
// that can be described as a floating-point number. Please refer to "The MODE Tool"

// section on attributes in the MET User’s Guide for a description of these attributes.

//

//centroid_x_min = 0.0;
//centroid_x_max = 0.0;
//centroid_y_min = 0.0;
//centroid_y_max = 0.0;
//centroid_lat_min = 0.0;
//centroid_lat_max = 0.0;
//centroid_lon_min = 0.0;
//centroid_lon_max = 0.0;
//axis_ang_min = 0.0;
//axis_ang_max = 0.0;
//length_min = 0.0;

//length_max = 0.0;

CHAPTER 3. MET DATA I/0
//width_min
//width_max

//aspect_ratio_min

//aspect_ratio_max

//curvature_min

//curvature_max

//curvature_x_min

//curvature_x_max

//curvature_y_min

//curvature_y_max

//complexity_min

//complexity_max

//intensity_10_min
//intensity_10_max

//intensity_25_min
//intensity_25_max

//intensity_50_min
//intensity_50_max

//intensity_75_min
//intensity_75_max

//intensity_90_min
//intensity_90_max

//intensity_user_min

//intensity_user_max

//intensity_sum_min

//intensity_sum_max

//centroid_dist_min

//centroid_dist_max

84

CHAPTER 3. MET DATA I/0

//boundary_dist_min = 0.0;
//boundary_dist_max = 0.0;
//convex_hull_dist_min = 0.0;
//convex_hull_dist_max = 0.0;
//angle_diff_min = 0.0;
//angle_diff_max = 0.0;
//area_ratio_min = 0.0;
//area_ratio_max = 0.0;
//intersection_over_area_min = 0.0;
//intersection_over_area_max = 0.0;
//complexity_ratio_min = 0.0;
//complexity_ratio_max = 0.0;

//percentile_intensity_ratio_min = 0.0;

//percentile_intensity_ratio_max = 0.0;

//interest_min = 0.0;

//interest_max = 0.0;

LI1177

//
//
//

MODEConfig_default

LI1177

//
//
//
/7
//
//
//
!/
//
//

The "quilt" entry is a boolean to indicate whether all permutations of
convolution radii and thresholds should be run. If set to false, the number
of forecast and observation convolution radii and thresholds must all match.
One configuration of MODE will be run for each group of settings in those
lists. If set to true, the number of forecast and observation convolution
radii must match and the number of forecast and observation convolution
thresholds must match. For N radii and M thresholds, NxM configurations of
MODE will be run.

quilt = false;

//

85

CHAPTER 3. MET DATA I/0

// The object definition settings for MODE are contained within the "fcst" and

// "obs" entries:

//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
!/
//
//
//
//

The "censor_thresh" and "censor_val" entries are described above.

The entries replace the previously supported "raw_thresh" entry.

The "conv_radius" entry specifies the convolution radius in grid
squares. The larger the convolution radius, the smoother the objects.
Multiple convolution radii may be specified as an array:

conv_radius = [5, 10, 15 1;

The "conv_thresh" entry specifies the convolution threshold used to

define MODE objects. The lower the threshold, the larger the objects.

Multiple convolution thresholds may be specified as an array:
conv_thresh = [>=5.0, >=10.0, >=15.0];

The "vld_thresh" entry is described above.

The "area_thresh" entry specifies a threshold in grid squares for the
area of MODE objects. Any objects not meeting this threshold are

discarded.

The "inten_perc_value" entry specifies the intensity percentile value
of interest between O and 100. The percentile set by this entry will

be output in addition to the standard intensity percentiles.

The "inten_perc_thresh" entry specifies a threshold for the percentile
intensity of each MODE object. Any objects not meeting this threshold

are discarded.

The "merge_thresh" entry specifies a lower convolution threshold used
when the double-threshold merging method is applied. The number of
merge thresholds must match the number of convolution thresholds.
Multiple merge thresholds may be specified as an array:

merge_thresh = [>=1.0, >=2.0, >=3.0];

The "merge_flag" entry specifies the merging methods to be applied:
- "NONE" for no merging
- "THRESH" for the double-threshold merging method. Merge objects
that would be part of the same object at the lower threshold.
- "ENGINE" for the fuzzy logic approach comparing the field to itself
- "BOTH" for both the double-threshold and engine merging methods

86

CHAPTER 3. MET DATA I/0 87

fcst = {

field = {

name = "APCP";

level = "AO3";
}
censor_thresh = [1;
censor_val = [1;
conv_radius = 60.0/grid_res; // in grid squares
conv_thresh = >=5.0;
vld_thresh = 0.5;
area_thresh = >=0.0;
inten_perc_value = 100;

inten_perc_thresh = >=0.0;
merge_thresh = >=1.25;
merge_flag = THRESH;

//

// The "grid_res" entry is the nominal spacing for each grid square in kilometers.

// The variable is not used directly in the code, but subsequent variables in the

// configuration files are defined in terms of it. Therefore, setting the appropriately
// will help ensure that appropriate default values are used for these variables.

/7

grid_res = 4;

//

// The "match_flag" entry specifies the matching method to be applied:

// - "NONE" for no matching between forecast and observation objects

// - "MERGE_BOTH" for matching allowing additional merging in both fields.
// If two objects in one field match the same object in the other field,
// those two objects are merged.

