Model Evaluation Tools Version 9.0.2
User’s Guide

Developmental Testbed Center
Boulder, Colorado

Tara Jensen, Barbara Brown, Randy Bullock
Tressa Fowler, John Halley Gotway, and Kathryn Newman
with contributions from Julie Prestopnik, Eric Gilleland, Howard Soh,

Minna Win-Gildenmeister, George McCabe, James Frimel, David Fillmore, and Lindsay Blank

May 2020

Contents

21

[1.1 Purpose and organization of the User’s Guide| oo L. 21
[L.2 The Developmental Testbed Center (DTC)|, 22
1.3 MET goals and design philosophy|. oo 22
[1.4 MET components|. 0 e e e e e e e 23
1.5 Future development plans| oL 26
[1.6 Code support| e e e e e e e e 26
... 27
[2 Software Installation/Getting Started| 28
2.1 Introductionl. Lo 28
2.2 Supported architectures| L e e e e 28
2.3 Programming languages| L 28
2.4 Required compilers and scripting languages|o L oL Lo 29
2.5 Required libraries and optional utilities] oo oL 29
2.6 Installation of required libraries| oo 30
2.7 Installation of optional utilities| oo L 32
2.8 MET directory structure | o e 32
2.9 Building the MET package] 33
[2.10 Sample test cases| L oL e e 37

CONTENTS

(3 MET Data I/O|

3.1 Input data formats| . . .

3.3 Output data formats| . .

3.4 Data format summary| .

8.5 Configuration File Detauls| o o o

8.5.1 MET Configuration File Options| o o ..

8.5.2 MET-TC Configuration File Options|.

4 Re-Formatting of Point Observations|

4.1 PB2NC tooll

4.1.1 pb2nc usage|. . .

4.1.2 pb2nc configuration file]o Lo

4.1.3 pb2nc output| . .

4.2.1 ascii2nc usage|. .

4.2.1.1 Python Embedding tfor Point Observations|

4.2.2 ascii2nc configuration file] Lo

4.2.3 ascii2nc output| .

4.3.1 madis2nc usage| .

4.3.2 madis2nc configuration file] Lo L L

4.3.3 madis2nc output|

4.4.1 hdar2nc usage| .

4.4.2 lhidar2nc output| .

4.5.1 point2grid usage

4.5.2 point2grid output|

38

38

39

39

40

45

45

122

141

CONTENTS

[Re-Formatting of Gridded Fields|

b.1 Pcp-Combine tool]

p.1.1 pcp combine usage| Ll

p.1.2 pcp combine output|.o oL

b.2 Regrid data planetool|o

p.2.1 regrid data planeusage| Lo

p.2.2 Automated regridding within tools| oo oo

5.3 Shift data planetool|

[p.3.1 shift data planewusage] oo oo

b4 MODIS regrid tool] o e

4.1 modis regrid usage|

p.5.1 wwmca plot usage|.

0.5.2 wwmeca regrid usage|.o L e e

9.5.3 wwmca regrid configuration file| o000 o000

[6 Regional Verification using Spatial Masking|

7 Point-Stat Tool

7.2 Scientific and statistical aspects|o Lo Lo

[7.2.1 Imterpolation/matching methods| Lo

161

161

162

166

166

167

168

169

169

170

171

173

173

174

176

178

178

178

183

184

CONTENTS

[7.3.1 point stat usage|o

[7.3.2 point stat configuration file|. L0000

[7.3.3 point stat output|

8 Grid-Stat Tooll

8.3.1 grid stat usage|.

[8.3.2 grid stat configuration file| o oo oo oo

8.3.3 grid stat output| L oL

189

191

194

194

195

200

214

214

214

214

216

216

217

217

218

218

221

221

223

228

236

CONTENTS 5

9.2.2 FEnsemble statistics| oo o 237

[9.2.3 FEnsemble observation error]l Lo Lo 238

9.3 Practical Informationf. oL e 238
9.3.1 ensemble stat usage| e 239

9.3.2 ensemble stat configuration file|o oo o000 240

9.3.3 ensemble stat output| o L L o 247

[10 Wavelet-Stat Tooll 254
[10.1 Introductionl. L e e 254
110.2 Scientific and statistical aspects| L L e 255
10.2.1 Themethodl. o o e 255

110.2.2 The spatial domain constraints| Lo 261

110.2.3 Aggregation of statistics on multiple cases| oo 0oL 263

[10.3 Practical information|. o 264
110.3.1 wavelet stat usage|. oL L 264

110.3.2 wavelet stat configuration file] oo oo 265

110.3.3 wavelet stat output| oL 267

A1 GST Toolsl 270
ML GSID2MPRIEOON - - v v o oot e e e e e e e e e e e e 270
[L11.1.1 gsid2mpr Usage|« o v v e e e e e e e e e e e e e e e 271

[11.1.2 gsid2mpr output| e e e 272

11.2 GSIDENS20RANK tooll

[11.2.1 gsidens2orank usage|o 274

[11.2.2 gsidens2orank output| Lo L 275

CONTENTS

[12 Stat-Analysis Tooll

112.2.2 Summary statistics for columns|o o oo oL

112.2.3 Aggregated values from multiple STAT lines|.

112.2.4 Aggregate STAT lines and produce aggregated statistics|

112.2.5 Skill Score Index, including GO Index|.o o 0oL

112.2.6 Ramp Events|

[12.3.1 stat analysisusage| L

112.3.1.1 Python Embedding for Matched Pairs|

[12.3.2 stat analysis configuration file|o oo oo

[12.3.3 stat-analysis tool output|.

[13 Series-Analysis Tool|

[13.2.1 series analysisusage|.

[13.2.2 series analysis output| L Lo

[13.2.3 series analysis configuration file|o o000 o000 oo

(14 Grid-Diag Tooll

[14.2.1 grid diagusage| e e

114.2.2 grid diag configuration file] Lo Lo L L

14.2.3 grid diag output file|. Lo

278

278

278

278

279

279

280

280

281

281

282

282

284

284

293

296

296

296

297

298

299

302

CONTENTS 7

305
5.1 Introductionl. L 305
[15.2 Scientific and statistical aspects| L Lo 306

[15.2.1 Resolving objects|. o 306
[15.2.2 Attributes| 307
115.2.3 Fuzzy logicl 309
115.2.4 Summary statistics| L L e 310
[15.3 Practical information|.o 310
[15.3.1 mode usage| e e e 310
115.3.2 mode configuration file|.o Lo 312
115.3.3 mode output| L e e 320

16 -Analysis Too 330
6.1 Introductionl. L e 330
116.2 Scientific and statistical aspects|.o oL Lo 330
[16.3 Practical informationl. L 331

[16.3.1 mode analysis usage|. e 331
[16.3.2 mode analysis configuration file]o oo oo 342
[16.3.3 mode analysisoutput| L o 342

17 MODFE Time Domain Tooll 343
343
343
345
345

CONTENTS

17.3.1 mput|

[18.2 MET-TC components| e

18.3 Input data format| L e

[18.4 Output data format| e e e e e

[20.2.1 tc_pairs usage|o e e

[20.2.2 tc_ pairs configuration file]o Lo o oL

120.2.3 tc_pairsoutput|

346

348

349

350

351

351

352

353

356

360

360

360

361

363

364

364

364

365

365

367

CONTENTS 9

21 TC-Stat Tooll 377
21.1 Introductionl. 377
[21.2 Statistical aspects|o L 377

21.2.1 Filter TCST limes|. o . L 377
[21.2.2 Summary statistics for columns| Lo o o oo 378
[21.2.3 Rapid Intensification/Weakening|o 379
[21.2.4 Probability of Rapid Intensification|. oo oo 379
21.3 Practical information|.o Lo Lo 379
21.3.1 tc_statusage| L 379
[21.3.2 tc_stat configuration file] oo oo oo 381
21.3.3 tc_statoutput| 387

22 TC-Gen Tooll 390
22.1 Introductionl. L e 390
[22.2 Statistical aspects| L L e e 390
22.3 Practical informationl. oL L 391

[22.3.1 tc_genusage| e e e e e 391
[22.3.2 tc_gen configuration file]. oo o 392
[22.3. tc_genoutput| Lo e 397

398
23.1 Introductionl. 398
23.2 Practical information|. oo Lo 398

20.2.1 tc rmw usage|l 398
[23.2.2 tc rmw configuration file]o o o 399

23.2.3 tc_rmwoutput filefo 401

CONTENTS

24 -Analysis Too

[24.2.1 rmw analysis usage|

[24.2.2 rmw analysis configuration file|

[24.2.3 rmw_analysis output file] . . .

[25 Plotting and Graphics Support|

25.1 Plotting Utilities|

[25.1.1 plot point obs usage|

[25.1.2 plot data plane usage|

[25.1.3 plot mode field usage]

[25.2 Examples ot plotting ME'T output| . .

125.2.1 Grid-Stat tool examples|

125.2.2 MODE tool examples|

125.2.3 TC-Stat tool example]

A FAQs & How do I ... 7|

|A.1 Frequently Asked Questions|

|A.2 Troubleshootingl.

IA.3 Where to get help|

10

402

402

402

402

403

404

405

405

405

406

408

409

409

410

412

425

425

426

427

427

428

CONTENTS

IC Verification M |

IC.5 MET verification measures for neighborhood methods|

IC.6 ME'T verification measures for distance map methods|

|C.7 Calculating Percentiles|

[D_Confidence Intervals |

FE WWMCA Tools |

' Python Embedding |

[Vectors and Vector Statistics |

11

431

431

438

447

453

455

457

460

462

466

471

471

471

472

473

476

476

477

Foreword: A note to MET users

This User’s guide is provided as an aid to users of the Model Evaluation Tools (MET). MET is a set of
verification tools developed by the Developmental Testbed Center (DTC) for use by the numerical weather
prediction community to help them assess and evaluate the performance of numerical weather predictions.

It is important to note here that MET is an evolving software package. Previous releases of MET have
occurred each year since 2008. This documentation describes the 9.0.1 bugfix release from April 2020. MET
is also able to accept new modules contributed by the community. If you have code you would like to
contribute, we will gladly consider your contribution. Please send email to: met help@ucar.edul We will
then determine the maturity of new verification method and coordinate the inclusion of the new module in

a future version.

This User’s Guide was prepared by the developers of the MET, including Tressa Fowler, John Halley Gotway,
Randy Bullock, Kathryn Newman, Julie Prestopnik, Lisa Goodrich, Tara Jensen, Barbara Brown, Howard
Soh, Tatiana Burek, Minna Win-Gildenmeister, George McCabe, David Fillmore, Paul Prestopnik, Eric
Gilleland, Nancy Rehak, Paul Oldenburg, Anne Holmes, Lacey Holland, David Ahijevych and Bonny Strong.

Bugfixes for MET v9.0

Each of these release notes is followed by the GitHub issue number which describes the bugfix.

Bugfixes in v9.0.2: https://github.com/NCAR/MET /milestone/657closed—=1

e Fix Ensemble-Stat runtime error when requesting only RHIST, PHIST, or RELP output line types
(#1342).

Fix Grid-Stat to support MAXGAUSS smoothing method (#1335).

Check for bad data when computing the Gerrity Score (#1335).

Fix ascii2nc to compile without support for Python embedding (#1335).

Correct omissions in the MET User’s Guide (#1335).

