

Model Evaluation Tools Version 3.1 (METv3.1)

User’s Guide 3.1

Developmental Testbed Center

Boulder, Colorado, USA

February 2012

 ii

 iii

Contents

Section Page

Foreword: A note to MET users ... vii
New for MET V3.1 ... vii
Model Evaluation Tools (MET) terms of use ... viii
Acknowledgments .. x

Chapter 1 – Overview of MET ... 1-1

1.1 Purpose and organization of the User’s Guide 1-1
1.2 The Developmental Testbed Center (DTC) 1-1

 1.3 MET goals and design philosophy ... 1-2
 1.4 MET components ... 1-3
 1.5 Future development plans ... 1-5
 1.6 Code support ... 1-6

Chapter 2 – Software Installation/Getting Started ... 2-1
 2.1 Introduction ... 2-1
 2.2 Supported architectures ... 2-1
 2.3 Programming languages .. 2-1
 2.4 Required compilers and scripting languages 2-2
 2.5 Required libraries and optional utilities .. 2-2
 2.6 Installation of required libraries .. 2-3
 2.7 Installation of optional utilities .. 2-4
 2.8 MET directory structure .. 2-6
 2.9 Building the MET package ... 2-7
 2.10 Sample test cases ... 2-8

Chapter 3 – MET Data I/O and Re-Formatting .. 3-1

3.1 Input data formats .. 3-1
 3.2 Intermediate data formats .. 3-1
 3.3 Output data formats ... 3-2
 3.4 Data format summary .. 3-4
 3.5 PB2NC tool ... 3-5
 3.5.1 pb2nc usage ... 3-6
 3.5.2 pb2nc configuration file .. 3-7
 3.5.3 pb2nc output .. 3-11
 3.6 ASCII2NC tool ... 3-13
 3.6.1 ascii2nc usage ... 3-13
 3.7 MADISNC tool ... 3-15
 3.6.1 madis2nc usage ... 3-15
 3.8 Pcp-Combine tool .. 3-16
 3.7.1 pcp_combine usage .. 3-16
 3.7.2 pcp_combine output ... 3-17

 iv

Section Page

 3.9 Gen-Poly-Mask tool ... 3-18
 3.9.1 gen_poly_mask usage ... 3-18
 3.10 Ensemble Stat tool ... 3-19
 3.10.1 ensemble_stat usage ... 3-20
 3.10.2 ensemble_stat output ... 3-22

Chapter 4 – The Point-Stat Tool ……………….…………………………………….. 4-1

4.1 Introduction ... 4-1
 4.2 Scientific and statistical aspects .. 4-1
 4.2.1 Interpolation/matching methods .. 4-1
 4.2.2 Statistical measures .. 4-4
 4.2.3 Confidence intervals ... 4-5
 4.3 Practical information .. 4-7
 4.3.1 point_stat usage .. 4-7
 4.3.2 point_stat configuration file ... 4-9
 4.3.3 point_stat output .. 4-16

Chapter 5 – The Grid-Stat Tool ... 5-1
 5.1 Introduction ... 5-1
 5.2 Scientific and statistical aspects .. 5-1
 5.2.1 Statistical measures .. 5-1
 5.2.2 Statistical confidence intervals .. 5-2
 5.2.3 Neighborhood methods ... 5-2
 5.3 Practical information .. 5-3
 5.3.1 grid_stat usage .. 5-4
 5.3.2 grid_stat configuration file ... 5-5
 5.3.3 grid_stat output .. 5-12

Chapter 6 – The MODE Tool ... 6-1
 6.1 Introduction ... 6-1
 6.2 Scientific and Statistical Aspects ... 6-1
 6.2.1 Resolving objects .. 6-1
 6.2.2 Attributes ... 6-4
 6.2.3 Fuzzy logic .. 6-5
 6.2.4 Summary statistics .. 6-6
 6.3 Practical information .. 6-6
 6.3.1 mode usage ... 6-7
 6.3.2 mode configuration file .. 6-8
 6.3.3 mode output .. 6-19

Chapter 7 – The Wavelet-Stat Tool ... 7-1
 7.1 Introduction ... 7-1
 7.2 Scientific and Statistical Aspects ... 7-2
 7.2.1 The method ... 7-2

 v

 7.2.2 The spatial domain constraints .. 7-11
 7.2.3 Aggregation of statistics on multiple spatial cases 7-12

Section Page

 7.3 Practical information .. 7-13
 7.3.1 wavelet_stat usage ... 7-13
 7.3.2 wavelet_stat configuration file ... 7-14
 7.3.3 wavelet_stat output ... 7-17

Chapter 8 – The Stat-Analysis Tool .. 8-1
 8.1 Introduction ... 8-1
 8.2 Scientific and statistical aspects .. 8-1
 8.2.1 Filter STAT line ... 8-1
 8.2.2 Summary statistics for columns .. 8-1
 8.2.3 Aggregated values from multiple STAT lines 8-2
 8.2.4 Aggregate STAT lines and produce aggregated statistics 8-2
 8.2.5 GO Index ... 8-2
 8.2.6 Verifying Wind Direction .. 8-3
 8.3 Practical information .. 8-3
 8.3.1 stat_analysis usage ... 8-3
 8.3.2 stat_analysis configuration file .. 8-6
 8.3.3 Stat-Analysis tool output ... 8-12

Chapter 9 – The MODE-Analysis Tool .. 9-1
 9.1 Introduction ... 9-1
 9.2 Scientific and statistical aspects .. 9-1
 9.3 Practical information .. 9-1
 9.3.1 mode_analysis usage ... 9-2
 9.3.2 mode_analysis configuration file .. 9-10
 9.3.3 MODE-Analysis tool output ... 9-11
Chapter 10 – Scripting ... 10-1
 10.1 Example scripts for running MET tools .. 10-1
 10.2 Example scripts for use with MODE output files 10-3

Chapter 11 – Plotting and Graphics Support …………………………………… 11-1
 11.1 Grid-Stat tool examples ... 11-1
 11.2 MODE tool examples ... 11-2

References .. R-1

Appendix A – How do I … ? .. A-1
 A.1 Frequently Asked Questions .. A-1
 A.2 Troubleshooting ... A-2
 A.3 Where to get help .. A-3

 vi

 A.4 How to contribute code .. A-3

Appendix B – Map Projections, Grids, and Polylines .. B-1
 B.1 Map Projections ... B-1
 B.2 Grids .. B-1
 B.3 Polylines ... B-1

 Appendix C – Verification Measures .. C-1
 C.1 MET verification measures for categorical (dichotomous) variables . C-1
 C.2 MET verification measures for continuous variables C-5
 C.3 MET verification measures for probabilistic forecasts C-12
 C.4 MET verification measures for ensemble forecasts C-19
 C.5 MET verification measures for neighborhood methods C-21

Appendix D – Confidence Intervals ... D-1

 vii

Foreword: A note to MET users

This user’s guide is provided as an aid to users of the Model Evaluation Tools (MET).
MET is a set of verification tools developed by the Developmental Testbed Center
(DTC) for use by the numerical weather prediction community – and especially users
and developers of the Weather Research and Forecasting (WRF) model – to help them
assess and evaluate the performance of numerical weather predictions.

