
Machine Learning for
beginners

(Scikit-Learn and Keras)

Eric Loken (DTC visitor)
Host: Jamie Wolff

Ph.D. Advisor: Adam Clark

What is ML doing, conceptually?
Maps predictors to outputs based on

relationships learned from training

Predictor 1

Predictor 2

Predictor n

… Predicted
outcome

ML (“Black Box”)

2 Stages of ML: Training and Testing

Training
(Historical Data)

Testing/Real-Time
Prediction (New Data)

Predictors

Obs.

Algorithm
(e.g., RF)

Trained
Model

New
Predictors

Output
predictions

Assumes…
• Data stationarity
• Perfect observations

Decision tree: chooses the best
splits to minimize a cost function

McGovern
et al. (2017)

Tree 1 Tree 2 Tree 3 Tree n

…

Each tree uses a random
subset of training samples
(bootstrapping)

Each node considers a subset
of predictors on which to
split the training samples.

Probs obtained at each leaf
node of each tree

RF probs are the mean probs
over the entire forest

A Random Forest (RF; Breiman 2001) is
an ensemble of decision trees

Artificial Neural Networks (ANNs) learn
weights between neurons

How do ANNs work?
From Deep Learning With Python (Francois Chollet):
1. Draw a batch of training samples x and

corresponding targets y.
2. Run the network on x (forward pass) to obtain

predictions y_pred.
3. Compute the loss of the network on the batch (a

measure of the mismatch between y_pred and y).
4. Update all weights of the network in a way that

slightly reduces the loss on this batch.
1. Compute the gradient of the loss with regard to

the network’s parameters (backward pass).
2. Move the parameters in the opposite direction of

the gradient (e.g., w -= step*gradient).

Convolutional neural networks
(CNNs) learn spatial patterns

Convolutional neural networks
(CNNs) learn spatial patterns

https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53

How convolution works

Fig 5.4 in Deep
Learning With
Python by Francois
Chollet.

Convolution
“slides,” e.g., 3x3
windows over
input image.

Each 3D patch
transformed into
1D vector, then
patches
reassembled into
3D output map

How convolution works

Figure 5.5 from Chollet

How Max Pooling Works

https://computersciencewiki.org/index.php/M
ax-pooling_/_Pooling

Depthwise Separable Convolution
generally makes model lighter, better

1. Performs spatial convolution on each channel of input separately.
2. Mixes output channels using a pointwise (i.e., 1x1) convolution.

Separately learns spatial features and channel features—
Can be especially good if spatial locations in the input are highly
correlated but different channels are fairly independent

Fig. 7.16 from
Chollet

Task: Train a RF, neural network, and
deep neural network to predict severe
hail based on SSEO forecast variables

and observed storm reports.

Predictors: SSEO ensemble mean forecast
variables (24-h max/mean on 80 km grid)
• 2-m Relative humidity (RELH)
• 0-6 km shear (SHEAR)
• 2-m temperature (K; TMPK)
• 2-m dew point temperature (K; DWPK)
• Updraft speed (UPDRHM)
• 2-5 km UH (UPHLHM)
• CAPE (CAPE)
• CAPE*SHEAR product (CAPESHEAR)
• Simulated 1-h accumulated precip. (P01M)
• Simulated 1-km AGL Reflectivity (REFDHM)

Predictands/Targets:
Observed SPC severe hail reports

How do I use Scikit-Learn (Sklearn)?
Step 1: Obtain archive of historical predictors/predictands (e.g., SSEO
forecast variables and observed storm reports) for training/testing.

Step 2: Put training data in a format that Sklearn can use.

Step 3: Divide dataset into separate training/testing/validation sets.

Step 4: Compile the model. Set hyper-parameters (e.g., number of
trees, stopping criteria, splits based on entropy or gini, etc.).

Step 5: Train the model.

Step 6: Use the trained model to make predictions on unseen data.