12

mailto:
https://github.com/NCAR/MET/milestone/65?closed=1

CONTENTS 13
Bugfixes in v9.0.1: https://github.com/NCAR/MET /milestone/647closed—=1

e Correct the definition of ensemble spread (#1294).

— NOTE: This changes the spread statistics computed by MET!

Fix ascii2nc python embedding with observation variable names (#1306).

Fix python3 script.cc compilation error on a Mac (#1281).

Fix PB2NC memory corruption bug (#1286).

Fix point2grid segfault (#1298).

New for MET v9.0

MET version 9.0 includes some major enhancements. For Python embedding, these include the transition
from Python 2 to 3, adding support in ASCII2NC and Stat-Analysis, supporting multiple input files in
Ensemble-Stat, Series-Analysis, and MTD, supporting pandas, and handling the user’s Python environment.
Additional enhancements include the application of binned climatologies, the computation of the Ranked
Probability Score (RPS) and Distance Map (DMAP) output lines types, and the addition of five new tools:
Grid-Diag, Point2Grid, TC-Gen, TC-RMW, and RMW-Analysis.

When applicable, release notes are followed by the GitHub issue number which describes the bugfix, en-
hancement, or new feature: https://github.com/NCAR/MET //issues

Output Format Changes:

e Add new ensemble Ranked Probability Score (RPS) line type to the output of Ensemble-Stat and
Point-Stat (for HIRA) (#681).

e Add MTD header columns for "FCST CONV_TIME BEG", "FCST CONV_TIME END",
"OBS_CONV_TIME BEG", and "OBS_ CONV_TIME END" (#1133).

e Add MTD data column for a user-specified intensity percentile value INTENSITY _*, where * is the
user-specified percentile (#1134).

Configuration File Changes:

e Climatology Settings

— Add the "climo_stdev" and "climo_cdf" dictionaries for binned climatology logic (#1224).

— Replace the "climo__mean" dictionary options for "match _day" and "time _step" with "day _interval"
and "hour interval" (#1138).

https://github.com/NCAR/MET/milestone/64?closed=1
https://github.com/NCAR/MET/issues

CONTENTS 14

— Replace the "climo cdf bins" integer option with the "climo cdf" dictionary (#545).
e Ensemble-Stat

— Add the "nbrhd prob" and "nmep smooth" dictionaries for computing neighborhood ensemble
probability forecasts (#1089).

Add the "nep" and "nemp" entries to the "ensemble flag" dictionary (#1089).
— Add the "rps" entry to the "output flag" dictionary (#681).
— Add the "prob_cat_thresh" option to define probability thresholds for the RPS line type (#1262).

Add the "sid _inc" option to specify which stations should be included in the verification (#1235).
e Grid-Stat

— Replace the "nc_pairs var_ str" option with the "nc_pairs var suffix" and add the

"nc_pairs_var_name" option (#1271).

Add the "climo_cdf" entry to the "nc_pairs flag" dictionary (#545).
— Add the "distance map" dictionary to control output for the DMAP line type (#600).

Add the "dmap" entry to the "output flag" dictionary (#600).

Add the "distance map" entry to the "nc_pairs_flag" dictionary (#600).

Point-Stat

— Add the "sid_inc" option to specify which stations should be included in the verification (#1235).
— Add the "prob_cat_thresh" entry to the "hira" dictionary (#1262).
— Add the "rps" entry to the "output flag" dictionary (#681).

Series-Analysis
— Add the "climo_stdev" dictionary to support CDP thresholds (#1138).
e MTD

— Add the "conv_time window" dictionary to the "fcst" and "obs" dictionaries to control the
amount of temporal smoothing (#1084).
— Add the "inten perc_value" option to specify the desired intensity percentile to be reported

(#1134).
Point2Grid, Grid-Diag, TC-Gen, TC-RMW, RMW-Analysis

— Add default configuration files for these new tools.

Build Process Changes:

e Transition MET source code and issue tracking from Subversion and Jira to GitHub (#805).

e Enable the G2C library archive file name to be specified at configuration time by setting
"GRIB2CLIB_NAME" (default is libgrib2c.a) (#1240).

CONTENTS 15

e Enable the BUFRLIB library archive file name to be specified at configuration time by setting
"BUFRLIB_NAME" (default is libbufr.a) (#1185).

e Update the copyright date to 2020 and switch to the Apache 2.0 license (#1230).

e Integrate the Dockerfile into MET GitHub repository and automatically build the master v8.1 branch,
the develop branch, and all tagged releases on DockerHub (#1123).

e Document the option to install MET into "exec" rather than "bin" (#1189).

e Continued tracking and reduction of Fortify findings.

Enhancements to Existing Tools:

e Changes for all bugs fixed by met-8.1.1 and met-8.1.2.

— https://github.com/NCAR/MET /milestone/617closed=1
— https://github.com/NCAR/MET /milestone/607closed=1

e Grid Library

— Add definitions for 51 missing pre-defined NCEP grids (#893).

— Fix bug in the handling of some pre-defined NCEP grids (#1253).

— Fix inconsistencies for many of the pre-defined NCEP grids (#1254).
— Fix segfault when passing as input a thinned lat/lon grid (#1252).

— Fix for Lambert Conformal grids crossing the international date line (#1276).
e Python Embedding

— Switch Python embedding from Python 2 to Python 3 (#1080).
— Enhance Python embedding to support multiple input data types (#1056).

— Restructure the Python embedding logic to check for the "MET PYTHON EXE" environment
variable and run the user-specified instance of Python to write a temporary pickle file (#1205).

— Refine and simplify the Python embedding pickle logic by testing on NOAA machines, Hera and
WCOSS (#1264).

— For Python embedding, support the use of the "MET PYTHON INPUT ARG" constant (#1260).
e NetCDF and GRIB Libraries

— Fix bug in processing CF Compliant NetCDF valid time stamps (#1238).
— Update the vx_data2d nccf library to support all documented variants of time units (#1245).
— Fix bug to allow for negative values of unixtime, prior to 1/1/1970 (#1239).

— Add "GRIB1 tri" configuration file option to filter GRIB1 records based on the time range
indicator value (#1263).

— Bugfix for reporting the units for GRIB2 probabilities as "%" (#1212).

https://github.com/NCAR/MET/milestone/61?closed=1
https://github.com/NCAR/MET/milestone/60?closed=1

CONTENTS 16

e Common Libraries

— Print a warning message when a user specifies a config file entry as the wrong type (#1225).

— Fix bug in the parsing of file lists and make this logic consistent across Series-Analysis, Ensemble-
Stat, MTD, and TC-RMW (#1226).

— When the climo mean and/or standard deviation fields contain bad data, exclude that matched
pair from the verification (#1204).

— Break out the Gaussian algorithm into "GAUSSIAN" and "MAXGAUSS" where "GAUSSIAN"
applies a Gaussian filter using the "gaussian _dx" and "gaussian _radius" options while
"MAXGAUSS" computes the maximum over the neighborhood prior to applying the Gaussian
filter (#1234).

— Report AW _MEAN regridding width at 1, not NA (#1186).
— Add support for climatological distribution percentile thresholds, such as >CDP50 (#1138).
— Fix MET-TC bug in the computation of initialization hour and valid hour (#1227).

PB2NC

— Add the derivation of PBL and ensure consistency with VSDB (#1199).

n

— Remove non-printable characters that are included in the output of the "-index" command line

option (#1241).
e ASCII2NC

— Enhance ascii2nc to read point observations via Python embedding with the new "-format python"

command line option (#1122).

Point2Grid

— Initial release of the new point to grid tool (#1078).
— Enhance to process GOES16/17 smoke and dust data from ADP files (#1194).

Update quality control processing logic (#1168).

Derive AOD at 550nm from 440 and 675 (#1121).

Regrid-Data-Plane

— Remove GOES16/17 data processing since it was reimplemented in the new Point2Grid tool
(#1243).

— Add support for Gaussian regridding method to support the definition of surrogate-severe forecasts

(#1136).

PCP-Combine

— Support multiple arguments for the "-pcpdir" command line option (#1191).

— Fix bug in the handling of bad data for the "-subtract" command (#1255).

Point-Stat

CONTENTS 17
— Enhance the HiRA logic to support CDP threshold types (#1251).
— Add new ensemble Ranked Probability Score (RPS) output line type for HIRA (#681).
o Grid-Stat

— Add an "nc_ pairs_var _name" configuration file option to explicitly define the NetCDF matched

pairs output variable names (#1271).
— Add new distance map (DMAP) output line type (#600).

e Ensemble-Stat

Enhance to support Python embedding with "MET PYTHON INPUT_ ARG" (#1140).

Add the computation of neighborhood probability forecasts (#1089).

— Apply binned climatology logic using the "climo cdf" config file option to the computation of
ECNT statistics (#1224).

— Fix logic for computing the lead time of a time-lagged ensemble to use the minimum lead time of
the ensemble members (#1244).

— Fix bug for initializing output variables when the first field processed contains missing data
(#1242).

— Add new ensemble Ranked Probability Score (RPS) output line type (#681).

Point-Stat and Ensemble-Stat

— Add the new "sid _inc" configuration option to explicitly specify which stations should be included
in the verification (#1235).

Point-Stat, Grid-Stat, and Ensemble-Stat

— When applying climatology bins, report the mean of statistics across the bins for SL1L2, SAL1L2,
CNT, PSTD, and ECNT line types (#1138).

Stat-Analysis

— Add support for evaluating point forecasts by reading matched pairs via Python embedding
(#1143).

e MODE
— Fix bug in the computation of the aspect ratio of objects with an area of 1 (#1215).

e MTD

Enhance to support Python embedding with "MET PYTHON INPUT_ ARG" (#1140).
— Make the amount of temporal smoothing a configurable option (#1084).

— Add a user-specified object intensity percentile to the output (#1134).

Fix bug for the centroid longitude being reported in degrees west rather than degrees east (#1214).

Series-Analysis

CONTENTS 18

— Enhance to support Python embedding with "MET PYTHON INPUT ARG" (#1140).

— Fix the memory allocation logic to dramatically reduce memory usage by up to a factor of 30

(#1267).

Grid-Diag

— Initial release of the new grid diagnostics tool (#1106).

— Fix bug in the application of the masking regions (#1261).

TC-Gen

— Initial release of the new TC genesis tool (#1127).

— Fix bug when checking the "min duration", update log messages, and refine configuration file
options (#1127).

TC-RMW

— Initial version of the Tropical Cyclone, Radius of Maximum Winds tool (#1085).
e RMW-Analysis

— Initial version of the Radius of Maximum Winds Analysis tool (#1178).

TERMS OF USE

IMPORTANT!

Copyright 2020, UCAR/NCAR, NOAA, and CSU/CIRA Licensed under the Apache License, Version 2.0
(the "License"); You may not use this file except in compliance with the License. You may obtain a copy of

the License at
http://www.apache.org/licenses/ LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed
on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing permissions and limitations under the License.

The following notice shall be displayed on any scholarly works associated with, related
to or derived from the Software:

"Model Evaluation Tools (MET) was developed at the National Center for Atmospheric Research
(NCAR) through grants from the National Science Foundation (NSF), the National Oceanic and
Atmospheric Administration (NOAA), the United States Air Force (USAF), and the United States
Department of Energy (DOE). NCAR is sponsored by the United States National Science

Foundation.”

