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What is ML doing, conceptually?
Maps predictors to outputs based on 

relationships learned from training

Predictor 1

Predictor 2

Predictor n

… Predicted 
outcome

ML (“Black Box”) 



2 Stages of ML: Training and Testing

Training 
(Historical Data)

Testing/Real-Time 
Prediction (New Data)

Predictors

Obs.

Algorithm 
(e.g., RF)

Trained 
Model

New 
Predictors

Output 
predictions

Assumes…
• Data stationarity
• Perfect observations



Decision tree: chooses the best 
splits to minimize a cost function

McGovern 
et al. (2017) 



Tree 1 Tree 2 Tree 3 Tree n

…

Each tree uses a random 
subset of training samples 
(bootstrapping)

Each node considers a subset 
of predictors on which to 
split the training samples. 

Probs obtained at each leaf 
node of each tree

RF probs are the mean probs
over the entire forest

A Random Forest (RF; Breiman 2001) is 
an ensemble of decision trees



Artificial Neural Networks (ANNs) learn 
weights between neurons



How do ANNs work?
From Deep Learning With Python (Francois Chollet):
1. Draw a batch of training samples x and 

corresponding targets y.
2. Run the network on x (forward pass) to obtain 

predictions y_pred. 
3. Compute the loss of the network on the batch (a 

measure of the mismatch between y_pred and y). 
4. Update all weights of the network in a way that 

slightly reduces the loss on this batch. 
1. Compute the gradient of the loss with regard to 

the network’s parameters (backward pass).
2. Move the parameters in the opposite direction of 

the gradient (e.g., w -= step*gradient). 



Convolutional neural networks 
(CNNs) learn spatial patterns



Convolutional neural networks 
(CNNs) learn spatial patterns

https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53



How convolution works

Fig 5.4 in Deep 
Learning With 
Python by Francois 
Chollet. 

Convolution 
“slides,” e.g., 3x3 
windows over 
input image. 

Each 3D patch 
transformed into 
1D vector, then 
patches 
reassembled into 
3D output map



How convolution works

Figure 5.5 from Chollet



How Max Pooling Works

https://computersciencewiki.org/index.php/M
ax-pooling_/_Pooling



Depthwise Separable Convolution 
generally makes model lighter, better

1. Performs spatial convolution on each channel of input separately. 
2. Mixes output channels using a pointwise (i.e., 1x1) convolution. 

Separately learns spatial features and channel features—
Can be especially good if spatial locations in the input are highly 
correlated but different channels are fairly independent

Fig. 7.16 from 
Chollet



Task: Train a RF, neural network, and 
deep neural network to predict severe 
hail based on SSEO forecast variables 

and observed storm reports. 



Predictors: SSEO ensemble mean forecast 
variables (24-h max/mean on 80 km grid) 
• 2-m Relative humidity (RELH)
• 0-6 km shear (SHEAR)
• 2-m temperature (K; TMPK)
• 2-m dew point temperature (K; DWPK)
• Updraft speed (UPDRHM)
• 2-5 km UH (UPHLHM)
• CAPE (CAPE)
• CAPE*SHEAR product (CAPESHEAR) 
• Simulated 1-h accumulated precip. (P01M)
• Simulated 1-km AGL Reflectivity (REFDHM) 



Predictands/Targets: 
Observed SPC severe hail reports



How do I use Scikit-Learn (Sklearn)?
Step 1: Obtain archive of historical predictors/predictands (e.g., SSEO 
forecast variables and observed storm reports) for training/testing.

Step 2: Put training data in a format that Sklearn can use. 

Step 3: Divide dataset into separate training/testing/validation sets.

Step 4: Compile the model. Set hyper-parameters (e.g., number of 
trees, stopping criteria, splits based on entropy or gini, etc.).

Step 5: Train the model.

Step 6: Use the trained model to make predictions on unseen data. 