Step 7: Verification

Step 0a: Set up a virtual
environment on Cheyenne for ML

Instructions: https://www2.cisl.ucar.edu/resources/computational-
systems/cheyenne/software/python

ncar_pylib -c 20190627 /glade/work/$USER/venv_ml_tutorial

ncar_pylib venv_ml_tutorial

To activate:
source /glade/work/$USER/venv_ml_tutorial/bin/activate.csh

To deactivate:
deactivate

Step 0a: Set up a virtual
environment on Cheyenne for ML

If you don’t want to create your own virtual environment, you can
source mine:

source /glade/work/eloken/venv_20190627/bin/activate.csh

Task 1: Use a RF to predict severe
hail from SSEO data using sklearn

Tree 1 Tree 2 Tree 3 Tree n

…

Step 1: Obtain archive of historical
predictors/predictands

1. Make a new directory in your /glade/work directory and copy over
the data into that directory.

cd /glade/work/$username
mkdir ML_tut ; cd ML_tut
cp /glade/work/eloken/ML_tutorial_final/files/data/*.tar.gz .

2. While we’re at it, let’s create new directories for us to work in
throughout the tutorial.

mkdir rf nn dl

Step 1: Obtain archive of historical
predictors/predictands

3. Make new directories for predictor (all_x) and predictand
(all_y) data.

mkdir all_x all_y

4. Move predictor/predictand data into respective directories:
mv all_x.tar.gz all_x ;
mv all_y.tar.gz all_y

5. Change into each directory and Untar the data:
cd all_x ; tar -xzvf all_x.tar.gz;
cd ../all_y; tar -xzvf all_y.tar.gz;

Step 1: Obtain archive of historical
predictors/predictands

6. Change to the rf directory and copy over the relevant RF files.

cd ../rf
cp /glade/work/eloken/ML_tutorial_final/files/rf/rf_files.tar.gz .

7. Untar the files

tar -xzvf rf_files.tar.gz

Step 2:Need to put data in proper
format

Day 1 CAPE Day 1 SHEAR

Day 1 2-m RH Day 1 UH

…

Day d 2-m RH Day d UH

Predictor 1
(e.g.,
CAPE)

… Predictor m
(e.g., 0-6 km

Shear)
Sample 1
(e.g., Day
1, point 1)

…
Sample n
(e.g., Day
d, point

p)

Step 2: Data Preprocessing. Put data
into “table” format

Predictor 1
(e.g.,
CAPE)

Predictor 2
(e.g., 2-m

Temp)

Predictor 3
(e.g., UH)

… Predictor m
(e.g., 0-6 km

Shear)
Sample 1
(e.g., Day
1, point 1)
Sample 2
(e.g., Day
1, point 2)

…
Sample n
(e.g., Day
d, point p)

Step 2: Data Preprocessing. Put data
into “table” format

Obs.
Sample 1
(e.g., Day
1, point 1)
Sample 2
(e.g., Day
1, point 2)

…
Sample n
(e.g., Day
d, point p)

Step 2: Preprocess the data

1. We’ll employ a trick to more efficiently reformat the data.
Start by making a fcst and obs directory.

mkdir fcst obs

2. The trick is to do the preprocessing using a separate script.
We’ll point to the “raw” data in preprocess_rf.py and then
output nicely formatted data in the fcst and obs directories we
just created.

In preprocess_rf.py, make sure indir_forecast = “../all_x”
and indir_observations = “../all_y”

3. Run the preprocessing script. This will output preprocessed
unformatted binary files to the fcst/ and obs/ directories we
just created.

python3 preprocess_rf.py

Step 3: Divide dataset into separate
training/testing/validation sets

Full Dataset

Training Validation Testing

NOTE: For RF, we will just divide into
training/testing sets

Full Dataset

Training Testing

NOTE: For RF, we will just divide into
training/testing sets

Full Dataset
221 days:

20150421 - 20170624

Training
20150421-
20160630

Testing
20170402-
20170624

NOTE: Dataset is implicitly divided
by passing in lists of training and

testing dates

Training
20150421-
20160630

Testing
20170402-
20170624

Open run_rf.py (e.g., vi run_rf.py).