It is important to note here that MET is an evolving software package. Previous
releases of MET have occurred each year since 2008. This documentation describes
the 3.1 release from 2012 that includes refined and streamlined computations as well as
corrections to some errors or system issues. Intermediate releases may include bug
fixes. In the future, MET will also be able to accept new modules contributed by the
community. A protocol will be established to determine the maturity of new verification
methods that are contributed and to coordinate the inclusion of new modules in future
versions.

This user’s guide was prepared by the developers of the MET, including John Halley
Gotway, Randy Bullock, Paul Oldenburg, Anne Holmes, Tara Jensen, Lacey Holland,
Barbara Brown, Tressa Fowler, David Ahijevych, Eric Gilleland and Bonny Strong.

New for MET v3.1

The majority of the changes for METv3.1 are internal restructuring and
streamlining of how MET reads gridded data, which should be transparent to
the user. However, there have been several enhancements the typical user
may notice.

Major Upgrades

1. Implemented a new data class hierarchy for reading gridded data
files to enable future support for additional data formats, such as
GRIB2.

2. Incorporated a new logger class throughout MET causing all
messages printed to the screen to be prefixed with a message type
of ERROR, WARNING, or DEBUG(N), where N indicates the debug
level (default is 2):
0: Suppress all messages except WARNING and ERROR.
1: List input and output files.
2: List summary processing information.
3: List detailed processing information.
4+: List detailed debugging information.

3. Added a -log command line option to all the MET tools to optionally
write their output to a log file.

4. Changed how MET is storing gridded data from using an integer

 viii

scale and offset to a double. The integer scale and offset approach
used in prior versions of MET caused individual gridded data values
to be stored using only five significant digits.
• Comparing previous versions to METv3.1, users should notice only

slight differences in the continuous statistics MET produces (CNT
and SL1L2 line types).

• However, users may notice more significant differences in statistics
that are based on defining a threshold. Due to these precision
issues, the contingency tables counts and statistics (CTC and CTS
line types) MET produces may change significantly in METv3.1.

• METv3.1 has enhanced precision over earlier versions and more
accurately represents the input data and resulting statistical
measures.

New Tools

1. Added new madis2nc tool to reformat MADIS NetCDF point
observation files into a NetCDF format that MET can read. Currently
supports METAR and RAOB types of MADIS files with additional
MADIS data types to be added in future releases.

2. Added new plot_data_plane utility to read any supported gridded
data file, select a field from that file, and render it as a PostScript
image.

Enhancements to Existing Tools

1. Distributed latest set of bug fixes for METv3.0.1
2. Changed the default output directory for the MET statistics tools from

MET_BASE/out/tool_name to the current directory.
3. Enhanced plot_point_obs by adding a -data_file command line

argument to specify the grid on which the points should be plotted.
Included detailed DEBUG(4) information about the points being
plotted.

4. Enhanced stat_analysis to enable job command arguments on the
command line to be used in conjunction with a configuration file.
Included detailed DEBUG(4) information when deriving wind
directions.

5. Enhanced wwmca_regrid and wwmca_plot to specify the pixel
age when processing the data.

6. Enhanced mode to perform the convolution step more quickly.
7. When using MET statistics tools (like grid_stat, point_stat,

wavelet_stat, and mode) to verify the NetCDF output of other MET
tools (like pcp_combine and ensemble_stat), added logic to look
for the name and level NetCDF variable attributes. If present, write
those values out into the FCST_VAR, OBS_VAR, FCST_LEV or

 ix

OBS_LEV statistical output columns.
8. In the mode_analysis -summary job, modified the computation of

the standard deviations by dividng by N-1 rather than N which will
have a slight impact on the output.

Enhancement to the Build Process

1. Modified the configuration and build process for MET by grouping the
parameters that the user needs to edit into a file named
user_defs.mk in the top-level MET directory.

Reorganized the MET directory structure to use src, include, and lib sub-
directories for the source code, headers, and compiled libraries, respectively.

 x

TERMS OF USE

IMPORTANT!

USE OF THIS SOFTWARE IS SUBJECT TO THE FOLLOWING TERMS AND CONDITIONS:

1. License. Subject to these terms and conditions, University Corporation for Atmospheric

Research (UCAR) grants you a non-exclusive, royalty-free license to use, create
derivative works, publish, distribute, disseminate, transfer, modify, revise and copy the
Model Evaluation Tools (MET) software, in both object and source code (the “Software”).

You shall not sell, license or transfer for a fee the Software, or any work that in any
manner contains the Software.

2. Disclaimer of Warranty on Software. Use of the Software is at your sole risk. The

Software is provided "AS IS" and without warranty of any kind and UCAR EXPRESSLY
DISCLAIMS ALL WARRANTIES AND/OR CONDITIONS OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTIES OR CONDITIONS
OF TITLE, NON-INFRINGEMENT OF A THIRD PARTY’S INTELLECTUAL PROPERTY,
MERCHANTABILITY OR SATISFACTORY QUALITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE PARTIES EXPRESSLY DISCLAIM THAT THE
UNIFORM COMPUTER INFORMATION TRANSACTIONS ACT (UCITA) APPLIES TO
OR GOVERNS THIS AGREEMENT. No oral or written information or advice given by
UCAR or a UCAR authorized representative shall create a warranty or in any way
increase the scope of this warranty. Should the Software prove defective, you (and
neither UCAR nor any UCAR representative) assume the cost of all necessary
correction.

3. Limitation of Liability. UNDER NO CIRCUMSTANCES, INCLUDING NEGLIGENCE,

SHALL UCAR BE LIABLE FOR ANY DIRECT, INCIDENTAL, SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES INCLUDING LOST REVENUE, PROFIT OR DATA,
WHETHER IN AN ACTION IN CONTRACT OR TORT ARISING OUT OF OR
RELATING TO THE USE OF OR INABILITY TO USE THE SOFTWARE, EVEN IF
UCAR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

4. Compliance with Law. All Software and any technical data delivered under this

Agreement are subject to U.S. export control laws and may be subject to export or
import regulations in other countries. You agree to comply strictly with all applicable
laws and regulations in connection with use and distribution of the Software, including
export control laws, and you acknowledge that you have responsibility to obtain any
required license to export, re-export, or import as may be required.

5. No Endorsement/No Support. The names UCAR/NCAR, National Center for

Atmospheric Research and the University Corporation for Atmospheric Research may
not be used in any advertising or publicity to endorse or promote any products or
commercial entity unless specific written permission is obtained from UCAR. The
Software is provided without any support or maintenance, and without any obligation to
provide you with modifications, improvements, enhancements, or updates of the
Software.

 xi

6. Controlling Law and Severability. This Agreement shall be governed by the laws of
the United States and the State of Colorado. If for any reason a court of competent
jurisdiction finds any provision, or portion thereof, to be unenforceable, the remainder of
this Agreement shall continue in full force and effect. This Agreement shall not be
governed by the United Nations Convention on Contracts for the International Sale of
Goods, the application of which is hereby expressly excluded.