Step 7: Verification



Step 0a: Set up a virtual 
environment on Cheyenne for ML

Instructions: https://www2.cisl.ucar.edu/resources/computational-
systems/cheyenne/software/python

ncar_pylib -c 20190627 /glade/work/$USER/venv_ml_tutorial

ncar_pylib venv_ml_tutorial

To activate: 
source /glade/work/$USER/venv_ml_tutorial/bin/activate.csh

To deactivate: 
deactivate 



Step 0a: Set up a virtual 
environment on Cheyenne for ML

If you don’t want to create your own virtual environment, you can 
source mine: 

source /glade/work/eloken/venv_20190627/bin/activate.csh



Task 1: Use a RF to predict severe 
hail from SSEO data using sklearn

Tree 1 Tree 2 Tree 3 Tree n

…



Step 1: Obtain archive of historical 
predictors/predictands

1. Make a new directory in your /glade/work directory and copy over 
the data into that directory. 

cd /glade/work/$username
mkdir ML_tut ; cd ML_tut
cp /glade/work/eloken/ML_tutorial_final/files/data/*.tar.gz .

2. While we’re at it, let’s create new directories for us to work in 
throughout the tutorial. 

mkdir rf nn dl



Step 1: Obtain archive of historical 
predictors/predictands

3. Make new directories for predictor (all_x) and predictand
(all_y) data. 

mkdir all_x all_y

4. Move predictor/predictand data into respective directories:
mv all_x.tar.gz all_x ; 
mv all_y.tar.gz all_y

5. Change into each directory and Untar the data: 
cd all_x ; tar -xzvf all_x.tar.gz;
cd ../all_y; tar -xzvf all_y.tar.gz;



Step 1: Obtain archive of historical 
predictors/predictands

6. Change to the rf directory and copy over the relevant RF files.

cd ../rf
cp /glade/work/eloken/ML_tutorial_final/files/rf/rf_files.tar.gz .

7. Untar the files

tar -xzvf rf_files.tar.gz



Step 2:Need to put data in proper 
format

Day 1 CAPE Day 1 SHEAR

Day 1 2-m RH Day 1 UH

…

Day d 2-m RH Day d UH

Predictor 1
(e.g., 
CAPE)

… Predictor m 
(e.g., 0-6 km 

Shear)
Sample 1
(e.g., Day 
1, point 1)

…
Sample n
(e.g., Day
d, point 

p) 



Step 2: Data Preprocessing. Put data 
into “table” format

Predictor 1
(e.g., 
CAPE)

Predictor 2
(e.g., 2-m 

Temp)

Predictor 3
(e.g., UH) 

… Predictor m 
(e.g., 0-6 km 

Shear)
Sample 1
(e.g., Day 
1, point 1)
Sample 2
(e.g., Day 
1, point 2)

…
Sample n
(e.g., Day
d, point p) 



Step 2: Data Preprocessing. Put data 
into “table” format

Obs.
Sample 1
(e.g., Day 
1, point 1)
Sample 2
(e.g., Day 
1, point 2)

…
Sample n
(e.g., Day
d, point p) 



Step 2: Preprocess the data

1. We’ll employ a trick to more efficiently reformat the data. 
Start by making a fcst and obs directory. 

mkdir fcst obs

2. The trick is to do the preprocessing using a separate script. 
We’ll point to the “raw” data in preprocess_rf.py and then 
output nicely formatted data in the fcst and obs directories we 
just created. 

In preprocess_rf.py, make sure indir_forecast = “../all_x” 
and indir_observations = “../all_y”

3. Run the preprocessing script. This will output preprocessed 
unformatted binary files to the fcst/ and obs/ directories we 
just created. 

python3 preprocess_rf.py



Step 3: Divide dataset into separate 
training/testing/validation sets

Full Dataset

Training Validation Testing



NOTE: For RF, we will just divide into 
training/testing sets

Full Dataset

Training Testing



NOTE: For RF, we will just divide into 
training/testing sets

Full Dataset
221 days:

20150421 - 20170624

Training
20150421-
20160630

Testing
20170402-
20170624



NOTE: Dataset is implicitly divided 
by passing in lists of training and 

testing dates

Training
20150421-
20160630

Testing
20170402-
20170624

Open run_rf.py (e.g., vi run_rf.py).  