// - "MERGE_FCST" for matching allowing only additional forecast merging
// - "NO_MERGE" for matching with no additional merging in either field
/7

match_flag = MERGE_BOTH;

//

// The "max_centroid_dist" entry specifies the maximum allowable distance in
// grid squares between the centroids of objects for them to be compared.

// Setting this to a reasonable value speeds up the runtime enabling MODE to
// skip unreasonable object comparisons.

//

CHAPTER 3. MET DATA I/0 88

max_centroid_dist = 800.0/grid_res;

//

// The weight variables control how much weight is assigned to each pairwise

// attribute when computing a total interest value for object pairs. The weights
// need not sum to any particular value but must be non-negative. When the

// total interest value is computed, the weighted sum is normalized by the

// sum of the weights listed.

//

weight = {

centroid_dist =

we

boundary_dist =

we

convex_hull_dist =

we

angle_diff =

we

area_ratio =

we

int_area_ratio =

“e

complexity_ratio =

we

O O NN B, O b N
O O O O O O O o

we

inten_perc_ratio =

o]
(@]

inten_perc_value =

//

// The set of interest function variables listed define which values are of interest
// for each pairwise attribute measured. The interest functions may be defined as
// a piecewise linear function or as an algebraic expression. A piecewise linear

// function is defined by specifying the corner points of its graph. An algebraic
// function may be defined in terms of several built-in mathematical functions.

/7

interest_function = {

centroid_dist = (
(0.0, 1.0)
(60.0/grid_res, 1.0)
(600.0/grid_res, 0.0)
)3

boundary_dist = (
(0.0, 1.0)
(400.0/grid_res, 0.0)
)3

convex_hull_dist = (
(0.0, 1.0)

CHAPTER 3. MET DATA I/0

(400.0/grid_res, 0.0)
)3

angle_diff = (

(0.0, 1.0)
(30.0, 1.0)
(90.0, 0.0)
);
corner = 0.8;

ratio_if = (
(0.0, 0.0)
(corner, 1.0)
(1.0, 1.0)
)3

area_ratio = ratio_if;

int_area_ratio = (
(0.00, 0.00)
(0.10, 0.50)
(0.25, 1.00)
(1.00, 1.00)
)3

complexity_ratio = ratio_if;

inten_perc_ratio = ratio_if;

//

// The total_interest_thresh variable should be set between O and 1. This threshold
// is applied to the total interest values computed for each pair of objects and

// is used in determining matches.

//

total_interest_thresh = 0.7;

//

// The print_interest_thresh variable determines which pairs of object attributes will
// be written to the output object attribute ASCII file. The user may choose to set
// the print_interest_thresh to the same value as the total_interest_thresh, meaning
// that only object pairs that actually match are written to the output file. When set

// to zero, all object pair attributes will be written as long as the distance between

89

CHAPTER 3. MET DATA I/0 90

// the object centroids is less than the max_centroid_dist variable.
/7

print_interest_thresh = 0.0;

/7

// When applied, the plot_valid_flag variable indicates that only the region containing

// valid data after masking is applied should be plotted. TRUE indicates the entire domain
// should be plotted; FALSE indicates only the region containing valid data after masking
// should be plotted.

/7

plot_valid_flag = FALSE;

/7

// When applied, the plot_gcarc_flag variable indicates that the edges of polylines should
// be plotted using great circle arcs as opposed to straight lines in the grid.

/7

plot_gcarc_flag = FALSE;

//

// The ct_stats_flag can be set to TRUE or FALSE to produce additional output, in the form
// of contingency table counts and statistics.

//

ct_stats_flag = TRUE;

/7

// When MODE is run on global grids, this parameter specifies how many grid squares to
// shift the grid to the right. MODE does not currently connect objects from one side
// of a global grid to the other, potentially causing objects straddling that longitude
// to be cut in half. Shifting the grid by some amount enables the user to control

// where that longitude cut line occurs. This option provides a very specialized case
// of automated regridding. The much more flexible "regrid" option may be used instead.
/7

shift_right = 0;

LIT11777
//

// PB2NCConfig_default

!/
LIT11777

/!
// The PB2NC tool filters out observations from PREPBUFR or BUFR files using the

// following criteria:

CHAPTER 3. MET DATA I/0

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//

!/
!/
/7
//
//
//

1

(2)

(3

(4)

(8)

(6

(7

(8

(9

(11)
(12)

(13)

The '

by message type: supply a list of PREPBUFR message types to retain
by station id: supply a list of observation stations to retain

by valid time: supply the beginning and ending time offset values
in the obs_window entry described above.

by location: use the "mask" entry described below to supply either
an NCEP masking grid, a masking lat/lon polygon or a file to a
mask lat/lon polygon

by elevation: supply min/max elevation values

by report type: supply a list of report types to retain using
pb_report_type and in_report_type entries described below

by instrument type: supply a list of instrument type to

retain

by vertical level: supply beg/end vertical levels using the
level_range entry described below

by variable type: supply a list of observation variable types to
retain using the obs_bufr_var entry described below

by quality mark: supply a quality mark threshold

Flag to retain values for all quality marks, or just the first
quality mark (highest): use the event_stack_flag described below
by data level category: supply a list of category types to

retain.