7. Termination. Your rights under this Agreement will terminate automatically without

notice from UCAR if you fail to comply with any term(s) of this Agreement. You may
terminate this Agreement at any time by destroying the Software and any related
documentation and any complete or partial copies thereof. Upon termination, all rights
granted under this Agreement shall terminate. The following provisions shall survive
termination: Sections 2, 3, 6 and 9.

8. Complete Agreement. This Agreement constitutes the entire agreement between the

parties with respect to the use of the Software and supersedes all prior or
contemporaneous understandings regarding such subject matter. No amendment to or
modification of this Agreement will be binding unless in writing and signed by UCAR.

9. Notices and Additional Terms. Copyright in Software is held by UCAR. You must

include, with each copy of the Software and associated documentation, a copy of this
Agreement and the following notice:

"The source of this material is the Research Applications Laboratory at the National Center for
Atmospheric Research, a program of the University Corporation for Atmospheric Research
(UCAR) pursuant to a Cooperative Agreement with the National Science Foundation; ©2007
University Corporation for Atmospheric Research. All Rights Reserved."

The following notice shall be displayed on any scholarly works associated with, related to or
derived from the Software:

"Model Evaluation Tools (MET) was developed at the National Center for Atmospheric Research
(NCAR) through a grant from the United States Air Force Weather Agency (AFWA). NCAR is
sponsored by the United States National Science Foundation."

By using or downloading the Software, you agree to be bound by the terms and conditions of
this Agreement.

 xii

Acknowledgments

We thank the U.S. Air Force Weather Agency for their support of this work. Thanks also
go to the staff at the Developmental Testbed Center for their help, advice, and many
types of support. We are grateful to the individuals who participated in MET planning
workshops in February 2007, April 2008, August 2009, and November 2010; the ideas
generated at those workshops will help MET grow in future years. Finally, we would like
to specifically thank the verification advisory group (Mike Baldwin, Matthew Sittel,
Elizabeth Ebert, Geoff DiMego, Chris Davis, and Jason Knievel) for their guidance and
other contributions. The DTC is sponsored by the National Oceanic and Atmospheric
Administration (NOAA), AFWA, and the National Science Foundation (NSF). NCAR is
sponsored by the National Science Foundation (NSF).

Chapter 1: Overview of MET 1-1

Chapter 1 – Overview of MET

1.1. Purpose and organization of the User’s Guide

The goal of this User’s Guide is to provide basic information for users of the Model
Evaluation Tools (MET) to enable users to apply MET to their datasets and evaluation
studies. MET has been specifically designed for application to the Weather Research
and Forecasting (WRF) model (see http://www.wrf-model.org/index.php for more
information about the WRF). However, MET may also be used for the evaluation of
forecasts from other models or applications if certain file format definitions (described in
this document) are followed.

The User’s Guide is organized as follows. Chapter 1 provides an overview of MET and
its components. Chapter 2 contains basic information about how to get started with
MET – including system requirements; required software (and how to obtain it); how to
download MET; and information about compilers, libraries, and how to build the code.
Chapter 3 focuses on the data needed to run MET, including formats for forecasts,
observations, and output. This chapter also documents the new Ensemble
preprocessing tool. Chapters 4 through 7 focus on the main modules contained in the
current version of MET, including the Point-Stat, Grid-Stat, MODE and Wavelet-Stat
tools. These chapters include an introduction to the statistical verification
methodologies utilized by the tools, followed by a section containing practical
information, such as how to set up configuration files and the form of the output.
Chapters 8 and 9 focus on the analysis modules, Stat-Analysis and MODE-Analysis,
which aggregate the output statistics from the other tools across multiple cases. Finally,
Chapters 10 and 11 include some additional tools and information for scripting MET
runs and plotting MET results. The appendices provide further useful information,
including answers to some typical questions (Appendix A: How do I…?); and links and
information about map projections, grids, and polylines (Appendix B). Appendices C
and D provide more information about the verification measures and confidence
intervals that are provided by MET. Sample code that can be used to perform analyses
on the output of MET and create particular types of plots of verification results is posted
on the MET website (http://www.dtcenter.org/met/users/). Note that the MET
development group also accepts contributed analysis and plotting scripts which may be
posted on the MET website for use by the community.

The remainder of this chapter includes information about the context for MET
development, as well as information on the design principles used in developing MET.
In addition, this chapter includes an overview of the MET package and its specific
modules.

1.2 The Developmental Testbed Center (DTC)

MET has been developed, and will be maintained and enhanced, by the Developmental
Testbed Center (DTC; http://www.dtcenter.org/). The main goal of the DTC is to serve

Chapter 1: Overview of MET 1-2

as a bridge between operations and research, to facilitate the activities of these two
important components of the numerical weather prediction (NWP) community. The
DTC provides an environment that is functionally equivalent to the operational
environment in which the research community can test model enhancements; the
operational community benefits from DTC testing and evaluation of models before new
models are implemented operationally. MET serves both the research and operational
communities in this way – offering capabilities for researchers to test their own
enhancements to models and providing a capability for the DTC to evaluate the
strengths and weaknesses of advances in NWP prior to operational implementation.

The MET package will also be available to DTC visitors and to the WRF modeling
community for testing and evaluation of new model capabilities, applications in new
environments, and so on.

1.3 MET goals and design philosophy

The primary goal of MET development is to provide a state-of-the-art verification
package to the NWP community. By “state-of-the-art” we mean that MET will
incorporate newly developed and advanced verification methodologies, including new
methods for diagnostic and spatial verification and new techniques provided by the
verification and modeling communities. MET also utilizes and replicates the capabilities
of existing systems for verification of NWP forecasts. For example, the MET package
replicates existing NCEP operational verification capabilities (e.g., I/O, methods,
statistics, data types). MET development will take into account the needs of the NWP
community – including operational centers and the research and development
community. Some of the MET capabilities include traditional verification approaches for
standard surface and upper air variables (e.g., Equitable Threat Score, Mean Squared
Error); confidence intervals for verification measures; and spatial forecast verification
methods. In the future, MET will include additional state-of-the-art and new
methodologies.

The MET package has been designed to be modular and adaptable. For example,
individual modules can be applied without running the entire set of tools. New tools can
easily be added to the MET package due to this modular design. In addition, the tools
can readily be incorporated into a larger “system” that may include a database as well
as more sophisticated input/output and user interfaces. Currently, the MET package is
a set of tools that can easily be applied by any user on their own computer platform.

The MET code and documentation is maintained by the DTC in Boulder, Colorado. The
MET package is freely available to the modeling, verification, and operational
communities, including universities, governments, the private sector, and operational
modeling and prediction centers.

Chapter 1: Overview of MET 1-3

1.4 MET components

The major components of the MET package are represented in Figure 1-1. The main
stages represented are input, reformatting, intermediate output, statistical analyses, and
output and aggregation/analysis. Each of these stages is described further in later
chapters. For example, the input and output formats are discussed in Chapter 2 as well
as in the chapters associated with each of the statistics modules. MET input files are
represented on the far left. Note that forecast model output is currently expected to be
in GRIB1 format; GRIB2 and other formats will be incorporated in future releases of
MET.