By using or downloading the Software, you agree to be bound by the terms and conditions of

this Agreement.
The citation for this User’s Guide should be:

T. Jensen, Brown, B., R. Bullock, T. Fowler, J. Halley Gotway, K. Newman, 2020:

The Model Evaluation Tools v9.0.2 (METv9.0.2) User’s Guide. Developmental Testbed Center.

Available at:
https://dtcenter.org/sites/default /files/community-code /met /docs/user-guide/MET _Users Guide v9.0.2.pdf
481 pp.

19

Acknowledgments

We thank the the National Science Foundation (NSF) along with three organizations within the National
Oceanic and Atmospheric Administration (NOAA): 1) Office of Atmospheric Research (OAR); 2) Next
Generation Global Prediction System project (NGGPS); and 3) United State Weather Research Program
(USWRP), the United States Air Force (USAF), and the United States Department of Energy (DOE) for
their support of this work. Funding for the development of MET-TC is from the NOAA’s Hurricane Forecast
Improvement Project (HFIP) through the Developmental Testbed Center (DTC). Funding for the expansion
of capability to address many methods pertinent to global and climate simulations was provided by NOAA’s
Next Generation Global Prediction System (NGGPS) and NSF Earth System Model 2 (EaSM2) projects. We
would like to thank James Franklin at the National Hurricane Center (NHC) for his insight into the original
development of the existing NHC verification software. Thanks also go to the staff at the Developmental
Testbed Center for their help, advice, and many types of support. We released METv1.0 in January 2008
and would not have made a decade of cutting-edge verification support without those who participated in
the original MET planning workshops and the now dis-banded verification advisory group (Mike Baldwin,
Matthew Sittel, Elizabeth Ebert, Geoff DiMego, Chris Davis, and Jason Knievel).

The National Center for Atmospheric Research (NCAR) is sponsored by NSF. The DTC is sponsored by the
National Oceanic and Atmospheric Administration (NOAA), the United States Air Force, and the National
Science Foundation (NSF). NCAR is sponsored by the National Science Foundation (NSF).

20

Chapter 1

Overview of MET

1.1 Purpose and organization of the User’s Guide

The goal of this User’s Guide is to provide basic information for users of the Model Evaluation Tools
(MET) to enable them to apply MET to their datasets and evaluation studies. MET was originally designed
for application to the post-processed output of the Weather Research and Forecasting (WRF) model (see
http://www.wrf-model.org/index.php| for more information about the WRF). However, MET may also
be used for the evaluation of forecasts from other models or applications if certain file format definitions

(described in this document) are followed.

The MET User’s Guide is organized as follows. Chapter [I] provides an overview of MET and its components.
Chapter [2| contains basic information about how to get started with MET - including system requirements,
required software (and how to obtain it), how to download MET, and information about compilers, libraries,
and how to build the code. Chapter [3] - [f] focuses on the data needed to run MET, including formats
for forecasts, observations, and output. These chapters also document the reformatting and masking tools
available in MET. Chapters [7] - focus on the main statistics modules contained in MET, including the
Point-Stat, Grid-Stat, Ensemble-Stat, Wavelet-Stat and GSI Diagnostic Tools. These chapters include an
introduction to the statistical verification methodologies utilized by the tools, followed by a section containing
practical information, such as how to set up configuration files and the format of the output. Chapters
and focus on the analysis modules, Stat-Analysis and Series-Analysis, which aggregate the output
statistics from the other tools across multiple cases. Chapters [I5] - [I7] describe a suite of object-based tools,
including MODE, MODE-Analysis, and MODE-TD. Chapters [1§] - 24] describe tools focused on tropical
cyclones, including MET-TC Overview, TC-Dland, TC-Pairs, TC-Stat, TC-Gen, TC-RMW and RMW-
Analysis. Finally, Chapter 25]includes plotting tools included in the MET release for checking and visualizing
data, as well as some additional tools and information for plotting MET results. The appendices provide
further useful information, including answers to some typical questions (Appendix E How do I... ?); and
links and information about map projections, grids, and polylines (Appendix [B). Appendices [C] and [D]
provide more information about the verification measures and confidence intervals that are provided by

MET. Sample code that can be used to perform analyses on the output of MET and create particular types

21

http://www.wrf-model.org/index.php

CHAPTER 1. OVERVIEW OF MET 22

of plots of verification results is posted on the MET website (https://dtcenter.org/community-code/
model-evaluation-tools-met). Note that the MET development group also accepts contributed analysis
and plotting scripts which may be posted on the MET website for use by the community. It should be noted
there are References plus a List of Tables and Figures between Chapter 25| and Appendices.

The remainder of this chapter includes information about the context for MET development, as well as
information on the design principles used in developing MET. In addition, this chapter includes an overview

of the MET package and its specific modules.

1.2 The Developmental Testbed Center (DTC)

MET has been developed, and will be maintained and enhanced, by the Developmental Testbed Center (DTC;
http://www.dtcenter.org/|). The main goal of the DTC is to serve as a bridge between operations and
research, to facilitate the activities of these two important components of the numerical weather prediction
(NWP) community. The DTC provides an environment that is functionally equivalent to the operational
environment in which the research community can test model enhancements; the operational community
benefits from DTC testing and evaluation of models before new models are implemented operationally.
MET serves both the research and operational communities in this way - offering capabilities for researchers
to test their own enhancements to models and providing a capability for the DTC to evaluate the strengths

and weaknesses of advances in NWP prior to operational implementation.

The MET package will also be available to DTC visitors and to the WRF modeling community for testing

and evaluation of new model capabilities, applications in new environments, and so on.

1.3 MET goals and design philosophy

The primary goal of MET development is to provide a state-of-the-art verification package to the NWP
community. By "state-of-the-art" we mean that MET will incorporate newly developed and advanced ver-
ification methodologies, including new methods for diagnostic and spatial verification and new techniques
provided by the verification and modeling communities. MET also utilizes and replicates the capabilities
of existing systems for verification of NWP forecasts. For example, the MET package replicates existing
National Center for Environmental Prediction (NCEP) operational verification capabilities (e.g., I/O, meth-
ods, statistics, data types). MET development will take into account the needs of the NWP community -
including operational centers and the research and development community. Some of the MET capabilities
include traditional verification approaches for standard surface and upper air variables (e.g., Equitable Threat
Score, Mean Squared Error), confidence intervals for verification measures, and spatial forecast verification
methods. In the future, MET will include additional state-of-the-art and new methodologies.

The MET package has been designed to be modular and adaptable. For example, individual modules can
be applied without running the entire set of tools. New tools can easily be added to the MET package

due to this modular design. In addition, the tools can readily be incorporated into a larger "system" that

https://dtcenter.org/community-code/model-evaluation-tools-met
https://dtcenter.org/community-code/model-evaluation-tools-met
http://www.dtcenter.org/

CHAPTER 1. OVERVIEW OF MET 23

may include a database as well as more sophisticated input/output and user interfaces. Currently, the
MET package is a set of tools that can easily be applied by any user on their own computer platform. A
suite of Python scripts for low-level automation of verification workflows and plotting has been developed
to assist users with setting up their MET-based verification. It is called METplus and may be obtained at
https://github.com/NCAR/METplus.

The MET code and documentation is maintained by the DTC in Boulder, Colorado. The MET package is
freely available to the modeling, verification, and operational communities, including universities, govern-

ments, the private sector, and operational modeling and prediction centers.

1.4 MET components

The major components of the MET package are represented in Figure The main stages represented are
input, reformatting, plotting, intermediate output, statistical analyses, and output and aggregation/analysis.
The MET-TC package functions independently of the other MET modules, as indicated in the Figure. Each
of these stages is described further in later chapters. For example, the input and output formats are discussed
in[3]as well as in the chapters associated with each of the statistics modules. MET input files are represented
on the far left.

The reformatting stage of MET consists of the Gen-Vx-Mask, PB2NC, ASCII2NC, Pcp-Combine, MADIS2NC,
MODIS regrid, WWMCA Regrid, and Ensemble-Stat tools. The PB2NC tool is used to create NetCDF files
from input PrepBUFR files containing point observations. Likewise, the ASCII2NC tool is used to create
NetCDF files from input ASCII point observations. Many types of data from the MADIS network can be
formatted for use in MET by the MADIS2NC tool. MODIS and WWMCA files are regridded and formatted
into NetCDF files by their respective tools. These NetCDF files are then used in the statistical analysis step.
The Gen-Vx-Mask and Pcp-Combine tools are optional. The Gen-Vx-Mask tool will create a bitmapped
masking area in a variety of ways. The output mask can then be used to efficiently limit verification to the
interior of a user specified region. The Pcp-Combine tool can be used to add, subtract, or derive fields across
multiple time steps. Often it is run to accumulate precipitation amounts into the time interval selected by
the user - if a user would like to verify over a different time interval than is included in their forecast or
observational dataset. The Ensemble-Stat tool will combine many forecasts into an ensemble mean or prob-
ability forecast. Additionally, if gridded or point observations are included, ensemble verification statistics

are produced.

Several optional plotting utilities are provided to assist users in checking their output from the data pre-
processing step. Plot-Point-Obs creates a postscript plot showing the locations of point observations. This
can be quite useful for assessing whether the latitude and longitude of observation stations was specified
correctly. Plot-Data-Plane produces a similar plot for gridded data. For users of the MODE object based
verification methods, the Plot-MODE-Field utility will create graphics of the MODE object output. Finally,
WWDMCA-Plot produces a plot of the raw WWMCA data file.

The main statistical analysis components of the current version of MET are: Point-Stat, Grid-Stat, Series-
Analysis, Ensemble-Stat, MODE, MODE-TD (MTD), and Wavelet-Stat. The Point-Stat tool is used for

https://github.com/NCAR/METplus

CHAPTER 1. OVERVIEW OF MET 24

MET Overview v9.0

Legend
o] @ GED = =
Gridded
Fest L r File

MNetCDF

STAT Analysis
ASCIT [‘o0l

Data /0
— || MetCDF
Gridded
Anly '
Data
Plot
ASCII
= - —*|netcDF | *(MODE PNG
Gridded Field
sl . | NetCDF » L~ L~
Data ASCIL Plot
L/ || NetcDF __, ASCII Tool
wwmca [g
Data > —
STAT
L/ »| ASCIL

ASCIT
Point | 4
Data
| I—

w] @ fH
|

BUFR MetCDF —
Point [L ASCIT
Data Point STAT
L NetCDF > | | ascir ||
MADIS Obs NetCDF
Point f——p| L~ L~
Data
. STAT
| asci [
HDF
LIDAR | L
Data
L~ [
=531 .
A Gridded STAT
Diag > »| STAT | & -
L~ 7
ASCII
Track || NetCDF |—p(RMW. NetCDF
Data Analysis
4 — —
ASCIT DlLand
Land > »| NetCDF | | TCST | —» EST[A;;
Data Data
L~ L~ 7 L7

Figure 1.1: Basic representation of current MET structure and modules. Gray areas represent
input and output files. Dark green areas represent reformatting and pre-processing tools.
Light green areas represent plotting utilities. Blue areas represent statistical tools. Yellow
areas represent aggregation and analysis tools.

grid-to-point verification, or verification of a gridded forecast field against a point-based observation (i.e.,
surface observing stations, ACARS, rawinsondes, and other observation types that could be described as a
point observation). In addition to providing traditional forecast verification scores for both continuous and
categorical variables, confidence intervals are also produced using parametric and non-parametric methods.
Confidence intervals take into account the uncertainty associated with verification statistics due to sampling
variability and limitations in sample size. These intervals provide more meaningful information about forecast
performance. For example, confidence intervals allow credible comparisons of performance between two

models when a limited number of model runs is available.