Note test_date_file = test_dates.txt and 
train_date_file = train_dates.txt



Step 4: Compile the Random Forest (RF)

1. Open run_rf.py and search for “Train the RF classifier.” The following 
command compiles the RF with the hyperparameters that we assign.

clf = RandomForestClassifier(n_jobs=n_proc, \
n_estimators = n_trees, criterion = 'entropy',\
max_depth = best_max_depth, min_samples_leaf = 
best_min_samples_leaf, max_features="sqrt")

What does the above line mean? Let’s break it down…



Step 4: Compile the Random Forest (RF)
clf = RandomForestClassifier(n_jobs=n_proc, \

n_estimators = n_trees, criterion = 'entropy',\
max_depth = best_max_depth, min_samples_leaf = 
best_min_samples_leaf, max_features="sqrt")

n_jobs: The number of parallel processors to use when training the RF. 
Here, we have it set to 36 for Cheyenne.

criterion:  The loss function used to determine the “best” split.

Max_depth: The maximum depth a tree can reach before splitting is 
terminated. Here, we have it set to 15.

Min_samples_leaf: Another stopping criterion. The minimum number 
of examples required at a leaf node. Here, 20.

Max_features: The number of features over which to consider splits 
at each node. Here, the square root of the total number of features. 



Step 5: Train the Random Forest (RF)

1. This step is easy—a 1-liner!
clf.fit(training_x, training_y)

(Where clf is the RF object we created in the 
previous step.)



Step 6 (Optional): Save trained RF 
with pickle

Pickle can save the trained RF object to a file, which 
can then be used to make predictions in other scripts.

1. Make sure pickle is imported: 
import pickle at the top of the script.

2. Execute the following lines of code: 
clf_pkl = open(clf_filename, 'wb')
pickle.dump(clf,clf_pkl)
clf_pkl.close()



Step 7: Use the trained RF to make 
predictions on the test data. 

1. Probabilistic predictions can be made by calling the 
predict_proba function on the RF object. 

clf_probs = clf.predict_proba(testing_x)[:,1]

2. Output probabilities will be in a 1-d array, so we have to do some 
accounting to get individual-day probs. Here, that’s done with the 
np.array_split function and the save_probs method. As a result, 
individual-day hail probabilities are saved in .txt files to be read by 
another script for evaluation. 



To execute steps 3-7:

1. First, create a directory to hold the resulting prediction text 
files:

mkdir outfiles

2. Run the run_rf.py script by submitting a batch job. 
qsub train_rf_qsub



Step 8: Evaluate the skill of the RF 
probabilities using the test_y data

1. To obtain overall skill metrics, attributes, performance, and 
ROC diagrams, execute: 

python3 skill_scores_evaluate_rf.py

2. To visualize what these forecasts look like on individual 
days, execute: 

python3 evaluate_rf.py



Task 2: Use a NN instead of a RF 
to make predictions with sklearn



Step 1: Download relevant files

1. Change into your nn directory
cd ../nn

2. Download nn files
cp /glade/work/eloken/ML_tutorial_final/files/nn/nn_files.tar.gz .

3. Untar the files.
tar -xzvf nn_files.tar.gz

4. While we’re here, let’s also make the directory to hold future output 
files: 

mkdir outfiles



Step 2: Preprocess the data

1. Since we already did this for the RF, we can just use the results from 
before. We’ll just have to point to those files (in ../rf/fcst and ../rf/obs) 
in the run_nn script. 



Step 3: Divide dataset into separate 
training/testing/validation sets

Full Dataset

Training Validation Testing



Again, for simplicity, we won’t tune 
hyperparameters

Full Dataset
221 days:

20150421 - 20170624

Training
20150421-
20160630

Testing
20170402-
20170624



Step 4: Normalize the inputs 
(important step!)