- Surface level (mass reports only)
- Mandatory level (upper-air profile reports)

Significant temperature level (upper-air profile reports)

N N =, O
I

- Significant temperature and winds-by-pressure level
(future combined mass and wind upper-air reports)

- Winds-by-pressure level (upper-air profile reports)

Winds-by-height level (upper-air profile reports)

- Tropopause level (upper-air profile reports)

D O bW
I

- Reports on a single level
(e.g., aircraft, satellite-wind, surface wind,

precipitable water retrievals, etc.)

7 - Auxiliary levels generated via interpolation from spanning levels

(upper-air profile reports)

'message_type" entry is an array of message types to be retained.

empty list indicates that all should be retained.

List of valid message types:
ADPUPA AIRCAR AIRCFT ADPSFC ERS1DA GOESND GPSIPW

An

91

CHAPTER 3. MET DATA I/0 92

// MSONET PROFLR QKSWND RASSDA SATEMP SATWND SFCBOG

// SFCSHP SPSSMI SYNDAT VADWND

!/

// e.g. message_type[] = ["ADPUPA", "AIRCAR"];

//

// http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_1.htm
//

message_type = [];

/7

// Mapping of message type group name to comma-separated list of values.
// The default setting defines ANYAIR, ANYSFC, and ONLYSF as groups.

// Derive PRMSL only for SURFACE message types.

//

message_type_group_map = [

{ key = "SURFACE"; val = "ADPSFC,SFCSHP,MSONET"; },
{ key = "ANYAIR"; val = "AIRCAR,AIRCFT"; },
{ key = "ANYSFC"; val = "ADPSFC,SFCSHP,ADPUPA,PROFLR,MSONET"; },
{ key = "ONLYSF"; val = "ADPSFC,SFCSHP"; }
1;
//

// The "station_id" entry is an array of station ids to be retained or
// the filename which contains station ids. An array of station ids

// contains a comma-separated list. An empty list indicates that all
// stations should be retained.

//

// e.g. station_id = ["KDEN"];

//

station_id = [];

//
// The "elevation_range" entry is a dictionary which contains "beg" and "end"
// entries specifying the range of observing locations elevations to be

// retained.

//

elevation_range = {
beg = -1000;
end = 100000;

}

//

// The "pb_report_type" entry is an array of PREPBUFR report types to be

CHAPTER 3. MET DATA I/0

// retained. The numeric "pb_report_type" entry allows for further stratification
// within message types. An empty list indicates that all should be retained.
//

// http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_4.htm
//

// e.g.

// Report Type 120 is for message type ADPUPA but is only RAWINSONDE

// Report Type 132 is for message type ADPUPA but is only FLIGHT-LEVEL RECON
// and PROFILE DROPSONDE

//

pb_report_type = [];

/7

// The "in_report_type" entry is an array of input report type values to be
// retained. The numeric "in_report_type" entry provides additional

// stratification of observations. An empty list indicates that all should
// be retained.

//

// http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_6.htm
//

// e.g.

// Input Report Type 11 Fixed land RAOB and PIBAL by block and station number
// Input Report Type 12 Fixed land RAOB and PIBAL by call letters

in_report_type = [];

//

// The "instrument_type" entry is an array of instrument types to be retained.
// An empty list indicates that all should be retained.
//

instrument_type = [1;

//
// The "level_range" entry is a dictionary which contains '"beg" and "end"
// entries specifying the range of vertical levels (1 to 255) to be retained.
//
level_range = {
beg = 1;
end = 255;

//

// The "level_category" entry is an array of integers specifying which level

93

CHAPTER 3. MET DATA I/0 94

// categories should be retained:

//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//

0 =

N N =
]

D O b W
]

An empt

http://

Surface level (mass reports only)

Mandatory level (upper-air profile reports)

Significant temperature level (upper-air profile reports)
Significant temperature and winds-by-pressure level
(future combined mass and wind upper-air reports)
Winds-by-pressure level (upper-air profile reports)
Winds-by-height level (upper-air profile reports)
Tropopause level (upper-air profile reports)

Reports on a single level

(e.g., aircraft, satellite-wind, surface wind,
precipitable water retrievals, etc.)

Auxiliary levels generated via interpolation from spanning levels
(upper-air profile reports)

y list indicates that all should be retained.

WWW.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_1.htm

level_category = []1;

/7
//
/7
!/
/7
//
//
/7
/7
//
!/
/7
//
/7

The "ob

names t

s_bufr_var" entry is an array of strings containing BUFR variable

o be retained or derived. This replaces the "obs_grib_code" setting

from earlier versions of MET. Run PB2NC on your data with the "-index"

command

line option to see the list of available observation variables.

Observation variables that can be derived begin with "D_":

D_DP
D_WD
D_WI
D_RH
D_MI

T for Dew point Temperature in K
IR for Wind Direction
ND for Wind Speed in m/s

for Relative Humidity in %

XR for Humidity Mixing Ratio in kg/kg

D_PRMSL for Pressure Reduced to Mean Sea Level in Pa

obs_bufr_var = ["QOB", "TOB", "ZOB", "UOB", "VOB"];

//

// Mapping of input BUFR variable names to output variables names.

// The default PREPBUFR map, obs_prepbufr_map, is appended to this map.

// Users may choose to rename BUFR variables to match the naming convention

// of the forecast the observation is used to verify.