Sometimes it may be useful to verify a forecast against gridded fields (e.g., Stage IV precipitation analyses).
The Grid-Stat tool produces traditional verification statistics when a gridded field is used as the observational
dataset. Like the Point-Stat tool, the Grid-Stat tool also produces confidence intervals. The Grid-Stat tool
also includes "neighborhood" spatial methods, such as the Fractional Skill Score (Roberts and Lean 2008).
These methods are discussed in Ebert (2008). The Grid-Stat tool accumulates statistics over the entire

domain.

CHAPTER 1. OVERVIEW OF MET 25

Users wishing to accumulate statistics over a time, height, or other series separately for each grid location
should use the Series-Analysis tool. Series-Analysis can read any gridded matched pair data produced by
the other MET tools and accumulate them, keeping each spatial location separate. Maps of these statistics

can be useful for diagnosing spatial differences in forecast quality.

The MODE (Method for Object-based Diagnostic Evaluation) tool also uses gridded fields as observational
datasets. However, unlike the Grid-Stat tool, which applies traditional forecast verification techniques,
MODE applies the object-based spatial verification technique described in Davis et al. (2006a,b) and Brown
et al. (2007). This technique was developed in response to the "double penalty" problem in forecast
verification. A forecast missed by even a small distance is effectively penalized twice by standard categorical
verification scores: once for missing the event and a second time for producing a false alarm of the event
elsewhere. As an alternative, MODE defines objects in both the forecast and observation fields. The objects
in the forecast and observation fields are then matched and compared to one another. Applying this technique
also provides diagnostic verification information that is difficult or even impossible to obtain using traditional
verification measures. For example, the MODE tool can provide information about errors in location, size,

and intensity.

The MODE-TD tool extends object-based analysis from two-dimensional forecasts and observations to in-
clude the time dimension. In addition to the two dimensional information provided by MODE, MODE-TD
can be used to examine even more features including displacement in time, and duration and speed of moving

areas of interest.

The Wavelet-Stat tool decomposes two-dimensional forecasts and observations according to the Intensity-
Scale verification technique described by Casati et al. (2004). There are many types of spatial verification
approaches and the Intensity-Scale technique belongs to the scale-decomposition (or scale-separation) ver-
ification approaches. The spatial scale components are obtained by applying a wavelet transformation to
the forecast and observation fields. The resulting scale-decomposition measures error, bias and skill of the
forecast on each spatial scale. Information is provided on the scale dependency of the error and skill, on the
no-skill to skill transition scale, and on the ability of the forecast to reproduce the observed scale structure.
The Wavelet-Stat tool is primarily used for precipitation fields. However, the tool can be applied to other

variables, such as cloud fraction.

Though Ensemble-Stat is a preprocessing tool for creation of ensemble forecasts from a group of files, it also

produces several types of ensemble statistics. Thus, it is included as a statistics tool in the flowchart.

Results from the statistical analysis stage are output in ASCII, NetCDF and Postscript formats. The Point-
Stat, Grid-Stat, and Wavelet-Stat tools create STAT (statistics) files which are tabular ASCII files ending
with a ".stat" suffix. In earlier versions of MET, this output format was called VSDB (Verification System
DataBase). VSDB, which was developed by the NCEP, is a specialized ASCII format that can be easily
read and used by graphics and analysis software. The STAT output format of the Point-Stat, Grid-Stat, and
Wavelet-Stat tools is an extension of the VSDB format developed by NCEP. Additional columns of data and
output line types have been added to store statistics not produced by the NCEP version.

The Stat-Analysis and MODE-Analysis tools aggregate the output statistics from the previous steps across
multiple cases. The Stat-Analysis tool reads the STAT output of Point-Stat, Grid-Stat, Ensemble-Stat, and

CHAPTER 1. OVERVIEW OF MET 26

Wavelet-Stat and can be used to filter the STAT data and produce aggregated continuous and categorical
statistics. The MODE-Analysis tool reads the ASCII output of the MODE tool and can be used to produce
summary information about object location, size, and intensity (as well as other object characteristics) across

one Oor more cases.

Tropical cyclone forecasts and observations are quite different than numerical model forecasts, and thus
they have their own set of tools. The MET-TC package includes several modules: TC-Dland, TC-Pairs,
TC-Stat, TC-Gen, TC-RMW, and RMW-Analysis. The TC-Dland module calculates the distance to land
from all locations on a specified grid. This information can be used in later modules to eliminate tropical
cyclones that are over land from being included in the statistics. TC-Pairs matches up tropical cyclone
forecasts and observations and writes all output to a file. In TC-Stat, these forecast / observation pairs are
analyzed according to user preference to produce statistics. TC-Gen evaluates the performance of Tropical
Cyclone genesis forecast using contingency table counts and statistics. TC-RMW performs a coordinate
transformation for gridded model or analysis fields centered on the current storm location. RMW-Analysis

filters and aggregates the output of TC-RMW across multiple cases.

The following chapters of this MET User’s Guide contain usage statements for each tool, which may be
viewed if you type the name of the tool. Alternatively, the user can also type the name of the tool followed
by -help to obtain the usage statement. Each tool also has a -version command line option associated with

it so that the user can determine what version of the tool they are using.

1.5 Future development plans

MET is an evolving verification software package. New capabilities are planned in controlled, succes-
sive version releases. Bug fixes and user-identified problems will be addressed as they are found and
posted to the known issues section of the MET Users web page (https://dtcenter.org/community-code/
model-evaluation-tools-met/user-support|). Plans are also in place to incorporate many new capabili-
ties and options in future releases of MET. Please refer to the issues listed in the MET GitHub repository

(https://github.com/NCAR/MET/issues) to see our development priorities for upcoming releases.

1.6 Code support

MET support is provided through a MET-help e-mail address: met help@ucar.edu. We will endeavor to
respond to requests for help in a timely fashion. In addition, information about MET and tools that can
be used with MET are provided on the MET Users web page (https://dtcenter.org/community-code/

model-evaluation-tools-met).

We welcome comments and suggestions for improvements to MET, especially information regarding errors.
Comments may be submitted using the MET Feedback form available on the MET website. In addition,
comments on this document would be greatly appreciated. While we cannot promise to incorporate all

suggested changes, we will certainly take all suggestions into consideration.

https://dtcenter.org/community-code/model-evaluation-tools-met/user-support
https://dtcenter.org/community-code/model-evaluation-tools-met/user-support
https://github.com/NCAR/MET/issues
https://dtcenter.org/community-code/model-evaluation-tools-met
https://dtcenter.org/community-code/model-evaluation-tools-met

CHAPTER 1. OVERVIEW OF MET 27

-help and -version command line options are available for all of the MET tools. Typing the name of the

tool with no command line options also produces the usage statement.

The MET package is a "living" set of tools. OQur goal is to continually enhance it and add to its capabilities.
Because our time, resources, and talents are limited, we welcome contributed code for future versions of
MET. These contributions may represent new verification methodologies, new analysis tools, or new plotting

functions. For more information on contributing code to MET, please contact met_help@ucar.edu.

1.7 Fortify

Requirements from various government agencies that use MET have resulted in our code being analyzed
by Fortify, a proprietary static source code analyzer owned by HP Enterprise Security Products. Fortify
analyzes source code to identify for security risks, memory leaks, uninitialized variables, and other such
weaknesses and bad coding practices. Fortify categorizes any issues it finds as low priority, high priority, or
critical, and reports these issues back to the developers for them to address. A development cycle is thus
established, with Fortify analyzing code and reporting back to the developers, who then make changes in
the source code to address these issues, and hand the new code off to Fortify again for re-analysis. The goal
is to drive the counts of both high priority and critical issues down to zero.

The MET developers are pleased to report that Fortify reports zero critical issues in the MET code. Users
of the MET tools who work in high security environments can rest assured about the possibility of security
risks when using MET, since the quality of the code has now been vetted by unbiased third-party experts.
The MET developers continue using Fortify routinely to ensure that the critical counts remain at zero and

to further reduce the counts for lower priority issues.

met_help@ucar.edu

Chapter 2

Software Installation/Getting Started

2.1 Introduction

This chapter describes how to install the MET package. MET has been developed and tested on Linux
operating systems. Support for additional platforms and compilers may be added in future releases. The
MET package requires many external libraries to be available on the user’s computer prior to installation.
Required and recommended libraries, how to install MET, the MET directory structure, and sample cases

are described in the following sections.

2.2 Supported architectures

The MET package was developed on Debian Linux using the GNU compilers and the Portland Group (PGI)
compilers. The MET package has also been built on several other Linux distributions using the GNU, PGI,
and Intel compilers. Past versions of MET have also been ported to IBM machines using the IBM compilers,
but we are currently unable to support this option as the development team lacks access to an IBM machine
for testing. Other machines may be added to this list in future releases as they are tested. In particular, the

goal is to support those architectures supported by the WRF model itself.

The MET tools run on a single processor. Therefore, none of the utilities necessary for running WRF on
multiple processors are necessary for running MET. Individual calls to the MET tools have relatively low
computing and memory requirements. However users will likely be making many calls to the tools and

passing those individual calls to several processors will accomplish the verification task more efficiently.

2.3 Programming languages

The MET package, including MET-TC, is written primarily in C/C++ in order to be compatible with an
extensive verification code base in C/C++ already in existence. In addition, the object-based MODE and

28

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 29

MODE-TD verification tools relies heavily on the object-oriented aspects of C++. Knowledge of C/C++
is not necessary to use the MET package. The MET package has been designed to be highly configurable
through the use of ASCII configuration files, enabling a great deal of flexibility without the need for source
code modifications.

NCEP’s BUFRLIB is written entirely in Fortran. The portion of MET that handles the interface to the
BUFRLIB for reading PrepBUFR point observation files is also written in Fortran.

The MET package is intended to be a tool for the modeling community to use and adapt. As users make up-
grades and improvements to the tools, they are encouraged to offer those upgrades to the broader community
by offering feedback to the developers.

2.4 Required compilers and scripting languages

The MET package was developed and tested using the GNU g++-/gfortran compilers and the Intel icc/ifort
compilers. As additional compilers are successfully tested, they will be added to the list of supported

platforms/compilers.
The GNU make utility is used in building all executables and is therefore required.

The MET package consists of a group of command line utilities that are compiled separately. The user may
choose to run any subset of these utilities to employ the type of verification methods desired. New tools
developed and added to the toolkit will be included as command line utilities.

In order to control the desired flow through MET, users are encouraged to run the tools via a script or
consider using the METplus package (https://dtcenter.org/community-code/metplus). Some sample
scripts are provided in the distribution; these examples are written in the Bourne shell. However, users are

free to adapt these sample scripts to any scripting language desired.