Figure 1-1. Basic representation of current MET structure and modules. Green areas
represent software and modules included in MET, and gray areas represent input and

output files.

The reformatting stage of MET consists of the Gen-Poly-Mask, PB2NC, ASCII2NC,
Pcp-Combine, and Ensemble Stat tools. The PB2NC tool is used to create NetCDF
files from input PrepBufr files containing point observations. Likewise, the ASCII2NC
tool is used to create NetCDF files from input ASCII point observations. METAR and
RAOB data from the MADIS network can be formatted for use in MET by the madis2nc
tool. These NetCDF files are then used in the statistical analysis step. The Gen-Poly-
Mask and Pcp-Combine are optional. The Gen-Poly-Mask tool will create a bitmapped
masking area from a user specified polygon, i.e. a text file containing a series of
latitudes / longitudes. This mask can then be used to efficiently limit verification to the
interior of a user specified region. The Pcp-Combine tool accumulates precipitation

Chapter 1: Overview of MET 1-4

amounts into the time interval selected by the user – if a user would like to verify over a
different time interval than is included in their forecast or observational dataset. The
Ensemble-Stat tool will combine many forecasts into an ensemble mean or probability
forecast. Additionally, if observations are included ensemble rank histogram information
is produced.

The four main statistical analysis components of the current version of MET are: Point-
Stat, Grid-Stat, MODE, and Wavelet-Stat. The Point-Stat tool is used for grid-to-point
verification, or verification of a gridded forecast field against a point-based observation
(i.e., surface observing stations, ACARS, rawinsondes, and other observation types that
could be described as a point observation). In addition to providing traditional forecast
verification scores for both continuous and categorical variables, confidence intervals
are also produced using parametric and non-parametric methods. Confidence intervals
take into account the uncertainty associated with verification statistics due to sampling
variability and limitations in sample size. These intervals provide more meaningful
information about forecast performance. For example, confidence intervals allow
credible comparisons of performance between two models when a limited number of
model runs is available.

Sometimes it may be useful to verify a forecast against gridded fields (e.g., Stage IV
precipitation analyses). The Grid-Stat tool produces traditional verification statistics
when a gridded field is used as the observational dataset. Like the Point-Stat tool, the
Grid-Stat tool also produces confidence intervals. The Grid-Stat tool also now includes
new “neighborhood” spatial methods, such as the Fractional Skill Score (Roberts and
Lean 2008). These methods are discussed in Ebert (2008).

The MODE (Method for Object-based Diagnostic Evaluation) tool also uses gridded
fields as observational datasets. However, unlike the Grid-Stat tool, which applies
traditional forecast verification techniques, MODE applies the object-based spatial
verification technique described in Davis et al. (2006a,b) and Brown et al. (2007). This
technique was developed in response to the “double penalty” problem in forecast
verification. A forecast missed by even a small distance is effectively penalized twice by
standard categorical verification scores: once for missing the event and a second time
for producing a false alarm of the event elsewhere. As an alternative, MODE defines
objects in both the forecast and observation fields. The objects in the forecast and
observation fields are then matched and compared to one another. Applying this
technique also provides diagnostic verification information that is difficult or even
impossible to obtain using traditional verification measures. For example, the MODE
tool can provide information about errors in location, size, and intensity.

The Wavelet-Stat tool decomposes two-dimensional forecasts and observations
according to the Intensity-Scale verification technique described by Casati et al. (2004).
There are many types of spatial verification approaches and the Intensity-Scale
technique belongs to the scale-decomposition (or scale-separation) verification
approaches. The spatial scale components are obtained by applying a wavelet
transformation to the forecast and observation fields. The resulting scale-decomposition

Chapter 1: Overview of MET 1-5

measures error, bias and skill of the forecast on each spatial scale. Information is
provided on the scale dependency of the error and skill, on the no-skill to skill transition
scale, and on the ability of the forecast to reproduce the observed scale structure. The
Wavelet-Stat tool is primarily used for precipitation fields. However, the tool can be
applied to other variables, such as cloud fraction.

Results from the statistical analysis stage are output in ASCII, NetCDF and Postscript
formats. The Point-Stat, Grid-Stat, and Wavelet-Stat tools create STAT (statistics) files
which are tabular ASCII files ending with a “.stat” suffix. In earlier versions of MET, this
output format was called VSDB (Verification System DataBase). VSDB, which was
developed by the National Centers for Environmental Prediction (NCEP), is a
specialized ASCII format that can be easily read and used by graphics and analysis
software. The STAT output format of the Point-Stat, Grid-Stat, and Wavelet-Stat tools is
an extension of the VSDB format developed by NCEP. Additional columns of data and
output line types have been added to store statistics not produced by the NCEP version.

The Stat-Analysis and MODE-Analysis tools aggregate the output statistics from the
previous steps across multiple cases. The Stat-Analysis tool reads the STAT output of
Point-Stat, Grid-Stat, and Wavelet-Stat and can be used to filter the STAT data and
produce aggregated continuous and categorical statistics. The MODE-Analysis tool
reads the ASCII output of the MODE tool and can be used to produce summary
information about object location, size, and intensity (as well as other object
characteristics) across one or more cases.

1.5 Future development plans

MET is an evolving verification software package. New capabilities are planned in
controlled, successive version releases. Bug fixes and user-identified problems will be
addressed as they are found and posted to the known issues section of the MET Users
web page (www.dtcenter.org/met/users/support). Plans are also in place to
incorporate many new capabilities and options in future releases of MET. Some of the
planned additions are listed below.

Additional statistical capabilities
• Additional spatial forecast verification methods
• Hurricane track verification
• Enhanced support for wind direction verification

Support for other input formats
• Support for gridded data in GRIB2
• Support for gridded data in NetCDF, CF convention

Additional analysis capabilities and plotting routines
• Post to the MET website sample analysis and plotting routines that may include

o Boxplots

Chapter 1: Overview of MET 1-6

o Discrimination plots
o Reliability diagrams
o Scatter/density plots
o Color-fill/contour maps of statistics
o Height series
o Histograms

Other capabilities
• Autoconf configurability
• Database and display system for the statistical output of MET

1.6 Code support

MET support is provided through a MET-help e-mail address: met_help@ucar.edu. We
will endeavor to respond to requests for help in a timely fashion. In addition, information
about MET and tools that can be used with MET are provided on the MET Users web
page (http://www.dtcenter.org/met/users/).

We welcome comments and suggestions for improvements to MET, especially
information regarding errors. Comments may be submitted using the MET Feedback
form available on the MET website. In addition, comments on this document would be
greatly appreciated. While we cannot promise to incorporate all suggested changes, we
will certainly take all suggestions into consideration.