//

obs_bufr_map = [];

CHAPTER 3. MET DATA I/0 95

//
//
//
//
//
//
//

Default mapping for PREPBUFR. Replace input BUFR variable names with GRIB
abbreviations in the output. This default map is appended to obs_bufr_map.
This should not typically be overridden. This default mapping provides
backward-compatibility for earlier versions of MET which wrote GRIB

abbreviations to the output.

obs_prefbufr_map = [

1;

//
//
//
//
//
//
//
//

{ key = "POB"; val = "PRES"; },
{ key = "QOB"; val = "SPFH"; },
{ key = "TOB"; val = "TMP"; },
{ key = "Z0OB"; val = "HGT"; 1,
{ key = "UOB"; val = "UGRD"; },
{ key = "VOB"; val = "VGRD"; 1},
{ key = "D_DPT"; val = "DPT"; 1,
{ key = "D_WDIR"; wval = "WDIR"; 1},
{ key = "D_WIND"; wval = "WIND"; 1},
{ key = "D_RH"; val = "RH"; },
{ key = "D_MIXR"; wval = "MIXR"; 1},
{ key = "D_PRMSL"; val = "PRMSL"; }

The "quality_mark_thresh" entry specifies the maximum quality mark value
to be retained. Observations with a quality mark LESS THAN OR EQUAL TO
this threshold will be retained, while observations with a quality mark
GREATER THAN this threshold will be discarded.

http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_7.htm

quality_mark_thresh = 2;

//
//
//
//
//

The "event_stack_flag" entry is set to "TOP" or "BOTTOM" to
specify whether observations should be drawn from the top of the event

stack (most quality controlled) or the bottom of the event stack (most raw).

event_stack_flag = TOP;

[I111777777777777777777777177777777777777177777777777777177777777777777777777777

//
//

SeriesAnalysisConfig_default

CHAPTER 3. MET DATA I/0 96

!/
LI1177

//

// Computation may be memory intensive, especially for large grids.

// The "block_size" entry sets the number of grid points to be processed
// concurrently (i.e. in one pass through a time series). Smaller values
// require less memory but increase the number of passes through the data.
//

block_size = 1024;

//

// Ratio of valid matched pairs to total length of series for a grid

// point. If valid threshold is exceeded at that grid point the statistics
// are computed and stored. If not, a bad data flag is stored. The default
// setting requires all data in the series to be valid.

/7

//

vld_thresh = 1.0;

/7

// Statistical output types need to be specified explicitly. Refer to User’s
// Guide for available output types. To keep output file size reasonable,

// it is recommended to process a few output types at a time, especially if the

// grid is large.

//

output_stats = {
fho = [1;
ctc = [];
cts = [1;
mctc = [];
mcts = [];
cnt = ["RMSE", "FBAR", "OBAR" 1;
sl112 = []1;
pct = [1;
pstd = [1;
pjc = [1;
prc = [1;

}

LI111777
//
// STATAnalysisConfig_default

CHAPTER 3. MET DATA I/0

!/
LI1177

//
// The "jobs" entry is an array of STAT-Analysis jobs to be performed.
// Each element in the array contains the specifications for a single analysis

// job to be performed. The format for an analysis job is as follows:

//

// -job job_name

// OPTIONAL ARGS

//

// Where "job_name" is set to one of the following:

/7

// "filter"

// To filter out the STAT or TCMPR lines matching the job filtering criteria
// specified below and using the optional arguments below. The

// output STAT lines are written to the file specified using the

// "-dump_row" argument.

// Required Args: -dump_row

//

// "summary"

// To compute summary information for a set of statistics.

// The summary output includes the mean, standard deviation, percentiles
// (Oth, 10th, 25th, 50th, 75th, 90th, and 100th), range, and inter-quartile
// range. Also included are columns summarizing the computation of WMO
// mean values. Both unweighted and weighted mean values are reported,
// and they are computed using three types of logic:

// - simple arithmetic mean (default)

// - square root of the mean of the statistic squared

// (applied to columns listed in '"wmo_sqrt_stats")

// - apply fisher transform

// (applied to columns listed in "wmo_fisher_stats")

// The columns of data to be summarized are specified in one of two ways:
// - Specify one -line_type option and one or more -column names.

// - Format the -column option as LINE_TYPE:COLUMN.

// Use the -derive job command option to automatically derive statistics
// on the fly from input contingency tables and partial sums.

//

// For TCStat, the "-column" argument may be set to:

// "TRACK" for track, along-track, and cross-track errors.

// "WIND" for all wind radius errors.

// "TI" for track and maximum wind intensity errors.

// "AC" for along-track and cross-track errors.

CHAPTER 3. MET DATA I/0 98

// "XY" for x-track and y-track errors.

// "col" for a specific column name.

// "coll-col2" for a difference of two columns.

// "ABS(col or coll-col2)" for the absolute value.