2.5 Required libraries and optional utilities

Three external libraries are required for compiling/building MET and should be downloaded and installed
before attempting to install MET. Additional external libraries required for building advanced features in
MET are discussed in Section :

1. NCEP’s BUFRLIB is used by MET to decode point-based observation datasets in PrepBUFR, format.
BUFRLIB is distributed and supported by NCEP and is freely available for download from NCEP’s
website at https://www.emc.ncep.noaa.gov/index.php?branch=BUFRLIB. BUFRLIB requires C

and Fortran-90 compilers that should be from the same family of compilers used when building MET.

https://dtcenter.org/community-code/metplus
https://www.emc.ncep.noaa.gov/index.php?branch=BUFRLIB

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 30

2. Several tools within MET use Unidata’s NetCDF libraries for writing output NetCDF files. NetCDF
libraries are distributed and supported by Unidata and are freely available for download from Unidata’s
website at http://www.unidata.ucar.edu/software/netcdf. The same family of compilers used to
build NetCDF should be used when building MET. MET is now compatible with the enhanced data
model provided in NetCDF version 4. The support for NetCDF version 4 requires HDF5 which is
freely available for download at https://support.hdfgroup.org/HDF5/.

3. The GNU Scientific Library (GSL) is used by MET when computing confidence intervals. GSL is dis-
tributed and supported by the GNU Software Foundation and is freely available for download from the
GNU website at http://www.gnu.org/software/gsl.

4. The Zlib is used by MET for compression when writing postscript image files from tools (e.g. MODE,
Wavelet-Stat, Plot-Data-Plane, and Plot-Point-Obs). Zlib is distributed and supported Zlib.org and is
freely available for download from the Zlib website at http://www.z1lib.net!

Two additional utilities are strongly recommended for use with MET:

1. The Unified Post-Processor is recommended for post-processing the raw WRF model output prior to
verifying the model forecasts with MET. The Unified Post-Processor is freely available for download
https://dtcenter.org/community-code/unified-post-processor-upp. MET can read data on
a standard, de-staggered grid and on pressure or regular levels in the vertical. The Unified Post-
Processor outputs model data in this format from both WRF cores, the NMM and the ARW. However,
the Unified Post-Processor is not strictly required as long as the user can produce gridded model output
on a standard de-staggered grid on pressure or regular levels in the vertical. Two-dimensional fields

(e.g., precipitation amount) are also accepted for some modules.

2. The copygb utility is recommended for re-gridding model and observation datasets in GRIB version 1
format to a common verification grid. The copygb utility is distributed as part of the Unified Post-
Processor and is available from other sources as well. While earlier versions of MET required that all
gridded data be placed on a common grid, MET version 5.1 added support for automated re-gridding
on the fly. After version 5.1, users have the option of running copygb to regrid their GRIB1 data ahead
of time or leveraging the automated regridding capability within MET.

2.6 Installation of required libraries

As described in Section [2.5] some external libraries are required for building the MET:

1. NCEP’s BUFRLIB is used by the MET to decode point-based observation datasets in PrepBUFR format.
Once you have downloaded and unpacked the BUFRLIB tarball, refer to the README BUFRLIB
file. When compiling the library using the GNU C and Fortran compilers, users are strongly encouraged
to use the -DUNDERSCORE and -fno-second-underscore options. Compiling the BUFRLIB using the
GNU compilers consists of the following 3 steps:

http://www.unidata.ucar.edu/software/netcdf
https://support.hdfgroup.org/HDF5/
http://www.gnu.org/software/gsl
http://www.zlib.net
https://dtcenter.org/community-code/unified-post-processor-upp

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 31

* gcc -c -DUNDERSCORE *.c
* gfortran -c -DUNDERSCORE -fno-second-underscore *.f *.F

* ar crv libbufr.a *.o
Compiling the BUFRLIB using the PGI C and Fortran-90 compilers consists of the following 3 steps:

* pgcc -c -DUNDERSCORE *.c
* pgf90 -c -DUNDERSCORE -Mnosecond_underscore *.f *.F

* ar crv libbufr.a *.o
Compiling the BUFRLIB using the Intel icc and ifort compilers consists of the following 3 steps:

* icc -c -DUNDERSCORE *.c
* ifort -c -DUNDERSCORE *.f *.F

* ar crv libbufr.a *.o

In the directions above, the static library file that is created will be named libbufr.a. MET will check for
the library file named libbufr.a, however in some cases (e.g. where the BUFRLIB is already available
on a system) the library file may be named differently (e.g. libbufr v11.3.0 4 64.a). If the library
is named anything other than libbufr.a, users will need to tell MET what library to link with by
passing the BUFRLIB_NAME option to MET when running configure (e.g. BUFRLIB NAME=-
Ibufr v11.3.0_4 64).

2. Unidata’s NetCDF libraries are used by several tools within MET for writing output NetCDF files. The
same family of compilers used to build NetCDF should be used when building MET. Users may also
find some utilities built for NetCDF such as ncdump and ncview useful for viewing the contents of
NetCDF files. Detailed installation instructions are available from Unidata at http://www.unidata.
ucar.edu/software/netcdf/docs/netcdf-install/. Support for NetCDF version 4 requires HDF5.
Detailed installation instructions for HDF5 are available at https://support.hdfgroup.org/HDF5/

release/obtainsrc.html.

3. The GNU Scientific Library (GSL) is used by MET for random sampling and normal and binomial
distribution computations when estimating confidence intervals. Precompiled binary packages are
available for most GNU/Linux distributions and may be installed with root access. When installing
GSL from a precompiled package on Debian Linux, the developer’s version of GSL must be used;
otherwise, use the GSL version available from the GNU website (http://www.gnu.org/software/
gsl/). MET requires access to the GSL source headers and library archive file at build time.

4. For users wishing to compile MET with GRIB2 file support, NCEP’s GRIB2 Library in C (g2clib)
must be installed, along with jasperlib, libpng, and zlib. (http://www.nco.ncep.noaa.gov/pmb/
codes/GRIB2). Please note that compiling the GRIB2C library with the -D 64BIT _ option
requires that MET also be configured with CFLAGS="-D 64BIT __ ". Compiling MET and
the GRIB2C library inconsistently may result in a segmentation fault when reading GRIB2 files.
MET looks for the GRIB2C library to be named libgrib2c.a, which may be set in the GRIB2C make-
file as LIB=libgrib2c.a. However in some cases, the library file may be named differently (e.g.
libg2c v1.6.0.a). If the library is named anything other than libgrib2c.a, users will need to tell MET

http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-install/
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-install/
https://support.hdfgroup.org/HDF5/release/obtainsrc.html
https://support.hdfgroup.org/HDF5/release/obtainsrc.html
http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
http://www.nco.ncep.noaa.gov/pmb/codes/GRIB2
http://www.nco.ncep.noaa.gov/pmb/codes/GRIB2

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 32

what library to link with by passing the GRIB2CLIB NAME option to MET when running configure
(e.g. GRIB2CLIB_NAME=-lg2c_v1.6.0).

5. Users wishing to compile MODIS-regrid and/or lidar2nc will need to install both the HDF4 and HDF-
EOS2 libraries available from the HDF group websites (http://www.hdfgroup.org/products/hdf4)
and (http://www.hdfgroup.org/hdfeos.html).

6. The MODE-Graphics utility requires Cairo and FreeType. Thus, users who wish to compile this util-
ity must install both libraries, available from (http://cairographics.org/releases) and (http:
//www.freetype.org/download.html). In addition, users will need to download Ghostscript font

data required at runtime (http://sourceforge.net/projects/gs-fonts).

2.7 Installation of optional utilities

As described in the introduction to this chapter, two additional utilities are strongly recommended for use
with MET.

1. The Unified Post-Processor is recommended for post-processing the raw WRF model output prior to
verifying the data with MET. The Unified Post-Processor may be used on WRF output from both the
ARW and NMM cores. https://dtcenter.org/community-code/unified-post-processor-upp .

2. The copygb utility is recommended for re-gridding model and observation datasets in GRIB format to a
common verification grid. The copygb utility is distributed as part of the Unified Post-Processor and
is available from other sources as well. Please refer to the "Unified Post-processor" utility mentioned

above for information on availability and installation.

2.8 MET directory structure

The top-level MET directory consists of a README file, Makefiles, configuration files, and several subdi-
rectories. The top-level Makefile and configuration files control how the entire toolkit is built. Instructions
for using these files to build MET can be found in Section [2.9]

When MET has been successfully built and installed, the installation directory contains two subdirectories.
The bin/ directory contains executables for each module of MET as well as several plotting utilities. The
share/met/ directory contains many subdirectories with data required at runtime and a subdirectory of
sample R scripts utilities. The colortables/, map/, and ps/ subdirectories contain data used in creating
PostScript plots for several MET tools. The poly/ subdirectory contains predefined lat/lon polyline regions
for use in selecting regions over which to verify. The polylines defined correspond to verification regions
used by NCEP as described in Appendix B. The config/ directory contains default configuration files for
the MET tools. The table_files/ and tc_data/ subdirectories contain GRIB table definitions and tropical

cyclone data, respectively. The Rscripts/ subdirectory contains a handful of plotting graphic utilities for

http://www.hdfgroup.org/products/hdf4
http://www.hdfgroup.org/hdfeos.html
http://cairographics.org/releases
http://www.freetype.org/download.html
http://www.freetype.org/download.html
http://sourceforge.net/projects/gs-fonts
https://dtcenter.org/community-code/unified-post-processor-upp

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 33

MET-TC. These are the same Rscripts that reside under the top-level MET scripts/Rscripts directory, other

than it is the installed location.

The data/ directory contains several configuration and static data files used by MET. The sample fcst/ and
sample obs/ subdirectories contain sample data used by the test scripts provided in the scripts/ directory.

The doc/ directory contains documentation for MET, including the MET User’s Guide.
The out/ directory will be populated with sample output from the test cases described in the next section.
The src/ directory contains the source code for each of the tools in MET.

The scripts/ directory contains test scripts that are run by make test after MET has been successfully built,
and a directory of sample configuration files used in those tests located in the scripts/config/ subdirectory.
The output from the test scripts in this directory will be written to the out/ directory. Users are encouraged

to copy sample configuration files to another location and modify them for their own use.

The share/met/Rscripts directory contains a handful of sample R scripts, include plot tcmpr.R, which

provides graphic utilities for MET-TC. For more information on the graphics capabilities, see Section [25.2.3]
of this User’s Guide.

2.9 Building the MET package
Building the MET package consists of three main steps: (1) install the required libraries, (2) configure the
environment variables, and (3) configure and execute the build.

Install the required libraries.

e Please refer to Section [2.6] and 2.7 on how to install the required and optional libraries.

e If installing the required and optional libraries in a non-standard location, the user may need to tell
MET where to find them. This can be done by setting or adding to the LD LIBRARY PATH to
included the path to the library files.

Set Environment Variables

The MET build uses environment variables to specify the locations of the needed external libraries. For each
library, there is a set of three environment variables to describe the locations: SMET _<lib>, $MET _<lib>INC
and $SMET _ <lib>LIB.

The $MET _<lib> environment variable can be used if the external library is installed such that there is a
main directory which has a subdirectory called "lib" containing the library files and another subdirectory

called "include" containing the include files. For example, if the NetCDF library files are installed in

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 34

/opt/netcdf/lib and the include files are in /opt/netcdf/include, you can just define the SMET NETCDF

environment variable to be " /opt/netcdf".

The $SMET _ <lib>INC and $MET _<lib>LIB environment variables are used if the library and include files
for an external library are installed in separate locations. In this case, both environment variables must be
specified and the associated SMET <lib> variable will be ignored. For example, if the NetCDF include
files are installed in /opt/include/netcdf and the library files are in /opt/lib/netcdf, then you would set
$MET_NETCDFINC to "/opt/include/netcdf" and $SMET_NETCDFLIB to "/opt/lib/netcdf".