The MET package is a “living” set of tools. Our goal is to continually enhance it and add
to its capabilities. Because our time, resources, and talents are limited, we welcome
contributed code for future versions of MET. These contributions may represent new
verification methodologies, new analysis tools, or new plotting functions. For more
information on contributing code to MET, please contact met_help@ucar.edu.

Chapter 2: Software Installation/Getting Started 2-1

Chapter 2 – Software Installation/Getting Started

2.1 Introduction

This chapter describes how to install the MET package. MET has been developed and
tested on Linux and IBM operating systems. Support for additional platforms and
compilers will be added in future releases. The MET package requires four external
libraries to be available on the user's computer prior to installation. Required and
recommended libraries, how to install MET, the MET directory structure, and sample
cases are described in the following sections.

2.2 Supported architectures

The MET package was developed on Debian Linux using the GNU compilers and the
Portland Group (PGI) compilers. The MET package has also been built on several
other Linux distributions using either the GNU or PGI compilers. The MET package has
also been ported to IBM machines using the IBM compilers. Other machines will be
added to this list in future releases as they are tested. In particular, the goal is to
support those architectures supported by the WRF model itself.

Table2-1. Hardware and compiler configurations tested for the MET package.

Vendor Hardware OS Compiler
DELL XEON Linux GNU / PGI / Intel
IBM Power Series AIX IBM

The MET package runs on a single processor and there are currently no plans to run it
across multiple processors in the future. Therefore, none of the utilities necessary for
running WRF on multiple processors are necessary for running MET.

2.3 Programming languages

The MET package is written primarily in C/C++ in order to be compatible with an
extensive verification code base in C/C++ already in existence. In addition, the object-
based MODE verification tool relies heavily on the object-oriented aspects of C++.

Knowledge of C/C++ is not necessary to use the MET package. The MET package has
been designed to be highly configurable through the use of ASCII configuration files,
enabling a great deal of flexibility without the need for source code modifications.

Chapter 2: Software Installation/Getting Started 2-2

NCEP's BUFRLIB is written entirely in Fortran. The portion of MET that handles the
interface to the BUFRLIB for reading PrepBufr point observation files is also written in
Fortran.

The MET package is intended to be a tool for the modeling community to use and
adapt. As users make upgrades and improvements to the tools, they are encouraged to
offer those upgrades to the broader community by offering feedback to the developers.

2.4 Required compilers and scripting languages

The MET package was developed and tested using the GNU g++/gfortran compilers
and the Portland Group (PGI) pgCC/pgf77 compilers. The MET package has also been
ported to IBM machines using the IBM xlC/xlf90 compilers. As additional compilers are
successfully tested, they will be added to the list of supported platforms/compilers.

The GNU make utility is used in building all executables and is therefore required.

The MET package consists of a group of command line utilities that are compiled
separately. The user may choose to run any subset of these utilities to employ the type
of verification methods desired. New tools developed and added to the toolkit will be
included as command line utilities.

In order to control the desired flow through MET, users are encouraged to run the tools
via a script (see Chapter 10 for some examples). Some sample scripts are provided in
the distribution; these examples are written in the Bourne shell. However, users are
free to adapt these sample scripts to any scripting language desired.

2.5 Required libraries and optional utilities

Four external libraries are required for compiling/building MET and should be
downloaded and installed before attempting to install MET:

2. NCEP's BUFRLIB is used by MET to decode point-based observation datasets in

PrepBufr format. BUFRLIB is distributed and supported by NCEP and is freely
available for download from NCEP's website at
http://www.nco.ncep.noaa.gov/sib/decoders/BUFRLIB. BUFRLIB requires C and
Fortran-77 compilers that should be from the same family of compilers used when
building MET.

3. Several tools within MET use Unidata's NetCDF libraries for writing output NetCDF

files. NetCDF libraries are distributed and supported by Unidata and are freely
available for download from Unidata's website at
http://www.unidata.ucar.edu/software/netcdf. The same family of compilers used to
build NetCDF should be used when building MET. MET is compatible with most
NetCDF version 3 releases, but it is not compatible with NetCDF version 4.

Chapter 2: Software Installation/Getting Started 2-3

4. The GNU Scientific Library (GSL) is used by MET when computing confidence

intervals. GSL is distributed and supported by the GNU Software Foundation and is
freely available for download from the GNU website at
http://www.gnu.org/software/gsl.

5. The F2C (or G2C) Library may be required depending on which Fortran compiler is

used to compile MET. It is not necessary when using the GNU gfortran and PGI
pgf77 compilers but is required for the GNU g77 compiler. The F2C (or G2C) library
is used by MET to enable the PB2NC tool, written in C++ to communicate with the
BUFRLIB, written in Fortran. If F2C (or G2C) is not already installed on your
system, it may be downloaded from the Netlib website at http://www.netlib.org/f2c.
Download the file “libf2c.zip” and refer to the README file for installation
instructions.

Two additional utilities are strongly recommended for use with MET:

1. The Unified Post-Processor is recommended for post-processing the raw model

output prior to verifying the model forecasts with MET. The Unified Post-Processor
is freely available for download from the “downloads” section of the WRF-NMM
user's website at http://www.dtcenter.org/wrf-nmm/users. MET requires input data in
GRIB1 format on a standard, de-staggered grid and on pressure or regular levels in
the vertical. The Unified Post-Processor outputs model data in this format from both
WRF cores, the NMM and the ARW. However, the Unified Post-Processor is not
strictly required as long as the user can produce GRIB input data on a standard de-
staggered grid on pressure or regular levels in the vertical. Two-dimensional fields
(e.g., precipitation amount) are also accepted for some modules.

2. The copygb utility is recommended for re-gridding model and observation datasets

in GRIB format to a common verification grid. This utility is highly recommended
when using the Grid-Stat, Wavelet-Stat, or MODE tools. Prior to running MET, the
model output and verifying gridded observations must be placed on the same grid.
The copygb utility is distributed as part of the Unified Post-Processor and is available
from other sources as well. However, the copygb utility is not strictly required as
long as users can ensure that their model and gridded observation datasets reside
on a common grid.

2.6 Installation of required libraries

As described in section 2.5, three libraries are required for building the MET:

3. NCEP's BUFRLIB is used by the MET to decode point-based observation datasets

in PrepBufr format. Once you have downloaded and unpacked the BUFRLIB tarball,
refer to the README_BUFRLIB file. When compiling the library using the GNU C and
Fortran compilers, users are strongly encouraged to use the -DUNDERSCORE and

Chapter 2: Software Installation/Getting Started 2-4

-fno-second-underscore options. Also, MET expects the BUFRLIB archive file
to be named “libbufr.a”. Therefore, compiling the BUFRLIB using the GNU
compilers consists of the following 3 steps:

 gcc -c -DUNDERSCORE *.c
 gfortran -c -DUNDERSCORE -fno-second-underscore *.f *.F
 ar crv libbufr.a *.o

Alternatively, compiling the BUFRLIB using the PGI C and Fortran-77 compilers
consists of the following 3 steps:

 pgcc -c -DUNDERSCORE *.c
 pgf77 -c -DUNDERSCORE -Mnosecond_underscore *.f *.F
 ar crv libbufr.a *.o

Compiling the BUFRLIB using the IBM C and Fortran compilers consists of the
following 3 steps:

 xlc -c -DUNDERSCORE *.c
 xlf -c -qextname *.f *.F
 ar crv libbufr.a *.o

4. Unidata's NetCDF libraries are used by several tools within MET for writing output

NetCDF files. The same family of compilers used to build NetCDF should be used
when building MET. Users may also find some utilities built for NetCDF such as
ncdump and ncview useful for viewing the contents of NetCDF files. Detailed
installation instructions are available from Unidata at
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-install/

5. The GNU Scientific Library (GSL) is used by MET for random sampling and normal

and binomial distribution computations when estimating confidence intervals.
Precompiled binary packages are available for most GNU/Linux distributions and
may be installed with root access. When installing GSL from a precompiled package
on Debian Linux, the developer’s version of GSL must be used; otherwise, use the
GSL version available from the GNU website (http://www.gnu.org/software/gsl/).
MET requires access to the GSL source headers and library archive file at build
time.