//

// Required Args: -line_type, -column

// Optional Args: -by column_name to specify case information

// -out_alpha to override default alpha value of 0.05
// -derive to derive statistics on the fly

//

// "aggregate"

// To aggregate the STAT data for the STAT line type specified using
// the "-line_type" argument. The output of the job will be in the
// same format as the input line type specified. The following line
// types may be aggregated:

// -line_type FHO, CTC, MCTC,

// SLiL2, SALiL2, VL1L2, VAL1L2,

// PCT, NBRCNT, NBRCTC, GRAD,

// ISC, RHIST, PHIST, RELP, SSVAR

// Required Args: -line_type

//

// "aggregate_stat"

// To aggregate the STAT data for the STAT line type specified using
// the "-line_type" argument. The output of the job will be the line
// type specified using the "-out_line_type" argument. The valid

// combinations of "-line_type" and "-out_line_type" are listed below.
// -line_type FHO, CTC, -out_line_type CTS, ECLV

// -line_type MCTC -out_line_type MCTS

// -line_type SL1L2, SAL1L2, -out_line_type CNT

// -line_type VL1L2 -out_line_type VCNT

// -line_type VL1L2, VAL1L2, -out_line_type WDIR (wind direction)

// -line_type PCT, -out_line_type PSTD, PJC, PRC, ECLV

// -line_type NBRCTC, -out_line_type NBRCTS

// -line_type ORANK, -out_line_type RHIST, PHIST, RELP, SSVAR
// -line_type MPR, -out_line_type FHO, CTC, CTS,

// MCTC, MCTS, CNT,

/7 SL1L2, SAL1L2,

// VL1L2, VCNT,

// PCT, PSTD, PJC, PRC, ECLV,
// WDIR (wind direction)

// Required Args:

// -line_type, -out_line_type

// Additional Required Args for -line_type MPR:

CHAPTER 3. MET DATA I/0 99

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
!/
//
//
//
//

-out_thresh or -out_fcst_thresh and -out_obs_thresh
When -out_line_type FHO, CTC, CTS, MCTC, MCTS,
PCT, PSTD, PJC, PRC
Additional Optional Args for -line_type MPR:
-mask_grid, -mask_poly, -mask_sid
-out_thresh or -out_fcst_thresh and -out_obs_thresh
-out_cnt_logic
-out_wind_thresh or -out_fcst_wind_thresh and -out_obs_wind_thresh
-out_wind_logic
When -out_line_type WDIR
Additional Optional Arg for -line_type ORANK -out_line_type PHIST, SSVAR:
-out_bin_size
Additional Optional Args for -out_line_type ECLV:

-out_eclv_points

"ss_index"

The skill score index job can be configured to compute a weighted
average of skill scores derived from a configurable set of
variables, levels, lead times, and statistics. The skill score
index is computed using two models, a forecast model and a
reference model. For each statistic in the index, a skill score
is computed as:
SS = 1 - (S[model]*S[model])/(S[reference]*S[reference])
Where S is the statistic.
Next, a weighted average is computed over all the skill scores.
Lastly, an index value is computed as:
Index = sqrt(1/(1-SS[avgl))
Where SS[avg] is the weighted average of skill scores.
Required Args:
Exactly 2 entries for -model, the forecast model and reference
For each term of the index:
-fcst_var, -fcst_lev, -fcst_lead, -line_type, -column, -weight
Where -line_type is CNT or CTS and -column is the statistic.
Optionally, specify other filters for each term, -fcst_thresh.

"go_index"

The GO Index is a special case of the skill score index consisting
of a predefined set of variables, levels, lead times, statistics,
and weights.

For lead times of 12, 24, 36, and 48 hours, it contains RMSE for:

- Wind Speed at the surface(b), 850(a), 400(a), 250(a) mb

- Dew point Temperature at the surface(b), 850(b), 700(b), 400(b) mB
- Temperature at the surface(b), 400(a) mB

CHAPTER 3. MET DATA I/0 100

// - Height at 400(a) mB

// - Sea Level Pressure(b)

// Where (a) means weights of 4, 3, 2, 1 for the lead times, and

// (b) means weights of 8, 6, 4, 2 for the lead times.

//

// Required Args: Nomne

//

// "ramp"

// The ramp job operates on a time-series of forecast and observed values
// and is analogous to the RIRW (Rapid Intensification and Weakening) job
// supported by the tc_stat tool. The amount of change from one time to
// the next is computed for forecast and observed values. Those changes
// are thresholded to define events which are used to populate a 2x2

// contingency table.

//

// Required Args:

// -ramp_thresh (-ramp_thresh_fcst or -ramp_thresh_obs)

// For DYDT, threshold for the amount of change required to define an event.
// For SWING, threshold the slope.

// -swing_width val

// Required for the swinging door algorithm width.

//

// Optional Args:

// -ramp_type str

// Overrides the default ramp definition algorithm to be used.

// May be set to DYDT (default) or SWING for the swinging door algorithm.
// -line_type str

// Overrides the default input line type, MPR.

// -out_line_type str

// Overrides the default output line types of CTC and CTS.

// Set to CTC,CTS,MPR for all possible output types.

// -column fcst_column,obs_column

// Overrides the default forecast and observation columns

// to be used, FCST and OBS.

// -ramp_time HH[MMSS] (-ramp_time_fcst or -ramp_time_obs)

// Overrides the default ramp time interval, 1 hour.

// -ramp_exact true/false (-ramp_exact_fcst or -ramp_exact_obs)

// Defines ramps using an exact change (true, default) or maximum
// change in the time window (false).