Note test_date_file = test_dates.txt and
train_date_file = train_dates.txt

Step 4: Compile the Random Forest (RF)

1. Open run_rf.py and search for “Train the RF classifier.” The following
command compiles the RF with the hyperparameters that we assign.

clf = RandomForestClassifier(n_jobs=n_proc, \
n_estimators = n_trees, criterion = 'entropy',\
max_depth = best_max_depth, min_samples_leaf =
best_min_samples_leaf, max_features="sqrt")

What does the above line mean? Let’s break it down…

Step 4: Compile the Random Forest (RF)
clf = RandomForestClassifier(n_jobs=n_proc, \

n_estimators = n_trees, criterion = 'entropy',\
max_depth = best_max_depth, min_samples_leaf =
best_min_samples_leaf, max_features="sqrt")

n_jobs: The number of parallel processors to use when training the RF.
Here, we have it set to 36 for Cheyenne.

criterion: The loss function used to determine the “best” split.

Max_depth: The maximum depth a tree can reach before splitting is
terminated. Here, we have it set to 15.

Min_samples_leaf: Another stopping criterion. The minimum number
of examples required at a leaf node. Here, 20.

Max_features: The number of features over which to consider splits
at each node. Here, the square root of the total number of features.

Step 5: Train the Random Forest (RF)

1. This step is easy—a 1-liner!
clf.fit(training_x, training_y)

(Where clf is the RF object we created in the
previous step.)

Step 6 (Optional): Save trained RF
with pickle

Pickle can save the trained RF object to a file, which
can then be used to make predictions in other scripts.

1. Make sure pickle is imported:
import pickle at the top of the script.

2. Execute the following lines of code:
clf_pkl = open(clf_filename, 'wb')
pickle.dump(clf,clf_pkl)
clf_pkl.close()

Step 7: Use the trained RF to make
predictions on the test data.

1. Probabilistic predictions can be made by calling the
predict_proba function on the RF object.

clf_probs = clf.predict_proba(testing_x)[:,1]

2. Output probabilities will be in a 1-d array, so we have to do some
accounting to get individual-day probs. Here, that’s done with the
np.array_split function and the save_probs method. As a result,
individual-day hail probabilities are saved in .txt files to be read by
another script for evaluation.

To execute steps 3-7:

1. First, create a directory to hold the resulting prediction text
files:

mkdir outfiles

2. Run the run_rf.py script by submitting a batch job.
qsub train_rf_qsub

Step 8: Evaluate the skill of the RF
probabilities using the test_y data

1. To obtain overall skill metrics, attributes, performance, and
ROC diagrams, execute:

python3 skill_scores_evaluate_rf.py

2. To visualize what these forecasts look like on individual
days, execute:

python3 evaluate_rf.py

Task 2: Use a NN instead of a RF
to make predictions with sklearn

Step 1: Download relevant files

1. Change into your nn directory
cd ../nn

2. Download nn files
cp /glade/work/eloken/ML_tutorial_final/files/nn/nn_files.tar.gz .

3. Untar the files.
tar -xzvf nn_files.tar.gz

4. While we’re here, let’s also make the directory to hold future output
files:

mkdir outfiles

Step 2: Preprocess the data

1. Since we already did this for the RF, we can just use the results from
before. We’ll just have to point to those files (in ../rf/fcst and ../rf/obs)
in the run_nn script.

Step 3: Divide dataset into separate
training/testing/validation sets

Full Dataset

Training Validation Testing

Again, for simplicity, we won’t tune
hyperparameters

Full Dataset
221 days:

20150421 - 20170624

Training
20150421-
20160630

Testing
20170402-
20170624

Step 4: Normalize the inputs
(important step!)