1. While the RF is capable of working directly with the predictor 
variables, the NN is not! The weights of the NN are best applied to 
normalized predictor variables. How to normalize? Subtract by the 
training sample mean and divide by the training sample standard 
deviation. This is done verbosely in run_nn.py in the following lines 
of code: 

train_mean = training_x.mean(axis=0)
train_sd = training_x.std(axis=0)
delta = 0.000001 #prevent divide by zero error
train_sd += delta
np.save("train_mean.npy", train_mean) #save for future
np.save("train_std.npy", train_sd)
training_x = (training_x - train_mean)/train_sd
testing_x = (testing_x - train_mean)/train_sd



Step 4: Compile the NN

1. Open run_nn.py and search for “Train the NN”. The following 
command compiles the RF with the hyperparameters that we assign.

nn = MLPClassifier(hidden_layer_sizes=(64, 12, ), 
activation='relu', solver='adam', alpha=0.00001, \
batch_size='auto', learning_rate='adaptive', \
learning_rate_init=0.0001, max_iter=100, \
shuffle=True, random_state=None,\
tol=0.0001, verbose=True, warm_start=True, \
momentum=0.8, early_stopping=False,\
validation_fraction=0.2, beta_1=0.9, beta_2=0.999, \
epsilon=1e-08, n_iter_no_change=30)

The NN has many more hyperparameters to tune than the RF. Let’s 
break down what this all means. 



Step 4: Compile the NN

hidden_layer_sizes: The number of neurons in each hidden layer. 
Here, there are two hidden layers. The first has 64 neurons; the 
second has 12. 

activation: The nonlinear activation function the NN uses. ‘Relu’ 
stands for rectified linear unit (y = max(0,x)). 

nn = MLPClassifier(hidden_layer_sizes=(64, 12, ), 
activation='relu', solver='adam', alpha=0.00001, \
batch_size='auto', learning_rate='adaptive', \
learning_rate_init=0.0001, max_iter=100, \

shuffle=True, random_state=None,\
tol=0.0001, verbose=True, warm_start=True, \
momentum=0.8, early_stopping=False,\
validation_fraction=0.2, beta_1=0.9, beta_2=0.999, \
epsilon=1e-08, n_iter_no_change=30)



Step 4: Compile the NN

solver: The solver for weight optimization. “Adam” is stochastic 
gradient-based optimizer by Kingma, Diederik, and Ba. Another option 
is ’sgd,’ which stands for stochastic gradient descent. 

alpha: L2 penalty – i.e., penalty to apply to the weights to prevent 
them from getting too large. 

nn = MLPClassifier(hidden_layer_sizes=(64, 12, ), 
activation='relu', solver='adam', alpha=0.00001, \
batch_size='auto', learning_rate='adaptive', \
learning_rate_init=0.0001, max_iter=100, \

shuffle=True, random_state=None,\
tol=0.0001, verbose=True, warm_start=True, \
momentum=0.8, early_stopping=False,\
validation_fraction=0.2, beta_1=0.9, beta_2=0.999, \
epsilon=1e-08, n_iter_no_change=30)



Step 4: Compile the NN

batch_size: Size of batch (in # of samples) after which the weights are 
updated. ‘auto’ is min(200, n_samples). 

learning_rate: Controls the step size for updating the weights. 
“Adaptive” means keep learning rate constant as long as training loss 
keeps improving. If 2 epochs don’t decrease loss by tol, then current 
learning rate divided by 5. 

nn = MLPClassifier(hidden_layer_sizes=(64, 12, ), 
activation='relu', solver='adam', alpha=0.00001, \
batch_size='auto', learning_rate='adaptive', \
learning_rate_init=0.0001, max_iter=100, \

shuffle=True, random_state=None,\
tol=0.0001, verbose=True, warm_start=True, \
momentum=0.8, early_stopping=False,\
validation_fraction=0.2, beta_1=0.9, beta_2=0.999, \
epsilon=1e-08, n_iter_no_change=30)



Step 4: Compile the NN

Learning_rate_init: Initial learning rate. 

max_iter: Maximum number of passes through the dataset

shuffle: Whether to shuffle samples in each iteration

random_state: Seed used to initialize the weights. If None, uses 
output from np.random.  