// -ramp_window width in HH[MMSS] format

// -ramp_window beg end in HH[MMSS] format

// Defines a search time window when attempting to convert misses

// to hits and false alarms to correct negatives. Use 1 argument

CHAPTER 3. MET DATA I/0 101

// to define a symmetric time window or 2 for an asymmetric window.
// Default window is O 0, requiring an exact match.
//

// Job command FILTERING options to further refine the STAT data:
// Each optional argument may be used in the job specification multiple
// times unless otherwise indicated. When multiple optional arguments of
// the same type are indicated, the analysis will be performed over their
// union:

//

// "-model name"

// "-fcst_lead HHMMSS"

// "-obs_lead HHMMSS"

// "-fcst_valid_beg YYYYMMDD[_HH[MMSS]]" (use once)

// "-fcst_valid_end YYYYMMDD[_HH[MMSS]]" (use once)

// "-obs_valid_beg YYYYMMDD [_HH[MMSS]]" (use once)

// "-obs_valid_end YYYYMMDD [_HH[MMSS]11" (use once)

// "-fcst_init_beg YYYYMMDD[_HH[MMSS]11" (use once)

// "-fcst_init_end YYYYMMDD [_HH[MMSS]]" (use once)

// "-obs_init_beg YYYYMMDD [_HH[MMSS]]" (use once)

// "-obs_init_end YYYYMMDD [_HH[MMSS]11" (use once)

// "-fcst_init_hour HH[MMSS]"

// "_obs_init_hour HH [MMSS]"

// "-fcst_valid_hour" HH[MMSS]

// "-obs_valid_hour" HH[MMSS]

// "-fcst_var name"

// "_obs_var name"

// "-fcst_lev name"

// "-obs_lev name"

// "-obtype name"

// "_vx_mask name"

// "-interp_mthd name"

// "-interp_pnts n"

// "_fcst_thresh t"

// "_obs_thresh t"

// "-cov_thresh t"

// "-thresh_logic UNION, or, ||

// INTERSECTION, and, &&

// SYMDIFF, symdiff, *

// "-alpha a"

// "-line_type type"

// "-column name"

// "-weight value"

//

CHAPTER 3. MET DATA I/0

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
!/
//
//
//
//

Job command FILTERING options that may be used only when -line_type

has been listed once. These options take two arguments: the name of the
data column to be used and the min, max, or exact value for that column.
If multiple column eq/min/max/str options are listed, the job will be

performed on their intersection:

"-column_min col_name value" e.g. -column_min BASER 0.02
"-column_max col_name value"
"-column_eq col_name value"

"-column_thresh col_name threshold" e.g. -column_thresh FCST ’>273&&<283’
"-column_str col_name string" separate multiple filtering strings

with commas

Job command options to DEFINE the analysis job. Unless otherwise noted,

these options may only be used ONCE per analysis job:

"-dump_row path"
"-mask_grid name"
"-mask_poly file"
"-mask_sid file|list" see description of "sid" entry above

"-out_line_type name"

"-out_thresh value" sets both -out_fcst_thresh and -out_obs_thresh

"-out_fcst_thresh value" multiple for multi-category contingency tables
and probabilistic forecasts

"-out_obs_thresh value" multiple for multi-category contingency tables

"-out_cnt_logic value"

"-out_wind_thresh value"

"-out_fcst_wind_thresh value"

"-out_obs_wind_thresh value"

"-out_wind_logic value"

"-out_bin_size value"

"-out_eclv_points value" see description of "eclv_points" config file entry
"-out_alpha value"

"-boot_interval value"

"-boot_rep_prop value"

"-n_boot_rep value"

102

CHAPTER 3. MET DATA I/0 103

// "-boot_rng value"
// "-boot_seed value"
//
// "-rank_corr_flag value"
// "-vif_flag value"
/7
// For aggregate and aggregate_stat job types:
//
// "-out_stat path" to write a .stat output file for the job including
// the .stat header columns. Multiple values for each
// header column are written as a comma-separated list.
// "-set_hdr col_name value" may be used multiple times to explicity specify what
// should be written to the header columns of the output
// .stat file.
//
jobs = [
"-job filter -line_type SL1L2 -vx_mask DTC165 -dump_row job_filter_SL1L2.stat",
"-job summary -line_type CNT -alpha 0.050 -fcst_var TMP \

-dump_row job_summary_ME.stat -column ME",

"-job aggregate -line_type SL1L2 -vx_mask DTC165 -vx_mask DTC166 -fcst_var TMP \
-dump_row job_aggregate_SL1L2_dump.stat -out_stat job_aggregate_SL1L2_out.stat \
-set_hdr VX_MASK CONUS",

"-job aggregate_stat -line_type SL1L2 -out_line_type CNT -vx_mask DTC165 \
-vx_mask DTC166 -fcst_var TMP -dump_row job_aggregate_stat_SL1L2_CNT_in.stat",

"-job aggregate_stat -line_type MPR -out_line_type CNT -vx_mask DTC165 \
-vx_mask DTC166 -fcat_var TMP -dump_row job_aggregate_stat_MPR_CNT_in.stat",

"-job aggregate -line_type CTC -fcst_thresh <300.000 -vx_mask DTC165 \
-vx_mask DTC166 -fcst_var TMP -dump_row job_aggregate_CTC_in.stat",

"-job aggregate_stat -line_type CTC -out_line_type CTS -fcst_thresh <300.000 \
-vx_mask DTC165 -vx_mask DTC166 -fcst_var TMP \