The following environment variables should also be set:

- Set SMET _NETCDF to point to the main NetCDF directory, or set SMET NETCDFINC to point to
the directory with the NetCDF include files and set $SMET NETCDFLIB to point to the directory with the
NetCDF library files.

- Set $SMET _HDFS5 to point to the main HDF5 directory.

- Set SMET _BUFR to point to the main BUFR directory, or set $SMET BUFRLIB to point to the directory
with the BUFR library files. Because we don’t use any BUFR library include files, you don’t need to specify
$MET BUFRINC.

- Set SMET _GSL to point to the main GSL directory, or set $MET GSLINC to point to the directory with
the GSL include files and set $MET GSLLIB to point to the directory with the GSL library files.

- If compiling support for GRIB2, set $MET GRIB2CINC and $MET GRIB2CLIB to point to the main
GRIB2C directory which contains both the include and library files. These are used instead of SMET GRIB2C

since the main GRIB2C directory does not contain include and lib subdirectories.

- If compiling support for PYTHON, set $SMET PYTHON CC and $MET PYTHON LD to specify
the compiler (-I) and linker (-L) flags required for python. Set $MET PYTHON CC for the directory
containing the "Python.h" header file. Set SMET PYTHON LD for the directory containing the python
library file and indicate the name of that file. For example:

MET_PYTHON_ CC="-1/usr/include/python3.6’
MET PYTHON LD='"-L/usr/lib/python3.6/config-x86 64-linux-gnu -lpython3.6m’
For more information about Python support in MET, please refer to [F]

- If compiling MODIS-Regrid and/or lidar2nc, set $SMET HDF to point to the main HDF4 directory, or set
$MET HDFINC to point to the directory with the HDF4 include files and set $MET HDFLIB to point
to the directory with the HDF4 library files. Also, set SMET HDFEOS to point to the main HDF EOS
directory, or set $SMET HDFEOSINC to point to the directory with the HDF EOS include files and set
$MET HDFEOSLIB to point to the directory with the HDF EOS library files.

- If compiling MODE Graphics, set $MET _CAIRO to point to the main Cairo directory, or set
$MET _CAIROINC to point to the directory with the Cairo include files and set $MET _CAIROLIB to point

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 35

to the directory with the Cairo library files. Also, set SMET FREETYPE to point to the main FreeType
directory, or set SMET FREETYPEINC to point to the directory with the FreeType include files and set
$MET FREETYPELIB to point to the directory with the FreeType library files.

- When running MODE Graphics, set $MET FONT DIR to the directory containing font data required
at runtime. A link to the tarball containing this font data can be found on the MET website.

For ease of use, you should define these in your .cshrc or equivalent file.

Configure and execute the build

Example: To configure MET to install all of the available tools in the "bin" subdirectory of your current

directory, you would use the following commands:

1. ./configure --prefix=‘pwd‘ --enable-grib2 --enable-python \
--enable-modis --enable-mode_graphics --enable-lidar2nc

2. Type ’make install >& make_install.log &’

3. Type ’tail -f make_install.log’ to view the execution of the make.

4. When make is finished, type ’CNTRL-C’ to quit the tail.

If all tools are enabled and the build is successful, the "<prefix>/bin" directory (where <prefix> is the
prefix you specified on your configure command line) will contain 36 executables:

- asciiZ2nc

- ensemble_stat

- gen_vx_mask

- grid_stat

- gis_dump_dbf

- gis_dump_shp

- gis_dump_shx

- grid_diag

- gsid2mpr

- gsidens2orank

- lidar2nc

- madis2nc

- mode

- mode_analysis

- modis_regrid

- mtd

- pb2nc

- pcp_combine

- plot_data_plane
- plot_mode_field

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 36

- plot_point_obs

- point2grid

- point_stat

- rmw_analysis

- regrid_data_plane
- series_analysis
- shift_data_plane
- stat_analysis

- tc_dland

- tc_gen

- tc_pairs

- tc_rmw

- tc_stat

- wavelet_stat

- wwmca_plot

- wwmca_regrid

NOTE: Several compilation warnings may occur which are expected. If any errors occur, please refer to the

appendix on troubleshooting for common problems.

-help and -version command line options are available for all of the MET tools. Typing the name of the

tool with no command line options also produces the usage statement.

The configure script has command line options to specify where to install MET and which MET utilities to
install. Include any of the following options that apply to your system:

--prefix=PREFIX

By default, MET will install all the files in " /usr/local/bin". You can specify an installation prefix other
than " /usr/local" using "--prefix", for instance "--prefix=$HOME" or "--prefix=‘pwd*".

--enable-grib2

Enable compilation of utilities using GRIB2. Requires SMET GRIB2C.

--enable-python

Enable compilation of python interface. Requires SMET PYTHON_ CC and $MET PYTHON LD.
--disable-block4

Disable use of BLOCK4 in the compilation. Use this if you have trouble using PrepBUFR files.

Run the configure script with the --help argument to see the full list of configuration options.

Make Targets

The autoconf utility provides some standard make targets for the users. In MET, the following standard

targets have been implemented and tested:

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 37

1. all - compile all of the components in the package, but don’t install them.

2. install - install the components (where is described below). Will also compile if "make all" hasn’t been

done yet.
3. clean - remove all of the temporary files created during the compilation.
4. uninstall - remove the installed files. For us, these are the executables and the files in $MET BASE.
MET also has the following non-standard targets:

5. test - runs the scripts/test all.sh script. You must run "make install" before using this target.

2.10 Sample test cases

Once the MET package has been built successfully, the user is encouraged to run the sample test scripts
provided. They are run using make test in the top-level directory. Execute the following commands:

[y

. Type 'make test >& make test.log &’ to run all of the test scripts in the directory. These test scripts
use test data supplied with the tarball. For instructions on running your own data, please refer to the
MET User’s Guide.

2. Type ’tail -f make test.log’ to view the execution of the test script.

3. When the test script is finished, type ’'CNTRL-C’ to quit the tail. Look in "out" to find the output files
for these tests. Each tool has a separate, appropriately named subdirectory for its output files.

[

. In particular, check that the PB2NC tool ran without error. If there was an error, run "make clean" then
rerun your configure command adding "--disable-block4" to your configure command line and rebuild
MET.

Chapter 3

MET Data I/0

Data must often be preprocessed prior to using it for verification. Several MET tools exist for this purpose.
In addition to preprocessing observations, some plotting utilities for data checking are also provided and
described at the end of this chapter. Both the input and output file formats are described in this chapter.
Sections and are primarily concerned with re-formatting input files into the intermediate files required
by some MET modules. These steps are represented by the first three columns in the MET flowchart depicted
in Figure Output data formats are described in later Section Common configuration files options
are described in Section [3.5] Description of software modules used to reformat the data may now be found
in Chapters] and

3.1 Input data formats

The MET package can handle gridded input data in one of four formats: GRIB version 1, GRIB version 2,
NetCDF files following the Climate and Forecast (CF) conventions, and NetCDF files produced by the MET
tools themselves. MET supports standard NCEP, USAF, UKMet Office and ECMWF grib tables along
with custom, user-defined GRIB tables and the extended PDS including ensemble member metadata. See
[B-5.1] for more information. Point observation files may be supplied in either PrepBUFR, ASCII, or MADIS
format. Note that MET does not require the Unified Post-Processor to be used, but does require that the
input GRIB data be on a standard, de-staggered grid on pressure or regular levels in the vertical. While the
Grid-Stat, Wavelet-Stat, MODE, and MTD tools can be run on a gridded field at virtually any level, the
Point-Stat tool can only be used to verify forecasts at the surface or on pressure or height levels. MET does

not interpolate between native model vertical levels.

When comparing two gridded fields with the Grid-Stat, Wavelet-Stat, Ensemble-Stat, MODE, MTD, or
Series-Analysis tools, the input model and observation datasets must be on the same grid. MET will regrid
files according to user specified options. Alternately, outside of MET, the copygb and wgrib2 utilities
are recommended for re-gridding GRIB1 and GRIB2 files, respectively. To preserve characteristics of the

38

CHAPTER 3. MET DATA I/0 39

observations, it is generally preferred to re-grid the model data to the observation grid, rather than vice

versa.

Input point observation files in PrepBUFR format are available through NCEP. The PrepBUFR, observation
files contain a wide variety of point-based observation types in a single file in a standard format. However,
some users may wish to use observations not included in the standard PrepBUFR files. For this reason, prior
to performing the verification step in the Point-Stat tool, the PrepBUFR file is reformatted with the PB2NC
tool. In this step, the user can select various ways of stratifying the observation data spatially, temporally,
and by type. The remaining observations are reformatted into an intermediate NetCDF file. The ASCII2NC
tool may be used to convert ASCII point observations that are not available in the PrepBUFR files into
this NetCDF format for use by the Point-Stat verification tool. Users with METAR or RAOB data from
MADIS can convert these observations into NetCDF format with the MADIS2NC tool, then use them with

the Point-Stat or Ensemble-Stat verification tools.

Tropical cyclone forecasts and observations are typically provided in a specific ASCII format, in A Deck and
B Deck files.

3.2 Intermediate data formats

MET uses NetCDF as an intermediate file format. The MET tools which write gridded output files write to
a common gridded NetCDF file format. The MET tools which write point output files write to a common
point observation NetCDF file format.

3.3 Output data formats

The MET package currently produces output in the following basic file formats: STAT files, ASCII files,
NetCDF files, PostScript plots, and png plots from the Plot-Mode-Field utility.

The STAT format consists of tabular ASCII data that can be easily read by many analysis tools and software
packages. MET produces STAT output for the Grid-Stat, Point-Stat, Ensemble-Stat, Wavelet-Stat, and TC-
Gen tools. STAT is a specialized ASCII format containing one record on each line. However, a single STAT
file will typically contain multiple line types. Several header columns at the beginning of each line remain the
same for each line type. However, the remaining columns after the header change for each line type. STAT
files can be difficult for a human to read as the quantities represented for many columns of data change from

line to line.

For this reason, ASCII output is also available as an alternative for these tools. The ASCII files contain
exactly the same output as the STAT files but each STAT line type is grouped into a single ASCII file with
a column header row making the output more human-readable. The configuration files control which line

types are output and whether or not the optional ASCII files are generated.

CHAPTER 3. MET DATA I/0 40

The MODE tool creates two ASCII output files as well (although they are not in a STAT format). It generates
an ASCII file containing contingency table counts and statistics comparing the model and observation fields
being compared. The MODE tool also generates a second ASCII file containing all of the attributes for the
single objects and pairs of objects. Each line in this file contains the same number of columns, and those
columns not applicable to a given line type contain fill data. Similarly, the MTD tool writes one ASCII
output file for 2D objects attributes and four ASCII output files for 3D object attributes.

The TC-Pairs and TC-Stat utilities produce ASCII output, similar in style to the STAT files, but with TC
relevant fields.

Many of the tools generate gridded NetCDF output. Generally, this output acts as input to other MET
tools or plotting programs. The point observation preprocessing tools produce NetCDF output as input to
the statistics tools. Full details of the contents of the NetCDF files is found in Section [3.4] below.

The MODE, Wavelet-Stat and plotting tools produce PostScript plots summarizing the spatial approach
used in the verification. The PostScript plots are generated using internal libraries and do not depend on an
external plotting package. The MODE plots contain several summary pages at the beginning, but the total
number of pages will depend on the merging options chosen. Additional pages will be created if merging is
performed using the double thresholding or fuzzy engine merging techniques for the forecast and observation
fields. The number of pages in the Wavelet-Stat plots depend on the number of masking tiles used and
the dimension of those tiles. The first summary page is followed by plots for the wavelet decomposition of
the forecast and observation fields. The generation of these PostScript output files can be disabled using

command line options.

