Integrating NWP System Components Using Container Technology and Cloud Services

Kate Fossell^{2,3}, John Halley Gotway^{1,3}, Michelle Harrold^{1,3}, Mike Kavulich^{1,3}, Jamie Wolff^{1,3}

National Center for Atmospheric Research, Boulder, CO

¹Research Applications Laboratory ²Mesoscale and Microscale Meteorology Laboratory ³Developmental Testbed Center

Instructor introductions

- Kate Fossell (<u>fossell@ucar.edu</u>)
- John Halley Gotway (johnhg@ucar.edu)
- Michelle Harrold (<u>harrold@ucar.edu</u>)
- Mike Kavulich (<u>kavulich@ucar.edu</u>)
- Jamie Wolff (jwolff@ucar.edu)

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

Class outline

- \checkmark Instructor introductions
- Goals of short course
- Overview of technologies
 - Introduction to AWS syntax/environment
 - Introduction to Docker container syntax/environment
- Introduction to end-to-end NWP system components
- Case study and modifying for user-specific needs
- Hands on exercises throughout!
- Review/Questions

Goals for the short course

- Raise awareness about tools and facilities available to the community for testing and evaluating Numerical Weather Prediction (NWP) innovations
 - Discuss emerging set of software tools in reusable containers and cloud compute resources
 - Avoid hurdles of identifying significant compute resources and compiling complex codes
- Provide a general overview of the NWP system components currently available in software containers
 - WPS/WRF, GSI, UPP, NCL, MET, METviewer
- Conduct hands-on learning experience for running an integrated NWP system through specific usage examples with software containers "in the cloud"

Technologies used in this course

- Amazon Web Services (AWS)
 - Cloud computing service
- Docker containers
 - Self-contained system that includes everything necessary to run without requiring up-front setup
- Numerical Weather Prediction (NWP) components
 - Weather Research and Forecasting (WRF) based system including preprocessing, model, post-processing, verification, and

visualization

aws

docker