1. While the RF is capable of working directly with the predictor
variables, the NN is not! The weights of the NN are best applied to
normalized predictor variables. How to normalize? Subtract by the
training sample mean and divide by the training sample standard
deviation. This is done verbosely in run_nn.py in the following lines
of code:

train_mean = training_x.mean(axis=0)
train_sd = training_x.std(axis=0)
delta = 0.000001 #prevent divide by zero error
train_sd += delta
np.save("train_mean.npy", train_mean) #save for future
np.save("train_std.npy", train_sd)
training_x = (training_x - train_mean)/train_sd
testing_x = (testing_x - train_mean)/train_sd

Step 4: Compile the NN

1. Open run_nn.py and search for “Train the NN”. The following
command compiles the RF with the hyperparameters that we assign.

nn = MLPClassifier(hidden_layer_sizes=(64, 12,),
activation='relu', solver='adam', alpha=0.00001, \
batch_size='auto', learning_rate='adaptive', \
learning_rate_init=0.0001, max_iter=100, \
shuffle=True, random_state=None,\
tol=0.0001, verbose=True, warm_start=True, \
momentum=0.8, early_stopping=False,\
validation_fraction=0.2, beta_1=0.9, beta_2=0.999, \
epsilon=1e-08, n_iter_no_change=30)

The NN has many more hyperparameters to tune than the RF. Let’s
break down what this all means.

Step 4: Compile the NN

hidden_layer_sizes: The number of neurons in each hidden layer.
Here, there are two hidden layers. The first has 64 neurons; the
second has 12.

activation: The nonlinear activation function the NN uses. ‘Relu’
stands for rectified linear unit (y = max(0,x)).

nn = MLPClassifier(hidden_layer_sizes=(64, 12,),
activation='relu', solver='adam', alpha=0.00001, \
batch_size='auto', learning_rate='adaptive', \
learning_rate_init=0.0001, max_iter=100, \

shuffle=True, random_state=None,\
tol=0.0001, verbose=True, warm_start=True, \
momentum=0.8, early_stopping=False,\
validation_fraction=0.2, beta_1=0.9, beta_2=0.999, \
epsilon=1e-08, n_iter_no_change=30)

Step 4: Compile the NN

solver: The solver for weight optimization. “Adam” is stochastic
gradient-based optimizer by Kingma, Diederik, and Ba. Another option
is ’sgd,’ which stands for stochastic gradient descent.

alpha: L2 penalty – i.e., penalty to apply to the weights to prevent
them from getting too large.

nn = MLPClassifier(hidden_layer_sizes=(64, 12,),
activation='relu', solver='adam', alpha=0.00001, \
batch_size='auto', learning_rate='adaptive', \
learning_rate_init=0.0001, max_iter=100, \

shuffle=True, random_state=None,\
tol=0.0001, verbose=True, warm_start=True, \
momentum=0.8, early_stopping=False,\
validation_fraction=0.2, beta_1=0.9, beta_2=0.999, \
epsilon=1e-08, n_iter_no_change=30)

Step 4: Compile the NN

batch_size: Size of batch (in # of samples) after which the weights are
updated. ‘auto’ is min(200, n_samples).

learning_rate: Controls the step size for updating the weights.
“Adaptive” means keep learning rate constant as long as training loss
keeps improving. If 2 epochs don’t decrease loss by tol, then current
learning rate divided by 5.

nn = MLPClassifier(hidden_layer_sizes=(64, 12,),
activation='relu', solver='adam', alpha=0.00001, \
batch_size='auto', learning_rate='adaptive', \
learning_rate_init=0.0001, max_iter=100, \

shuffle=True, random_state=None,\
tol=0.0001, verbose=True, warm_start=True, \
momentum=0.8, early_stopping=False,\
validation_fraction=0.2, beta_1=0.9, beta_2=0.999, \
epsilon=1e-08, n_iter_no_change=30)

Step 4: Compile the NN

Learning_rate_init: Initial learning rate.

max_iter: Maximum number of passes through the dataset

shuffle: Whether to shuffle samples in each iteration

random_state: Seed used to initialize the weights. If None, uses
output from np.random.