nn = MLPClassifier(hidden_layer_sizes=(64, 12, ), 
activation='relu', solver='adam', alpha=0.00001, \
batch_size='auto', learning_rate='adaptive', \
learning_rate_init=0.0001, max_iter=100, \

shuffle=True, random_state=None,\
tol=0.0001, verbose=True, warm_start=True, \
momentum=0.8, early_stopping=False,\
validation_fraction=0.2, beta_1=0.9, beta_2=0.999, \
epsilon=1e-08, n_iter_no_change=30)



Step 4: Compile the NN

tol: Tolerance for the optimization. When the loss does not at least 
improve by tol for n_iter_no_change, training stops (convergence 
assumed). 

verbose: Whether to print out messages during training. 

warm_start: If true, use the solution from previous call to fit as 
initialization

nn = MLPClassifier(hidden_layer_sizes=(64, 12, ), 
activation='relu', solver='adam', alpha=0.00001, \
batch_size='auto', learning_rate='adaptive', \
learning_rate_init=0.0001, max_iter=100, \

shuffle=True, random_state=None,\
tol=0.0001, verbose=True, warm_start=True, \
momentum=0.8, early_stopping=False,\
validation_fraction=0.2, beta_1=0.9, beta_2=0.999, \
epsilon=1e-08, n_iter_no_change=30)



Step 4: Compile the NN

momentum: Momentum for gradient descent update. Between 0 and 
1. Only used when solver = ‘sgd’.

early_stopping: Whether to stop early if validation score is not 
improving. If true, withholds validation_fraction of the training 
samples for the validation set. Terminates when validation score 
doesn’t improve by tol for n_iter_no_change. 

nn = MLPClassifier(hidden_layer_sizes=(64, 12, ), 
activation='relu', solver='adam', alpha=0.00001, \
batch_size='auto', learning_rate='adaptive', \
learning_rate_init=0.0001, max_iter=100, \

shuffle=True, random_state=None,\
tol=0.0001, verbose=True, warm_start=True, \
momentum=0.8, early_stopping=False,\
validation_fraction=0.2, beta_1=0.9, beta_2=0.999, \
epsilon=1e-08, n_iter_no_change=30)



Step 4: Compile the NN

beta_2: Exponential decay rate for estimates of second moment 
vector in adam. Only used when solver=‘adam’.

epsilon: Value for numerical stability in adam. Only when 
solver=‘adam’

n_iter_no_change: Max number of epochs to meet tol improvement. 

nn = MLPClassifier(hidden_layer_sizes=(64, 12, ), 
activation='relu', solver='adam', alpha=0.00001, \
batch_size='auto', learning_rate='adaptive', \
learning_rate_init=0.0001, max_iter=100, \

shuffle=True, random_state=None,\
tol=0.0001, verbose=True, warm_start=True, \
momentum=0.8, early_stopping=False,\
validation_fraction=0.2, beta_1=0.9, beta_2=0.999, \
epsilon=1e-08, n_iter_no_change=30)



Step 4: Compile the NN

validation_fraction: Fraction of the training set to use as the 
validation set. Only used if early_stopping = True. 

Beta_1: Exponential decay rate for estimates of first moment vector in 
adam. Only used when solver=‘adam’.  

nn = MLPClassifier(hidden_layer_sizes=(64, 12, ), 
activation='relu', solver='adam', alpha=0.00001, \
batch_size='auto', learning_rate='adaptive', \
learning_rate_init=0.0001, max_iter=100, \

shuffle=True, random_state=None,\
tol=0.0001, verbose=True, warm_start=True, \
momentum=0.8, early_stopping=False,\
validation_fraction=0.2, beta_1=0.9, beta_2=0.999, \
epsilon=1e-08, n_iter_no_change=30)



Step 5: Train the NN

1. Call the fit function on the nn object: 
nn.fit(training_x, training_y)  



Step 6 (Optional): Save trained NN 
with pickle

Pickle can save the trained NN object to a file, which 
can then be used to make predictions in other scripts.