2.7 Installation of optional utilities

As described in the introduction to this chapter, two additional utilities are strongly
recommended for use with MET.

9. The Unified Post-Processor is recommended for post-processing the raw model

output prior to verifying the data with MET. The Unified Post-Processor may be

Chapter 2: Software Installation/Getting Started 2-5

used on output from both the ARW and NMM cores. Please refer to online
documentation for instructions on how to install and use the Unified Post-Processor.
Installation instructions for the Unified Post-Processor can be found in Chapter 7 of
the WRF-NMM User’s Guide or online at http://www.dtcenter.org/wrf-
nmm/users/docs/user_guide/V3/users_guide_nmm_chap7.pdf .

10. The copygb utility is recommended for re-gridding model and observation datasets

in GRIB format to a common verification grid. The copygb utility is distributed as
part of the Unified Post-Processor and is available from other sources as well.
Please refer to the “Unified Post-processor” utility mentioned above for information
on availability and installation.

Chapter 2: Software Installation/Getting Started 2-6

2.8 MET directory structure

Once you have downloaded the MET tarball and unzipped and unpacked its contents,
the top-level MET directory structure follows this outline:

• METv3.1/

bin/
data/
doc/
export.mk
include/
lib/
Makefile
make_met.log
met_defs.mk
out/
scripts/
src/
user_defs_gnu.mk
user_defs_ibm.mk
user_defs_intel.mk
user_defs.mk
user_defs_pgi.mk

The top-level MET directory consists of a README file, Makefiles, and several
subdirectories. The top-level Makefiles control how the entire toolkit is built by calling
sub-makes for each of the internal libraries and applications. These top-level Makefiles
will be modified in Section 2.9.

When MET has been successfully built, the bin/ directory will contain executables for
each module of MET (grid_stat, mode, mode_analysis, ensemble_stat,
pb2nc, ascii2nc, madis2nc, wwmca_regrid, gen_poly_mask,
pcp_combine, point_stat, stat_analysis, wavelet_stat) as well as some
plotting utilities.

The data/ directory contains several configuration and static data files used by MET.
The colortables/, map/, and ps/ subdirectories contain data used in creating
PostScript plots for the MODE tool. The poly/ subdirectory contains predefined lat/lon
polyline regions for use in selecting regions over which to verify. The polylines defined
correspond to verification regions used by NCEP as described in Appendix B. The
config/ subdirectory contains default configuration files for each MET tool that
accepts one. Users may copy these configuration files to another location and modify
them for their own use. The sample_fcst/ and sample_obs/ subdirectories contain
sample data used by the test scripts provided in the scripts/ directory.

Chapter 2: Software Installation/Getting Started 2-7

The doc/ directory contains documentation for MET, including the MET User's Guide.

The lib/ directory contains the source code for several internal libraries used by MET
tools.

The out/ directory will be populated with sample output from the test cases described
in the next section.

The src/ directory contains the source code for each of the seven tools in MET.

The scripts/ directory contains test scripts to be run after MET has been successfully
built, as well as a directory of sample configuration files located in the config/
subdirectory. The output from the test scripts in this directory will be written to the out/
directory. Users are encouraged to copy sample configuration files to another location
and modify them for their own use.

2.9 Building the MET package

Building the MET package consists of three main steps: (1) installing the required
libraries, (2) configuring the top-level Makefile, and (3) executing the build.

Install the required libraries.

• Please refer to Section 2.6 on how to install the required libraries.

Chapter 2: Software Installation/Getting Started 2-8

Configure the top-level user_defs.mk

• Once you have downloaded the MET tarball, unzip and unpack its contents
(refer to Section 2.8).

• Make a copy of the user_defs.mk most similar to your OS and
compiler. For example, if compiling on Linux using the GNU compilers:

• cp user_defs_gnu.mk user_defs.mk

• Edit the top-level user_defs.mk as follows:

o Set MAKE to the full path for the GNU Make utility.

o Set CXX to the full path for your C++ compiler.

o Set FC to the full path for your Fortran compiler.

o Set NETCDF_BASE to the location where NetCDF is installed if it is
not installed in a standard location. The NetCDF directory should
contain include/ and lib/ subdirectories.

o Set BUFR_BASE to the location where BUFRLIB is installed if it is
not installed in a standard location.

o Set GSL_BASE to the location where the GNU Scientific Library is
installed if it is not installed in a standard location. The GSL
directory should contain include/gsl/ and lib/ subdirectories.

o If required for your compiler, set F2C_BASE to the location where
the F2C or G2C library is installed if it is not installed in a standard
location.

o If required for your compiler, set F2C_LIBNAME to either –lf2c or –
lg2c to indicate which library is to be used.

o The additional parameters in the user_defs.mk may be set as
needed to configure the build to your system such as compiler flags
and additional libraries.

Chapter 2: Software Installation/Getting Started 2-9

Execute the build

• Execute the GNU make command, typically by typing make, to build the
MET package. Note that on IBM machines, the GNU make command may
be named gmake:

• make>& make.log&

• Execute the following “tail” command to monitor the progress of the make:

o tail -f make.log

• When the make has completed, use CNTL-F to end the tail command.

• Examine the contents of the make.log file.

• Look for the following message which likely indicates that the build was
successful:

• *** Finished Making the Model Evaluation Tools Project ***

• ² Several compilation warnings may occur which are expected.

• ² If any errors occur, please refer to the appendix on troubleshooting for common
problems.

2.10 Sample test cases

Once the MET package has been built successfully, the user is encouraged to run the
sample test scripts provided. Change directories into the scripts/ directory. The
scripts directory contains a test Bourne shell script for each of the eight tools in MET.
However, the test_all.sh script will run the other eight scripts in the proper order.
Execute the following commands:

 Run the script.
./test_all.sh >& test_all.log&

 Monitor the progress of the script:
tail -f test_all.log

 When the test script has completed, use CNTL-F to end the tail command.

Chapter 2: Software Installation/Getting Started 2-10

NOTE: All of these test scripts should take less than 10 minutes to run on
most machines.