nn = MLPClassifier(hidden_layer_sizes=(64, 12,),
activation='relu', solver='adam', alpha=0.00001, \
batch_size='auto', learning_rate='adaptive', \
learning_rate_init=0.0001, max_iter=100, \

shuffle=True, random_state=None,\
tol=0.0001, verbose=True, warm_start=True, \
momentum=0.8, early_stopping=False,\
validation_fraction=0.2, beta_1=0.9, beta_2=0.999, \
epsilon=1e-08, n_iter_no_change=30)

Step 4: Compile the NN

tol: Tolerance for the optimization. When the loss does not at least
improve by tol for n_iter_no_change, training stops (convergence
assumed).

verbose: Whether to print out messages during training.

warm_start: If true, use the solution from previous call to fit as
initialization

nn = MLPClassifier(hidden_layer_sizes=(64, 12,),
activation='relu', solver='adam', alpha=0.00001, \
batch_size='auto', learning_rate='adaptive', \
learning_rate_init=0.0001, max_iter=100, \

shuffle=True, random_state=None,\
tol=0.0001, verbose=True, warm_start=True, \
momentum=0.8, early_stopping=False,\
validation_fraction=0.2, beta_1=0.9, beta_2=0.999, \
epsilon=1e-08, n_iter_no_change=30)

Step 4: Compile the NN

momentum: Momentum for gradient descent update. Between 0 and
1. Only used when solver = ‘sgd’.

early_stopping: Whether to stop early if validation score is not
improving. If true, withholds validation_fraction of the training
samples for the validation set. Terminates when validation score
doesn’t improve by tol for n_iter_no_change.

nn = MLPClassifier(hidden_layer_sizes=(64, 12,),
activation='relu', solver='adam', alpha=0.00001, \
batch_size='auto', learning_rate='adaptive', \
learning_rate_init=0.0001, max_iter=100, \

shuffle=True, random_state=None,\
tol=0.0001, verbose=True, warm_start=True, \
momentum=0.8, early_stopping=False,\
validation_fraction=0.2, beta_1=0.9, beta_2=0.999, \
epsilon=1e-08, n_iter_no_change=30)

Step 4: Compile the NN

beta_2: Exponential decay rate for estimates of second moment
vector in adam. Only used when solver=‘adam’.

epsilon: Value for numerical stability in adam. Only when
solver=‘adam’

n_iter_no_change: Max number of epochs to meet tol improvement.

nn = MLPClassifier(hidden_layer_sizes=(64, 12,),
activation='relu', solver='adam', alpha=0.00001, \
batch_size='auto', learning_rate='adaptive', \
learning_rate_init=0.0001, max_iter=100, \

shuffle=True, random_state=None,\
tol=0.0001, verbose=True, warm_start=True, \
momentum=0.8, early_stopping=False,\
validation_fraction=0.2, beta_1=0.9, beta_2=0.999, \
epsilon=1e-08, n_iter_no_change=30)

Step 4: Compile the NN

validation_fraction: Fraction of the training set to use as the
validation set. Only used if early_stopping = True.

Beta_1: Exponential decay rate for estimates of first moment vector in
adam. Only used when solver=‘adam’.

nn = MLPClassifier(hidden_layer_sizes=(64, 12,),
activation='relu', solver='adam', alpha=0.00001, \
batch_size='auto', learning_rate='adaptive', \
learning_rate_init=0.0001, max_iter=100, \

shuffle=True, random_state=None,\
tol=0.0001, verbose=True, warm_start=True, \
momentum=0.8, early_stopping=False,\
validation_fraction=0.2, beta_1=0.9, beta_2=0.999, \
epsilon=1e-08, n_iter_no_change=30)

Step 5: Train the NN

1. Call the fit function on the nn object:
nn.fit(training_x, training_y)

Step 6 (Optional): Save trained NN
with pickle

Pickle can save the trained NN object to a file, which
can then be used to make predictions in other scripts.

1. Make sure pickle is imported:
import pickle at the top of the script.

2. Execute the following lines of code:
nn_pkl = open(clf_filename, 'wb')
pickle.dump(nn,nn_pkl)
nn_pkl.close()

Step 7: Use the trained NN to make
predictions on the test data.