-dump_row job_aggregate_stat_CTC_CTS_in.stat",

"-job aggregate -line_type MCTC -column_eq N_CAT 4 -vx_mask DTC165 \
-vx_mask DTC166 -fcst_var APCP_24 -dump_row job_aggregate MCTC_in.stat",

"-job aggregate_stat -line_type MCTC -out_line_type MCTS -column_eq N_CAT 4 \
-vx_mask DTC165 -vx_mask DTC166 -fcst_var APCP_24 \

-dump_row job_aggregate_stat_MCTC_MCTS_in.stat",

"-job aggregate -line_type PCT -vx_mask DTC165 -vx_mask DTC166 \
-dump_row job_aggregate PCT_in.stat",

"-job aggregate_stat -line_type PCT -out_line_type PSTD -vx_mask DTC165 \
-vx_mask DTC166 -dump_row job_aggregate_stat_PCT_PSTD_in.stat",

"-job aggregate -line_type ISC -fcst_thresh >0.000 -vx_mask TILE_TOT \
-fcst_var APCP_12 -dump_row job_aggregate_ISC_in.stat",

"-job aggregate -line_type RHIST -obtype MC_PCP -vx_mask HUC4_1605 \

CHAPTER 3. MET DATA I/0

-vx_mask HUC4_1803 -dump_row job_aggregate RHIST in.stat",
"-job aggregate -line_type SSVAR -obtype MC_PCP -vx_mask HUC4_1605 \
-vx_mask HUC4_1803 -dump_row job_aggregate_SSVAR_in.stat",
"-job aggregate_stat -line_type ORANK -out_line_type RHIST -obtype ADPSFC \
-vx_mask HUC4_1605 -vx_mask HUC4_1803 \
-dump_row job_aggregate_stat_ORANK_RHIST_in.stat"

1;

/7

// List of statistics by the logic that should be applied when computing their
// WMO mean value in the summary job. Each entry is a line type followed by the
// statistic name. Statistics using the default arithemtic mean method do not
// need to be listed.

/7

wmo_sqrt_stats = [];

[1;

wmo_fisher_stats

/!

// The "vif_flag" entry is a boolean to indicate whether a variance inflation
// factor should be computed when aggregating a time series of contingency

// table counts or partial sums. The VIF is used to adjust the normal

// confidence intervals computed for the aggregated statistics.

//

vif_flag = FALSE;

LI11177077
//

// WaveletStatConfig_default

//
LI111777

/7
// The "grid_decomp_flag" entry specifies how the grid should be decomposed in

// Wavelet-Stat into dyadic (2°n x 27n) tiles:

// - "AUTO" to tile the input data using tiles of dimension n by n where n
// is the largest integer power of 2 less than the smallest dimension of
// the input data. Center as many tiles as possible with no overlap.

// - "TILE" to use the tile definition specified below.

// - "PAD" to pad the input data out to the nearest integer power of 2.

//

grid_decomp_flag = AUTO;

//

104

CHAPTER 3. MET DATA I/0 105

// The "tile" entry is a dictionary that specifies how tiles should be defined
// in Wavelet-Stat when the "grid_decomp_flag" is set to "TILE":

//
// - The "width" entry specifies the dimension for all tiles and must be
// an integer power of 2.
//
// - The "location" entry is an array of dictionaries where each element
// consists of an "x_11" and "y_11" entry specifying the lower-left (x,y)
// coordinates of the tile.
//
tile = {
width = 0;
location = [
{
x_11 = 0;
y_11 = 0;
}
1;
}
//

// The "wavelet" entry is a dictionary in Wavelet-Stat that specifies how the

// wavelet decomposition should be performed:

//

// - The "type" entry specifies which wavelet should be used.

//

// - The "member" entry specifies the wavelet shape.

// http://www.gnu.org/software/gsl/manual /html_node/DWT-Initialization.html
//

// - Valid combinations of the two are listed below:

// - "HAAR" for Haar wavelet (member = 2)

// - "HAAR_CNTR" for Centered-Haar wavelet (member = 2)

// - "DAUB" for Daubechies wavelet (member = 4, 6, 8, 10, 12, 14, 16,

// 18, 20)

// - "DAUB_CNTR" for Centered-Daubechies wavelet (member = 4, 6, 8, 10,
// 12, 14, 16, 18, 20)

// - "BSPLINE" for Bspline wavelet (member = 103, 105, 202, 204, 206,

// 208, 301, 303, 305, 307, 309)

// - "BSPLINE_CNTR" for Centered-Bspline wavelet (member = 103, 105, 202,
// 204, 206, 208, 301, 303, 305, 307, 309)

//

wavelet = {
type = HAAR;

CHAPTER 3. MET DATA I/0 106

member = 2;

//
// The "obs_raw_plot", "wvlt_plot", and "object_plot" entries are dictionaries
// similar to the "fcst_raw_plot" described in the "Settings common to multiple

// tools" section.