1. Make sure pickle is imported: 
import pickle at the top of the script.

2. Execute the following lines of code: 
nn_pkl = open(clf_filename, 'wb')
pickle.dump(nn,nn_pkl)
nn_pkl.close()



Step 7: Use the trained NN to make 
predictions on the test data. 

1. Probabilistic predictions can be made by calling the 
predict_proba function on the RF object. 

clf_probs = nn.predict_proba(testing_x)[:,1]

2. Output probabilities will be in a 1-d array, so we have to do some 
accounting to get individual-day probs. Here, that’s done with the 
np.array_split function and the save_probs method. As a result, 
individual-day hail probabilities are saved in .txt files to be read by 
another script for evaluation. 



To execute steps 3-7:

1. First, create a directory to hold the resulting prediction text 
files:

mkdir outfiles – NOTE: We should have already done 
this in step 1. 

2. Run the run_rf.py script by submitting a batch job. 
qsub train_nn_qsub



Step 8: Evaluate the skill of the RF 
probabilities using the test_y data

1. To obtain overall skill metrics, attributes, performance, and 
ROC diagrams, execute: 

python3 skill_scores_evaluate_nn.py

2. To visualize what these forecasts look like on individual 
days, execute: 

python3 evaluate_nn.py



Task 3: Use a CNN to make 
predictions using Keras

Highly recommended 
text for deep learning. 

Buy online for ~$15-$35



Step 1: Download relevant files

1. Change into your nn directory
cd ../dl

2. Download dl files
cp /glade/work/eloken/ML_tutorial_final/files/keras/dl_files.tar.gz .

3. Untar the files.
tar -xzvf dl_files.tar.gz

4. While we’re here, let’s also make the directory to hold future output 
files: 

mkdir outfiles



Step 2: Preprocess the data
1. Preprocessing for a CNN with Keras is a little bit different than before.

The files have to be in the following format: 
(samples, height, width, channels). Where height and width are the 
height/width of the patch, and number of channels corresponds to 
the number of training variable “fields” (e.g., CAPE, CIN, etc.). Here, 
we will be looking at 5x5 image patches (i.e., height = width = 5) and 
12 variables (i.e., channels = 12). There will be 1434 samples per day 
(the number of points in the domain). 

2. The preprocess_keras.py script will handle the preprocessing. First, 
we need to make directories where the preprocessed files will be 
output. 

mkdir fcst obs

3. Now, run the preprocessing script. 
python3 preprocess_keras.py



Step 3: Divide dataset into separate 
training/testing/validation sets

Full Dataset

Training Validation Testing



Step 3: Divide dataset into separate 
training/testing/validation sets

1. This is accomplished by run_dl.py reading in separate dates 
associated with the training, testing, and validation sets. 
• train_dates.txt: 20150421 – 20160428
• val_dates.txt: 20160429 – 20160630
• test_dates.txt: 20170402 – 20170624



Step 4: Normalize the data

1. Again, we want to subtract the training mean and divide 
by the training standard deviation (for all 
variables/channels): 

train_mean = training_x.mean(axis=0)
train_sd = training_x.std(axis=0)
delta = 0.000001
train_sd += delta
np.save("train_mean.npy", train_mean)
np.save("train_std.npy", train_sd)
training_x = (training_x - train_mean)/train_sd
testing_x = (testing_x - train_mean)/train_sd
val_x = (val_x - train_mean)/train_sd



Step 5: Write the DL model

1. We will make a relatively simple residual NN to illustrate 
some key principles of DL. This is done in 
separable_conv_severe_5x5.py. We’ll break down what’s 
going on in the script.  



Step 5: separable_conv_severe_5x5.py

def conv_net(input_img, drop_rate, penalty):

Input parameters: the input image, the dropout rate fraction, and 
the L1 regularization penalty applied to each weight (goal is to 
prevent weights from getting too large). 