Users can use the optional plotting utilities Plot-Data-Plane, Plot-Point-Obs, and Plot-Mode-Field to pro-
duce graphics showing forecast, observation, and MODE object files.

3.4 Data format summary

The following is a summary of the input and output formats for each of the tools currently in MET. The
output listed is the maximum number of possible output files. Generally, the type of output files generated

can be controlled by the configuration files and/or the command line options:

1. PB2NC Tool

* Input: One PrepBUFR point observation file and one configuration file.

* Qutput: One NetCDF file containing the observations that have been retained.
2. ASCII2NC Tool

* Input: One or more ASCII point observation file(s) that has (have) been formatted as expected,

and optional configuration file.

* Qutput: One NetCDF file containing the reformatted observations.

CHAPTER 3. MET DATA I/0 41

3. MADIS2NC Tool

* Input: One MADIS point observation file.

* Qutput: One NetCDF file containing the reformatted observations.
4. LIDAR2NC Tool

* Input: One CALIPSO satellite HDF file

* Qutput: One NetCDF file containing the reformatted observations.
5. Point2Grid Tool

* Input: One NetCDF file containing point observation from the ASCII2NC, PB2NC, MADIS2NC,
or LIDAR2NC tool.

* Qutput: One NetCDF file containing a gridded representation of the point observations.
6. Pcp-Combine Tool

* Input: Two or more gridded model or observation files (in GRIB format for “sum” command, or
any gridded file for “add”, “subtract”, and “derive” commands) containing data (often accumulated
precipitation) to be combined.

* Qutput: One NetCDF file containing output for the requested operation(s).
7. Regrid-Data-Plane Tool

* Input: One gridded model or observation field and one gridded field to provide grid specification if
desired.

* Output: One NetCDF file containing the regridded data field(s).
8. Shift-Data-Plane Tool

* Imput: One gridded model or observation field.
* Qutput: One NetCDF file containing the shifted data field.

9. MODIS-Regrid Tool

* Input: One gridded model or observation field and one gridded field to provide grid specification.
* Qutput: One NetCDF file containing the regridded data field.

10. Gen-VX-Mask Tool

* Inmput: One gridded model or observation file and one file defining the masking region (varies based

on masking type).

* Qutput: One NetCDF file containing a bitmap for the resulting masking region.

11. Point-Stat Tool

CHAPTER 3. MET DATA I/0 42

* Input: One gridded model file, at least one point observation file in NetCDF format (as the output
of the PB2NC, ASCII2NC, MADIS2NC, or LIDAR2NC tool), and one configuration file.

* OQutput: One STAT file containing all of the requested line types and several ASCII files for each
line type requested.

12. Grid-Stat Tool

* Input: One gridded model file, one gridded observation file, and one configuration file.

* Qutput: One STAT file containing all of the requested line types, several ASCII files for each line
type requested, and one NetCDF file containing the matched pair data and difference field for

each verification region and variable type/level being verified.
13. Ensemble Stat Tool

* Input: An arbitrary number of gridded model files, one or more gridded and/or point observation

files, and one configuration file. Point and gridded observations are both accepted.

* Output: One NetCDF file containing requested ensemble forecast information. If observations are
provided, one STAT file containing all requested line types, several ASCII files for each line type
requested, and one NetCDF file containing gridded observation ranks.

14. Wavelet-Stat Tool

* Input: One gridded model file, one gridded observation file, and one configuration file.

* Output: One STAT file containing the “ISC” line type, one ASCII file containing intensity-scale
information and statistics, one NetCDF file containing information about the wavelet decomposi-
tion of forecast and observed fields and their differences, and one PostScript file containing plots

and summaries of the intensity-scale verification.
15. GSID2MPR Tool

* Input: One or more binary GSI diagnostic files (conventional or radiance) to be reformatted.

* OQutput: One ASCII file in matched pair (MPR) format.
16. GSID20RANK Tool

* Imput: One or more binary GSI diagnostic files (conventional or radiance) to be reformatted.

* Qutput: One ASCII file in observation rank (ORANK) format.
17. Stat-Analysis Tool

* Input: One or more STAT files output from the Point-Stat, Grid-Stat, Ensemble Stat, Wavelet-Stat,
or TC-Gen tools and, optionally, one configuration file containing specifications for the analysis
job(s) to be run on the STAT data.

* Qutput: ASCII output of the analysis jobs is printed to the screen unless redirected to a file using
the “-out” option or redirected to a STAT output file using the “~out _stat” option.

CHAPTER 3. MET DATA I/0 43

18. Series-Analysis Tool

* Input: An arbitrary number of gridded model files and gridded observation files and one configura-
tion file.

* Output: One NetCDF file containing requested output statistics on the same grid as the input files.
19. Grid-Diag Tool

* Input: An arbitrary number of gridded data files and one configuration file.

* Output: One NetCDF file containing individual and joint histograms of the requested data.
20. MODE Tool

* Input: One gridded model file, one gridded observation file, and one or two configuration files.

* Qutput: One ASCII file containing contingency table counts and statistics, one ASCII file containing
single and pair object attribute values, one NetCDF file containing object indices for the gridded
simple and cluster object fields, and one PostScript plot containing a summary of the features-
based verification performed.

21. MODE-Analysis Tool

* Input: One or more MODE object statistics files from the MODE tool and, optionally, one config-

uration file containing specification for the analysis job(s) to be run on the object data.
* Output: ASCII output of the analysis jobs will be printed to the screen unless redirected to a file
using the “-~out” option.

22. MODE-TD Tool

* Input: Two or more gridded model files, two or more gridded observation files, and one configuration
file.

* Output: One ASCII file containing 2D object attributes, four ASCII files containing 3D object
attributes, and one NetCDF file containing object indices for the gridded simple and cluster
object fields.

23. TC-Dland Tool

* Input: One or more files containing the longitude (Degrees East) and latitude (Degrees North) of
all the coastlines and islands considered to be a significant landmass.

* Qutput: One NetCDF format file containing a gridded field representing the distance to the nearest

coastline or island, as specified in the input file.
24. TC-Pairs Tool

* Input: At least one A-deck and one B-deck ATCF format file containing output from a tropical
cyclone tracker and one configuration file. The A-deck files contain forecast tracks while the
B-deck files are typically the NHC Best Track Analysis but could also be any ATCF format

reference.

CHAPTER 3. MET DATA I/0 44

25.

26.

27.

28.

29.

30.

31.

32.

* Output: ASCII output with the suffix .tcstat.
TC-Stat Tool

* Input: One or more TCSTAT output files output from the TC-Pairs tool and, optionally, one

configuration file containing specifications for the analysis job(s) to be run on the TCSTAT data.

* Output: ASCII output of the analysis jobs will be printed to the screen unless redirected to a file

using the “-out” option.
TC-Gen Tool

* Input: One or more Tropical Cyclone genesis format files, one or more verifying operational and
BEST track files in ATCF format, and one configuration file.

* Qutput: One STAT file containing all of the requested line types and several ASCII files for each
line type requested.

TC-RMW Tool

* Input: One or more gridded data files, one ATCF track file defining the storm location, and one

configuration file.

* Output: One gridded NetCDF file containing the requested model fields transformed into cylindrical

coordinates.
RMW-Analysis Tool

* Input: One or more NetCDF output files from the TC-RMW tool and one configuration file.
* Qutput: One NetCDF file for results aggregated across the filtered set of input files.

Plot-Point-Obs Tool

* Input: One NetCDF file containing point observation from the ASCII2NC, PB2NC, MADIS2NC,
or LIDAR2NC tool.

* Output: One postscript file containing a plot of the requested field.
Plot-Data-Plane Tool

* Input: One gridded data file to be plotted.
* Output: One postscript file containing a plot of the requested field.

Plot-MODE-Field Tool

* Input: One or more MODE output files to be used for plotting and one configuration file.
* Output: One PNG file with the requested MODE objects plotted. Options for objects include raw,

simple or cluster and forecast or observed objects.
GIS-Util Tools

* Input: ESRI shape files ending in .dbf, .shp, or .shx.

* Output: ASCII description of their contents printed to the screen.

CHAPTER 3. MET DATA I/0 45

3.5 Configuration File Details

Part of the strength of MET is the leveraging of capability across tools. There are several config options

that are common to many of the tools. They are described in this section.

Many of the MET tools use a configuration file to set parameters. This prevents the command line from
becoming too long and cumbersome and makes the output easier to duplicate.

Settings common to multiple tools are described in the following sections while those specific to individual
tools are explained in the chapters for those tools. In addition, these configuration settings are described
in the share/met/config/README file and the share/met/config/README-TC file for the MET-Tropical

Cyclone tools.

3.5.1 MET Configuration File Options

The information listed below may also be found in the data/config/README file.

LI11177077
//

// Configuration file overview.

//
LI11177077

The configuration files that control many of the MET tools contain formatted
ASCII text. This format has been updated for METv4.0 and continues to be used

in subsequent releases.

Settings common to multiple tools are described in the top part of this README
file and settings specific to individual tools are described beneath the common
settings. Please refer to the MET User’s Guide in the "doc" directory for more

details about the settings if necessary.

A configuration file entry is an entry name, followed by an equal sign (=),
followed by an entry value, and is terminated by a semicolon (;). The
configuration file itself is one large dictionary consisting of entries, some of

which are dictionaries themselves.

The configuration file language supports the following data types:
- Dictionary:
- Grouping of one or more entries enclosed by curly braces {}.
- Array:

- List of one or more entries enclosed by square braces [].

CHAPTER 3. MET DATA I/0

- Array elements are separated by commas.

- String:

- A character string enclosed by double quotation marks "".

- Integer:

- A numeric integer value.

- Float:

- A numeric float value.

- Boolean:
- A boolean value (TRUE or FALSE).
- Threshold:
- A threshold type (<, <=, ==, !-, >=, or >) followed by a numeric value.

- The threshold type may also be specified using two letter abbreviations

(1t, le, eq, ne, ge, gt).

- Multiple thresholds may be combined by specifying the logic type of AND
(&&) or OR (||). For example, ">=5&&<=10" defines the numbers between 5

and 10 and "==1]||==2" defines numbers exactly equal to 1 or 2.

- Percentile Thresholds:

- Thresholds may be defined as percentiles of the data being processed in

several places:

In Point-Stat and Grid-Stat when setting "cat_thresh", "wind_thresh",
and "cnt_thresh".

In Wavelet-Stat when setting "cat_thresh".

In MODE when setting "conv_thresh" and "merge_thresh".

In Ensemble-Stat when setting "obs_thresh".

When using the "censor_thresh" config option.

In the Stat-Analysis "-out_fcst_thresh" and "-out_obs_thresh" job
command options.

In the Gen-Vx-Mask "-thresh" command line option.

- The following percentile threshold types are supported:

"SFP" for a percentile of the sample forecast values.

e.g. ">SFP50" means greater than the 50-th forecast percentile.
"SOP" for a percentile of the sample observation values.

e.g. ">SO0P75" means greater than the 75-th observation percentile.
"SCP" for a percentile of the sample climatology values.

e.g. ">SCP90" means greater than the 90-th climatology percentile.
"USP" for a user-specified percentile threshold.

e.g. "<USP90(2.5)" means less than the 90-th percentile values which
the user has already determined to be 2.5 outside of MET.