1. Probabilistic predictions can be made by calling the
predict_proba function on the RF object.

clf_probs = nn.predict_proba(testing_x)[:,1]

2. Output probabilities will be in a 1-d array, so we have to do some
accounting to get individual-day probs. Here, that’s done with the
np.array_split function and the save_probs method. As a result,
individual-day hail probabilities are saved in .txt files to be read by
another script for evaluation.

To execute steps 3-7:

1. First, create a directory to hold the resulting prediction text
files:

mkdir outfiles – NOTE: We should have already done
this in step 1.

2. Run the run_rf.py script by submitting a batch job.
qsub train_nn_qsub

Step 8: Evaluate the skill of the RF
probabilities using the test_y data

1. To obtain overall skill metrics, attributes, performance, and
ROC diagrams, execute:

python3 skill_scores_evaluate_nn.py

2. To visualize what these forecasts look like on individual
days, execute:

python3 evaluate_nn.py

Task 3: Use a CNN to make
predictions using Keras

Highly recommended
text for deep learning.

Buy online for ~$15-$35

Step 1: Download relevant files

1. Change into your nn directory
cd ../dl

2. Download dl files
cp /glade/work/eloken/ML_tutorial_final/files/keras/dl_files.tar.gz .

3. Untar the files.
tar -xzvf dl_files.tar.gz

4. While we’re here, let’s also make the directory to hold future output
files:

mkdir outfiles

Step 2: Preprocess the data
1. Preprocessing for a CNN with Keras is a little bit different than before.

The files have to be in the following format:
(samples, height, width, channels). Where height and width are the
height/width of the patch, and number of channels corresponds to
the number of training variable “fields” (e.g., CAPE, CIN, etc.). Here,
we will be looking at 5x5 image patches (i.e., height = width = 5) and
12 variables (i.e., channels = 12). There will be 1434 samples per day
(the number of points in the domain).

2. The preprocess_keras.py script will handle the preprocessing. First,
we need to make directories where the preprocessed files will be
output.

mkdir fcst obs

3. Now, run the preprocessing script.
python3 preprocess_keras.py

Step 3: Divide dataset into separate
training/testing/validation sets

Full Dataset

Training Validation Testing

Step 3: Divide dataset into separate
training/testing/validation sets

1. This is accomplished by run_dl.py reading in separate dates
associated with the training, testing, and validation sets.
• train_dates.txt: 20150421 – 20160428
• val_dates.txt: 20160429 – 20160630
• test_dates.txt: 20170402 – 20170624

Step 4: Normalize the data

1. Again, we want to subtract the training mean and divide
by the training standard deviation (for all
variables/channels):

train_mean = training_x.mean(axis=0)
train_sd = training_x.std(axis=0)
delta = 0.000001
train_sd += delta
np.save("train_mean.npy", train_mean)
np.save("train_std.npy", train_sd)
training_x = (training_x - train_mean)/train_sd
testing_x = (testing_x - train_mean)/train_sd
val_x = (val_x - train_mean)/train_sd

Step 5: Write the DL model

1. We will make a relatively simple residual NN to illustrate
some key principles of DL. This is done in
separable_conv_severe_5x5.py. We’ll break down what’s
going on in the script.

Step 5: separable_conv_severe_5x5.py

def conv_net(input_img, drop_rate, penalty):

Input parameters: the input image, the dropout rate fraction, and
the L1 regularization penalty applied to each weight (goal is to
prevent weights from getting too large).