Step 5: separable_conv_severe_5x5.py

s1 = SeparableConv2D(24, kernel_size=2, activation='relu', 
padding='valid', kernel_regularizer=regularizers.l1(penalty), 
kernel_initializer='he_normal') (input_img)

Use a 2-d 
separable 

convolution

24 output 
channels

Kernel 
size/size of 

conv. 
”patches”

Activation 
function

How to handle padding:
‘valid’ = no padding; 
‘same’ = pad so output has 
same width/height as input

L1 
regularization

How to 
initialize 
weights

Input to the 
layer/operation



Step 5: separable_conv_severe_5x5.py

s1 = BatchNormalization() (s1) #Batch normalization performed on s1
s1 = MaxPooling2D((2,2)) (s1) #Max pooling performed on s1
s1 = Dropout(drop_rate) (s1) #Dropout performed on s1



Step 5: separable_conv_severe_5x5.py

s2 = SeparableConv2D(48, kernel_size=2, activation='relu', 
padding='valid', kernel_regularizer=regularizers.l1(penalty), 
kernel_initializer='he_normal') (s1)

s2 = BatchNormalization() (s2)

s2 = Dropout(drop_rate) (s2)



Step 5: separable_conv_severe_5x5.py

#First residual layer

#Note that this Separable Conv2D layer uses input from the input 
image. 
r1 = SeparableConv2D(48, kernel_size=3, activation='relu', 
padding='valid', strides=1, kernel_regularizer=regularizers.l1(penalty), 
kernel_initializer='he_normal') (input_img)

r1 = BatchNormalization() (r1)

r1 = AveragePooling2D((2,2)) (r1)

r1 = Dropout(drop_rate) (r1)



Step 5: separable_conv_severe_5x5.py

#Add the residual layer and main branch
p1 = layers.add([s2, r1])



Step 5: separable_conv_severe_5x5.py

#Add the residual layer and main branch
p1 = layers.add([s2, r1])

#Now, flatten and use to make predictions
f1 = Flatten() (p1)
f2 = Dense(36, activation='relu') (f1)
f2 = BatchNormalization() (f2)
f2 = Dropout(drop_rate) (f2)

#Second fully connected layer
f3 = Dense(12, activation='relu') (f2)
f3 = BatchNormalization() (f3)
f3 = Dropout(drop_rate) (f3)



Step 5: separable_conv_severe_5x5.py

#Now get output layer
outputs = Dense(1, activation='sigmoid') (f3)

model = Model(inputs=[input_img], outputs=[outputs])

print (model.summary())

return model



Step 5: separable_conv_severe_5x5.py
Input Image
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Step 6: Compile the model
input_image = Input((patch_size, patch_size, n_channels))

conv_model = conv_net(input_image, dropout_rate, reg_penalty)

loss='binary_crossentropy', metrics=['accuracy'])

conv_model.compile(optimizer=Adam(), loss='binary_crossentropy', 
metrics=['accuracy'])

history = AccuracyHistory()

metrics = Metrics()

callbacks_list = [ EarlyStopping(monitor='val_loss', patience=2,), 
ModelCheckpoint(filepath=model_outname, monitor='val_loss', 
save_best_only=True,), history, metrics]



Step 7: Train the model

conv_model.fit(training_x, training_y, batch_size=batch_size, 
epochs=n_epochs, verbose=1, validation_data=(val_x, 
val_y), callbacks=callbacks_list)

score = conv_model.evaluate(testing_x, testing_y, verbose=0)



To execute steps 3-7:

1. Run the run_dl.py script by submitting a batch job. 
sbatch casper_sbatch

2. Note that a trained model is produced: 
separable_conv_tutorial_5x5.h5
We will test this model in a subsequent step. 



Step 8: Use the trained model to 
make predictions on the test data. 

1. We will do this step in a separate script using the trained 
model. Run get_output_dl.py. Works by reading in the trained 
model, appropriately normalizing the test data (based on 
training normalization) and using the trained model to make 
predictions on the test data. 

python3 get_output_dl.py



Step 8: Evaluate the skill of the DL 
probabilities using the test_y data

1. To obtain overall skill metrics, attributes, performance, and 
ROC diagrams, execute: 

python3 skill_scores_evaluate_dl.py

2. To visualize what these forecasts look like on individual 
days, execute: 

python3 evaluate_dl.py