"==FBIAS1" to automatically de-bias the data. This option must be
used in conjunction with a simple threshold in the other field.

For example, when "obs.cat_thresh = >5.0" and

"fcst.cat_thresh = ==FBIAS1;", MET applies the >5.0 threshold to the

observations and then chooses a forecast threshold which results in a

46

CHAPTER 3. MET DATA I/0

frequency bias of 1.

- "CDP" for climatological distribution percentile thresholds.
These thresholds require that the climatological mean and standard
deviation be defined using the climo_mean and climo_stdev config file
options, respectively. The categorical (cat_thresh), conditional
(cnt_thresh), or wind speed (wind_thresh) thresholds are defined
relative to the climatological distribution at each point. Therefore,
the actual numeric threshold applied can change for each point.
e.g. ">CDP50" means greater than the 50-th percentile of the
climatological distribution for each point.

- When percentile thresholds of type SFP, SOP, SCP, or CDP are requested
for continuous filtering thresholds (cnt_thresh), wind speed thresholds
(wind_thresh), or observation filtering thresholds (obs_thresh in
ensemble_stat), the following special logic is applied. Percentile
thresholds of type equality are automatically converted to percentile
bins which span the values from 0 to 100.

For example, "==CDP25" is automatically expanded to 4 percentile bins:
>=CDP0&&<CDP25 , >=CDP25&&<CDP50 , >=CDP50&&<CDP75 , >=CDP75&&<=CDP100

- When sample percentile thresholds of type SFP, SOP, SCP, or FBIAS1 are
requested, MET recomputes the actual percentile that the threshold
represents. If the requested percentile and actual percentile differ by
more than 5%, a warning message is printed. This may occur when the
sample size is small or the data values are not truly continuous.

- When percentile thresholds of type SFP, S0P, SCP, or USP are used, the
actual threshold value is appended to the FCST_THRESH and 0BS_THRESH
output columns. For example, if the 90-th percentile of the current set
of forecast values is 3.5, then the requested threshold "<=SFP90" is
written to the output as "<=SFP90(3.5)".

- When parsing FCST_THRESH and OBS_THRESH columns, the Stat-Analysis tool
ignores the actual percentile values listed in parentheses.

- Piecewise-Linear Function (currently used only by MODE):

- A list of (x, y) points enclosed in parenthesis ().

- The (x, y) points are *NOT* separated by commas.

- User-defined function of a single variable:

- Left side is a function name followed by variable name in parenthesis.

- Right side is an equation which includes basic math functions (+,-,*,/),
built-in functions (listed below), or other user-defined functions.

- Built-in functions include:
sin, cos, tan, sind, cosd, tand, asin, acos, atan, asind, acosd, atand,
atan2, atan2d, arg, argd, log, exp, loglO, expl0, sqrt, abs, min, max,

mod, floor, ceil, step, nint, sign

The context of a configuration entry matters. If an entry cannot be found in

CHAPTER 3. MET DATA I/0

the expected dictionary, the MET tools recursively search for that entry in the
parent dictionaries, all the way up to the top-level configuration file
dictionary. If you’d like to apply the same setting across all cases, you can
simply specify it once at the top-level. Alternatively, you can specify a
setting at the appropriate dictionary level to have finer control over the

behavior.

In order to make the configuration files more readable, several descriptive
integer types have been defined in the ConfigConstants file. These integer

names may be used on the right-hand side for many configuration file entries.

Each of the configurable MET tools expects a certain set of configuration
entries. Examples of the MET configuration files can be found in data/config

and scripts/config.

When you pass a configuration file to a MET tool, the tool actually parses up
to four different configuration files in the following order:
(1) Reads share/met/config/ConfigConstants to define constants.
(2) If the tool produces PostScript output, it reads
share/met/config/ConfigMapData to define the map data to be plotted.
(3) Reads the default configuration file for the tool from share/met/config.

(4) Reads the user-specified configuration file from the command line.

Many of the entries from step (3) are overwritten by the user-specified entries
from step (4). Therefore, the configuration file you pass in on the command

line really only needs to contain entries that differ from the defaults.

Any of the configuration entries may be overwritten by the user-specified
configuration file. For example, the map data to be plotted may be included in
the user-specified configuration file and override the default settings defined

in the share/met/config/ConfigMapData file.

The configuration file language supports the use of environment variables. They
are specified as ${ENV_VAR}, where ENV_VAR is the name of the environment
variable. When scripting up many calls to the MET tools, you may find it
convenient to use them. For example, when applying the same configuration to
the output from multiple models, consider defining the model name as an
environment variable which the controlling script sets prior to verifying the
output of each model. Setting MODEL to that environment variable enables you

to use one configuration file rather than maintianing many very similar ones.

An error in the syntax of a configuration file will result in an error from the

MET tool stating the location of the parsing error.

48

CHAPTER 3. MET DATA I/0

The MET_BASE variable is defined in the code at compilation time as the path

to the MET shared data. These are things like the default configuration files,
common polygons and color scales. MET_BASE may be used in the MET configuration
files when specifying paths and the appropriate path will be substituted in.

If MET_BASE is defined as an environment variable, its value will be used

instead of the one defined at compilation time.

The MET_0BS_ERROR_TABLE environment variable can be set to specify the location
of an ASCII file defining observation error information. The default table can
be found in the installed share/met/table_files/obs_error_table.txt. This

observation error logic is applied in Ensemble-Stat to perturb ensemble member

values and/or define observation bias corrections.

When processing point and gridded observations, Ensemble-Stat searches the table
to find the entry defining the observation error information. The table

consists of 15 columns and includes a header row defining each column. The
special string "ALL" is interpreted as a wildcard in these files. The first 6
columns (OBS_VAR, MESSAGE_TYPE, PB_REPORT_TYPE, IN_REPORT_TYPE, INSTRUMENT_TYPE,
and STATION_ID) may be set to a comma-separated list of strings to be matched.
In addition, the strings in the OBS_VAR column are interpreted as regular
expressions when searching for a match. For example, setting the OBS_VAR column
to ’APCP_[0-9]+’ would match observations for both APCP_03 and APCP_24. The
HGT_RANGE, VAL_RANGE, and PRS_RANGE columns should either be set to "ALL" or
"BEG,END" where BEG and END specify the range of values to be used. The
INST_BIAS_SCALE and INST_BIAS_OFFSET columns define instrument bias adjustments
which are applied to the observation values. The DIST_TYPE and DIST_PARM
columns define the distribution from which random perturbations should be drawn
and applied to the ensemble member values. See the obs_error description below
for details on the supported error distributions. The last two columns, MIN and
MAX, define the bounds for the valid range of the bias-corrected observation
values and randomly perturbed ensemble member values. Values less than MIN are
reset to the mimumum value and values greater than MAX are reset to the maximum

value. A value of NA indicates that the variable is unbounded.

The MET_GRIB_TABLES environment variable can be set to specify the location of
custom GRIB tables. It can either be set to a specific file name or to a
directory containing custom GRIB tables files. These file names must begin with
a "gribl" or "grib2" prefix and end with a ".txt" suffix. Their format must
match the format used by the default MET GRIB table files, described below.

The custom GRIB tables are read prior to the default tables and their settings

take precedence.

49

CHAPTER 3. MET DATA I/0 50

At runtime, the MET tools read default GRIB tables from the installed

share/met/table_files directory, and their file formats are described below:

GRIB1 table files begin with "gribl" prefix and end with a ".txt" suffix.
The first line of the file must contain "GRIB1".
The following lines consist of 4 integers followed by 3 strings:

Column 1: GRIB code (e.g. 11 for temperature)

Column 2: parameter table version number

Column 3: center id (e.g. 07 for US Weather Service- National Met. Center)
Column 4: subcenter id

Column 5: variable name

Column 6: variable description

Column 7: units

References:

http://www.nco.ncep.noaa.gov/pmb/docs/on388
http://www.wmo.int/pages/prog/www/WM0Codes/Guides/GRIB/GRIB1-Contents.html

GRIB2 table files begin with "grib2" prefix and end with a ".txt" suffix.
The first line of the file must contain "GRIB2".
The following lines consist of 8 integers followed by 3 strings.

column 1: Section O Discipline

column 2: Section 1 Master Tables Version Number

column 3: Section 1 Master Tables Version Number, low range of tables
column 4: Section 1 Master Table Version Number, high range of tables
column 5: Section 1 originating center

column 6: Local Tables Version Number

column 7: Section 4 Template 4.0 Parameter category

column 8: Section 4 Template 4.0 Parameter number

column 9: variable name

column 10: variable description

column 11: units

References:

http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_doc

LI11177077
//

// Configuration settings used by the MET tools.

//
LI111777

LI1177

CHAPTER 3. MET DATA I/0 51

//

// Settings common to multiple tools

!/
LI111777

//

// The "exit_on_warning" entry in ConfigConstants may be set to true or false.
// If set to true and a MET tool encounters a warning, it will immediately exit
// with bad status after writing the warning message.

//

exit_on_warning = FALSE;

/7

// The "nc_compression" entry in ConfigConstants defines the compression level
// for the NetCDF variables. Setting this option in the config file of one of
// the tools overrides the default value set in ConfigConstants. The

// environment variable MET_NC_COMPRESS overrides the compression level

// from configuration file. The command line argument "-compress n" for some
// tools overrides it.

// The range is 0 to 9.

// - 0 is to disable the compression.

// -1 to 9: Lower number is faster, higher number for smaller files.

// WARNING: Selecting a high compression level may slow down the reading and
// writing of NetCDF files within MET significantly.

/7

nc_compression = 0;

//

// The "output_precision" entry in ConfigConstants defines the precision

// (number of significant decimal places) to be written to the ASCII output
// files. Setting this option in the config file of one of the tools will
// override the default value set in ConfigConstants.

//

output_precision = 5;

// The "tmp_dir" entry in ConfigConstants defines the directory for the

// temporary files. The directory must exist and be writable. The environment
// variable MET_TMP_DIR overrides the default value at the configuration file.
// Some tools override the temporary directory by the command line argument
// "-tmp_dir <diretory_name>".

tmp_dir = "/tmp";

//

CHAPTER 3. MET DATA I/0 52

// The "message_type_group_map" entry is an array of dictionaries, each

// containing a "key" string and "val" string. This defines a mapping of

// message type group names to a comma-separated list of values. This map is

// defined in the config files for PB2NC, Point-Stat, or Ensemble-Stat. Modify
// this map to define sets of message types that should be processed together as
// a group. The "SURFACE" entry must be present to define message types for

// which surface verification logic should be applied.

//

mesage_type_group_map = [

{ key = "SURFACE"; val = "ADPSFC,SFCSHP,MSONET"; 3,
{ key = "ANYAIR"; wval = "ATIRCAR,AIRCFT"; },
{ key = "ANYSFC"; wval = "ADPSFC,SFCSHP,ADPUPA,PROFLR,MSONET"; },
{ key = "ONLYSF"; wval = "ADPSFC,SFCSHP"; }
1
//

// The "message_type_map" entry is an array of dictionaries, each containing

// a "key" string and "val" string. This defines a mapping of input strings

// to output message types. This mapping is applied in ASCII2NC when

// converting input little_r report types to output message types. This mapping
// is also supported in PBN2NC as a way of ren