//

LI1177
//

// WWMCARegridConfig_default

//
LI1177

/7
// Specify the grid to which the data should be interpolated in one of the
// following ways:

/7

// - Name ("GNNN" where NNN indicates the three digit NCEP grid number)
//

// - lambert Nx Ny lat_11 lon_11 lon_orient D_km R_km standard_parallel_1
// [standard_parallel_2]

//

// - stereo Nx Ny lat_11 lon_11 lon_orient D_km R_km lat_scale NIS

//

// - latlon Nx Ny lat_11 lon_11 delta_lat delta_lon

//

// - mercator Nx Ny lat_11 lon_11 lat_ur lon_ur

//

to_grid = "lambert 614 428 12.190 -133.459 -95.0 12.19058 6367.47 25.0";

//

// Supply the NetCDF output information

//

// e.g. variable_name = "Cloud_Pct";

// units = '"percent";

// long_name = "cloud cover percent";
// level = "SFC";

variable_name = "";
units = .

long_name = "

CHAPTER 3. MET DATA I/0 107

level = """y

//

// Maximum pixel age in minutes

//

max_minutes = 120;

//

// The WWMCA pixel age data is stored in binary data files in 4-byte blocks.
// The swap_endian option indicates whether the endian-ness of the data should
// be swapped after reading.

//

swap_endian = TRUE;

//

// By default, wwmca_regrid writes the cloud percent data specified on the
// command line to the output file. This option writes the pixel age data,
// in minutes, to the output file instead.

//

write_pixel_age = FALSE;

3.5.2 MET-TC Configuration File Options

The information listed below may also be found in the data/config/README_TC file.

LIT177
//

// Configuration file overview.

/7
LI1177

See README for configuration file overview.

[IT117777777777777777777771777777777777777777777777777771777777777777717777717777
//

// Configuration settings common to multiple tools

//
[IT11777777777777777777777177777777777777177777777777777177777777777771777777777

//
// Specify a comma-separated list of storm id’s to be used:

// 2-letter basin, 2-digit cyclone number, 4-digit year

CHAPTER 3. MET DATA I/0 108

// An empty list indicates that all should be used.

/7

// e.g. storm_id = ["AL092011"];

//

// This may also be set using basin, cyclone, and timing information below.
/7

storm_id = [];

//

// Specify a comma-separated list of basins to be used.
// Expected format is 2-letter basin identifier.

// An empty list indicates that all should be used.

// Valid basins: WP, IO, SH, CP, EP, AL, SL

//

// e.g. basin = ["AL", "EP"];

//

basin = [];

//

// Specify a comma-separated list of cyclone numbers (01-99) to be used.

// An empty list indicates that all should be used.

//

// e.g. cyclone = ["O1", "02", "03" 1;
//

cyclone = [];

//

// Specify a comma-separated list of storm names to be used.
// An empty list indicates that all should be used.

/7

// e.g. storm_name = ["KATRINA"];

//

storm_name = [];

//

// Specify a model initialization time window in YYYYMMDD[_HH[MMSS]] format
// or provide a list of specific initialization times to include (inc)

// or exclude (exc). Tracks whose initial time meets the specified

// criteria will be used. An empty string indicates that all times

// should be used.

//

// e.g. init_beg = "20100101";

CHAPTER 3. MET DATA I/0 109

// init_end = "20101231";

// init_inc = ["20101231_06" 1;
// init_exc = ["20101231_00" 1];
//

init_beg = "";

init_end = "";

init_inc = [];

init_exc = [];

//

// Specify a model valid time window in YYYYMMDD[_HH[MMSS]] format.
// Tracks for which all valid times fall within the time window will be used.

// An empty string indicates that all times should be used.

//

// e.g. valid_beg = "20100101";
// valid_end = "20101231";
//

valid_beg = "";

valid_end = "";

/7

// Specify a comma-separated list of model initialization hours to be used
// in HH[MMSS] format. An empty list indicates that all hours should be used.
/7

// e.g. init_hour = ["OO", "O6", "12", "18"];

//

init_hour = [];

//

// Specify the required lead time in HH[MMSS] format.

// Tracks that contain all of these required times will be
// used. If a track has additional lead times, it will be
// retained. An empty list indicates that no lead times
// are required to determine which tracks are to be used;
// all lead times will be used.

//

lead_req = [];

//

// Specify lat/lon polylines defining masking regions to be applied.
// Tracks whose initial location falls within init_mask will be used.
// Tracks for which all locations fall within valid_mask will be used.

//

CHAPTER 3. MET DATA I/0 110

// e.g. init_mask = "MET_BASE/poly/EAST.poly";
//
init_mask = "";

valid_mask = "";

//

// Indicate the version number for the contents of this configuration file.
// The value should generally not be modified.

//

version = "V6.0";

LI111777
//

// Settings specific to individual tools

//
LI1177

LIT11777
//

// TCPairsConfig_default

//
LI11177077

//

// The "model" entry specifies an array of model names to be verified. If
// verifying multiple models, choose descriptive model names (no whitespace)
// to distinguish between their output.

// e.g. model = ["AHW4", "AHWI" 1;

//

model = [];

/7

// Specify whether the code should check for duplicate ATCF lines when

// building tracks. Setting this to FALSE makes the parsing of tracks quicker.
/7

// e.g. check_dup = FALSE;

//

check_dup = FALSE;

/7
// Specify whether special processing should be performed for interpolated model
// names ending in ’I’ (e.g. AHWI). Search for corresponding tracks whose model

// name ends in ’2’ (e.g. AHW2) and apply the following logic:

CHAPTER 3. MET DATA I/0

// - "NONE" to do nothing.

// - "FILL" to create a copy of ’2’ track and rename it as ’I’ only when the
// ’I’ track does not already exist.

// - "REPLACE" to create a copy of the ’2’ track and rename it as ’I’ in all