 Examine the contents of the test_all.log file:
o Look for the following message which indicates that the test script

completed:

*** Finished Testing the Model Evaluation Tools Project ***

o If any warnings or errors occur, please refer to Appendix A on
troubleshooting for common problems.

 The output from this test script is written to the top-level out/ directory,

organized by the names of the MET tools.

Chapter 3: MET Data I/O and Re-Formatting 3-1

Chapter 3 – MET Data I/O and Re-Formatting

Both the input and output file formats are described in this chapter. Sections 3.1 and
3.2 are primarily concerned with re-formatting input files into the intermediate files
required by some MET modules. These steps are represented by the first three
columns in the MET flowchart depicted in Fig. 1-1. Output data formats and the
software modules used to reformat the data are described in later sections.

3.1 Input data formats

The MET package can handle gridded input data in GRIB version 1 format (i.e., the
same as the output format produced by the Unified Post-Processor). Point observation
files may be supplied in either PrepBufr, ASCII, or MADIS format. Note that MET does
not require the Unified Post-Processor to be used, but does require that the input GRIB
data be on a standard, de-staggered grid on pressure or regular levels in the vertical.
While the Grid-Stat, Wavelet-Stat, and MODE tools can be run on a gridded field at
virtually any level, the Point-Stat tool can only be used to verify forecasts at the surface
or on pressure levels.

When comparing two gridded fields with the Grid-Stat, Wavelet-Stat, or MODE tools, the
input model and observation datasets must have already been placed on the same grid.
The copygb utility is recommended for re-gridding GRIB files. To preserve
characteristics of the observations, it is generally preferred to re-grid the model data to
the observation grid, rather than vice versa.

Input point observation files in PrepBufr format are available through NCEP. The
PrepBufr observation files contain a wide variety of point-based observation types in a
single file in a standard format. However, some users may wish to use observations not
included in the standard PrepBufr files. For this reason, prior to performing the
verification step in the Point-Stat tool, the PrepBufr file is reformatted with the PB2NC
tool. In this step, the user can select various ways of stratifying the observation data
spatially, temporally, and by type. The remaining observations are reformatted into an
intermediate NetCDF file. The ASCII2NC tool may be used to convert ASCII point
observations that are not available in the PrepBufr files into this NetCDF format for use
by the Point-Stat verification tool. Users with METAR or RAOB data from MADIS can
convert these observations into NetCDF format with the new madis2nc tool, then use
them with the Point-Stat verification tool.

Chapter 3: MET Data I/O and Re-Formatting 3-2

3.2 Intermediate data formats

MET uses NetCDF as an intermediate file format. The Ensemble-Tool, WWMCA-Tool,
Pcp-Combine, Gen-Poly-Mask, PB2NC, and ASCII2NC tools write intermediate files in
NetCDF format.

The Pcp-Combine tool operates in 3 different modes. It may be used to sum
accumulated precipitation from several GRIB files into a single NetCDF file containing
the desired accumulation period. It may also be used to add or subtract the
accumulated precipitation in two GRIB files directly. The command line arguments for
the Pcp-Combine tool vary depending on the mode in which it is run.

The user may choose to: (1) combine the model accumulations to match the
observation accumulation period, (2) combine the observation accumulations to match
the model accumulation period, or (3) combine both the model and observation
accumulations to some new period desired for verification. In performing this
summation, the user may not specify an accumulation interval smaller than the
accumulation period in the GRIB files. However, if the input model and observation
GRIB files already contain accumulated precipitation with the same desired
accumulation period, then pcp_combine need not be run. Each time the Pcp-Combine
tool is called, a NetCDF file is written containing the requested accumulation period.

The Gen-Poly-Mask tool is used to define a bitmapped masking region that can be used
by the Ensemble-Tool, Grid-Stat, Point-Stat, and MODE as a verification subdomain. It
is generally more efficient to use the NetCDF output of gen_poly_mask to define a
masking region than using a complex polyline directly in the other MET tools. However,
the NetCDF output can only be applied to datasets on a common domain. It must be
regenerated for each domain used.

The PB2NC tool is used to reformat the input PrepBufr files containing point
observations. This tool stratifies the observations as requested in a configuration file
and writes out the remaining observations in a NetCDF format. The NetCDF output of
the PB2NC tool is used as input to the verification step performed in the Point-Stat tool.

The ASCII2NC tool simply reformats ASCII point observations into the NetCDF format
needed by the Point-Stat tool. The output NetCDF file from the ASCII2NC tool has a
format that is identical to the format of the output from the PB2NC tool.

3.3 Output data formats

The MET package currently produces output in four basic file formats: STAT files, ASCII
files, NetCDF files, and PostScript plots.

Chapter 3: MET Data I/O and Re-Formatting 3-3

The STAT format consists of tabular ASCII data that can be easily read by many
analysis tools and software packages. MET produces STAT output for the Grid-Stat,
Point-Stat, and Wavelet-Stat tools. STAT is a specialized ASCII format containing one
record on each line. However, a single STAT file may contain multiple line types.
Several header columns at the beginning of each line remain the same for each line
type. However, the remaining columns after the header change for each line type.
STAT files can be difficult for a human to read as the quantities represented for many
columns of data change from line to line.

For this reason, ASCII output is also available as an alternative for the Grid-Stat, Point-
Stat, and Wavelet-Stat tools. The ASCII files contain exactly the same output as the
STAT files but each STAT line type is grouped into a single ASCII file with a column
header row making the output more human-readable. The configuration files control
which line types are output and whether or not the optional ASCII files are generated.

The MODE tool creates two ASCII output files as well (although they are not in a STAT
format) and also generates an ASCII file containing contingency table counts and
statistics comparing the model and observation fields being compared. The MODE tool
also generates a second ASCII file containing all of the attributes for the single objects
and pairs of objects. Each line in this file contains the same number of columns, and
those columns not applicable to a given line type contain fill data.

The Ensemble-Tool, Grid-Stat, Wavelet-Stat, and MODE tools generate gridded
NetCDF output. The MODE tool creates a NetCDF file containing four gridded fields for
the objects identified in the forecast and observation, simple and cluster object fields.
The Ensemble-Tool creates a NetCDF file containing the ensemble forecast values,
statistics, and, if requested, matched observations for each verification region and
variable type/level requested in the configuration file. In addition, when rank histogram
information is requested, the NetCDF file contains the observation rank values. The
Grid-Stat tool creates a NetCDF file containing the matched forecast/observation pairs
and the forecast minus observation difference fields for each verification region and
variable type/level requested in the configuration file. The Wavelet-Stat tool creates a
NetCDF file summarizing the wavelet decomposition of the forecast and observation
fields for each variable type/level, raw threshold, and tile masking region chosen. The
generation of these files is controlled by configuration files or command line switches.
As discussed in the previous section, the Pcp-Combine and Gen-Poly-Mask tools create
gridded NetCDF output as well, while the PB2NC and ASCII2NC tools create
intermediate NetCDF files containing point observations.