Step 5: separable_conv_severe_5x5.py

s1 = SeparableConv2D(24, kernel_size=2, activation='relu',
padding='valid', kernel_regularizer=regularizers.l1(penalty),
kernel_initializer='he_normal') (input_img)

Use a 2-d
separable

convolution

24 output
channels

Kernel
size/size of

conv.
”patches”

Activation
function

How to handle padding:
‘valid’ = no padding;
‘same’ = pad so output has
same width/height as input

L1
regularization

How to
initialize
weights

Input to the
layer/operation

Step 5: separable_conv_severe_5x5.py

s1 = BatchNormalization() (s1) #Batch normalization performed on s1
s1 = MaxPooling2D((2,2)) (s1) #Max pooling performed on s1
s1 = Dropout(drop_rate) (s1) #Dropout performed on s1

Step 5: separable_conv_severe_5x5.py

s2 = SeparableConv2D(48, kernel_size=2, activation='relu',
padding='valid', kernel_regularizer=regularizers.l1(penalty),
kernel_initializer='he_normal') (s1)

s2 = BatchNormalization() (s2)

s2 = Dropout(drop_rate) (s2)

Step 5: separable_conv_severe_5x5.py

#First residual layer

#Note that this Separable Conv2D layer uses input from the input
image.
r1 = SeparableConv2D(48, kernel_size=3, activation='relu',
padding='valid', strides=1, kernel_regularizer=regularizers.l1(penalty),
kernel_initializer='he_normal') (input_img)

r1 = BatchNormalization() (r1)

r1 = AveragePooling2D((2,2)) (r1)

r1 = Dropout(drop_rate) (r1)

Step 5: separable_conv_severe_5x5.py

#Add the residual layer and main branch
p1 = layers.add([s2, r1])

Step 5: separable_conv_severe_5x5.py

#Add the residual layer and main branch
p1 = layers.add([s2, r1])

#Now, flatten and use to make predictions
f1 = Flatten() (p1)
f2 = Dense(36, activation='relu') (f1)
f2 = BatchNormalization() (f2)
f2 = Dropout(drop_rate) (f2)

#Second fully connected layer
f3 = Dense(12, activation='relu') (f2)
f3 = BatchNormalization() (f3)
f3 = Dropout(drop_rate) (f3)

Step 5: separable_conv_severe_5x5.py

#Now get output layer
outputs = Dense(1, activation='sigmoid') (f3)

model = Model(inputs=[input_img], outputs=[outputs])

print (model.summary())

return model

Step 5: separable_conv_severe_5x5.py
Input Image

SepConv2D
SepConv2D

SepConv2D
s1

s2 r1

p1
Flatten

f1 f2
Dense

f3
Dense

Dense

outputs

Step 6: Compile the model
input_image = Input((patch_size, patch_size, n_channels))

conv_model = conv_net(input_image, dropout_rate, reg_penalty)

loss='binary_crossentropy', metrics=['accuracy'])

conv_model.compile(optimizer=Adam(), loss='binary_crossentropy',
metrics=['accuracy'])

history = AccuracyHistory()

metrics = Metrics()

callbacks_list = [EarlyStopping(monitor='val_loss', patience=2,),
ModelCheckpoint(filepath=model_outname, monitor='val_loss',
save_best_only=True,), history, metrics]

Step 7: Train the model

conv_model.fit(training_x, training_y, batch_size=batch_size,
epochs=n_epochs, verbose=1, validation_data=(val_x,
val_y), callbacks=callbacks_list)

score = conv_model.evaluate(testing_x, testing_y, verbose=0)

To execute steps 3-7:

1. Run the run_dl.py script by submitting a batch job.
sbatch casper_sbatch

2. Note that a trained model is produced:
separable_conv_tutorial_5x5.h5
We will test this model in a subsequent step.

Step 8: Use the trained model to
make predictions on the test data.

1. We will do this step in a separate script using the trained
model. Run get_output_dl.py. Works by reading in the trained
model, appropriately normalizing the test data (based on
training normalization) and using the trained model to make
predictions on the test data.

python3 get_output_dl.py

Step 8: Evaluate the skill of the DL
probabilities using the test_y data

1. To obtain overall skill metrics, attributes, performance, and
ROC diagrams, execute:

python3 skill_scores_evaluate_dl.py

2. To visualize what these forecasts look like on individual
days, execute:

python3 evaluate_dl.py