The MODE and Wavelet-Stat tools produce PostScript plots summarizing the features-
based approach used in the verification. The PostScript plots are generated using
internal libraries and do not depend on an external plotting package. The MODE plots
contain several summary pages at the beginning, but the total number of pages will
depend on the merging options chosen. Additional pages will be created if merging is

Chapter 3: MET Data I/O and Re-Formatting 3-4

performed using the double thresholding or fuzzy engine merging techniques for the
forecast and observation fields. The number of pages in the Wavelet-Stat plots depend
on the number of masking tiles used and the dimension of those tiles. The first
summary page is followed by plots for the wavelet decomposition of the forecast and
observation fields. The generation of these PostScript output files can be disabled
using command line options.

3.4 Data format summary

The following is a summary of the input and output formats for each of the tools
currently in MET. The output listed is the maximum number of possible output files.
Generally, the type of output files generated can be controlled by the configuration files
and/or the command line options:

1. PB2NC Tool
• Input: One PrepBufr point observation file and one configuration file.
• Output: One NetCDF file containing the observations that have been

retained.

2. ASCII2NC Tool
• Input: One ASCII point observation file that has been formatted as expected.
• Output: One NetCDF file containing the reformatted observations.

3. MADIS2NC Tool
• Input: One MADIS point observation file.
• Output: One NetCDF file containing the reformatted observations.

4. Pcp-Combine Tool

• Input: Two or more gridded model or observation files in GRIB1 format
containing accumulated precipitation to be combined to create a new
accumulation interval.

• Output: One NetCDF file containing the summed accumulation interval.

5. Gen-Poly-Mask Tool
• Input: One gridded model or observation file in GRIB1 format and one ASCII

file defining a Lat/Lon masking polyline.
• Output: One NetCDF file containing a bitmap for the masking region defined

by the polyline over the domain of the gridded input file.

Chapter 3: MET Data I/O and Re-Formatting 3-5

6. Ensemble Stat Tool
• Input: An arbitrary number of gridded model files in GRIB1 format and one or

more optional files containing observations. The observations may be in
either netCDF or GRIB1 format. Point and gridded observations are both
accepted.

• Output: One NetCDF file containing requested ensemble forecast information
and, where applicable, rank histogram information.

7. Point-Stat Tool

• Input: One model file either in GRIB1 format or in the NetCDF format output
from the Pcp-Combine tool, at least one point observation file in NetCDF
format (as the output of the PB2NC or ASCII2NC tool), and one configuration
file.

• Output: One STAT file containing all of the requested line types, and several
ASCII files for each line type requested.

8. Grid-Stat Tool
• Input: One model file and one observation file either in GRIB1 format or in the

NetCDF format output from the Pcp-Combine tool, and one configuration file.
• Output: One STAT file containing all of the requested line types, several

ASCII files for each line type requested, and one NetCDF file containing the
matched pair data and difference field for each verification region and variable
type/level being verified.

9. MODE Tool
• Input: One model file and one observation file either in GRIB1 format or in the

NetCDF format output from the Pcp-Combine tool, and one or two
configuration files.

• Output: One ASCII file containing contingency table counts and statistics,
one ASCII file containing single and pair object attribute values, one NetCDF
file containing object indices for the gridded simple and cluster object fields,
and one PostScript plot containing a summary of the features-based
verification performed.

10. Wavelet-Stat Tool

• Input: One model file and one gridded observation file either in GRIB1 format
or in the NetCDF format output from the Pcp-Combine tool, and one
configuration file.

• Output: One STAT file containing the ‘ISC” line type, one ASCII file
containing intensity-scale information and statistics, one NetCDF file
containing information about the wavelet decomposition of forecast and

Chapter 3: MET Data I/O and Re-Formatting 3-6

observed fields and their differences, and one PostScript file containing plots
and summaries of the intensity-scale verification.

11. Stat-Analysis Tool

• Input: One or more STAT files output from the Point-Stat and/or Grid-Stat
tools and, optionally, one configuration file containing specifications for the
analysis job(s) to be run on the STAT data.

• Output: ASCII output of the analysis jobs will be printed to the screen unless
redirected to a file using the “-out” option.

12. MODE-Analysis Tool

• Input: One or more MODE object statistics files from the MODE tool and,
optionally, one configuration file containing specification for the analysis job(s)
to be run on the object data.

• Output: ASCII output of the analysis jobs will be printed to the screen unless
redirected to a file using the “-out” option.

3.5 PB2NC tool

This section describes how to configure and run the PB2NC tool. The PB2NC tool is
used to stratify the contents of an input PrepBufr point observation file and reformat it
into NetCDF format for use by the Point-Stat tool. The PB2NC tool must be run on the
input PrepBufr point observation file prior to performing verification using the Point-Stat
tool.

Please note that in earlier version of the PB2NC tool, users were required to run their
PrepBufr files through the cwordsh tool to perform Fortran-blocking on their PrepBufr
files prior to running them through PB2NC. That step is no longer required since the
Fortran-blocking is now done internally.

3.5.1 pb2nc usage

The usage statement for the PB2NC tool is shown below:

Usage: pb2nc
 prepbufr_file
 netcdf_file
 config_file
 [-pbfile prepbufr_file]
 [-valid_beg time]
 [-valid_end time]
 [-nmsg n]

Chapter 3: MET Data I/O and Re-Formatting 3-7

 [-dump path]
 [-log file]
 [-v level]

pb2nc has three required arguments and can take up to six optional ones.

Required arguments for pb2nc

1. The prepbufr_file argument indicates the name of the PrepBufr file to be
processed.

2. The netcdf_file argument indicates the name given to the output NetCDF file.

3. The config_file argument indicates the name of the configuration file to be used.

The contents of the configuration file are discussed below.

Optional arguments for pb2nc

1. The –pbfile prepbufr_file option may be used to pass additional PrepBufr
files to the PB2NC tool.

2. The –valid_beg time option in YYYYMMDD[_HH[MMSS]] format sets the

beginning of the retention time window.

3. The –valid_end time option in YYYYMMDD[_HH[MMSS]] format sets the end

of the retention time window.

4. The -nmsg num_messages option may be used for testing purposes. This

argument indicates that only the first “num_messages” PrepBufr messages
should be processed rather than the whole file. This option is provided to speed
up testing because running the PB2NC tool can take a few minutes for each file.
Most users will not need this option.

5. The -dump path option may be used to dump the entire contents of the PrepBufr

file to several ASCII files written to the directory specified by “path”. The user
may use this option to view a human-readable version of the input PrepBufr file,
although writing the contents to ASCII files can be slow.

6. The -log file option directs output and errors to the specified log file. All
messages will be written to that file as well as cout and cerr. Thus, users can
save the messages without having to redirect the output on the command line.
The default behavior is no logfile.

7. The -v level option indicates the desired level of verbosity. The value of “level”

will override the default setting of 1. Setting the verbosity to 0 will make the tool

Chapter 3: MET Data I/O and Re-Formatting 3-8

run with no log messages, while increasing the verbosity above 1 will increase
the amount of logging.

An example of the pb2nc calling sequence is shown below:

pb2nc sample_pb.blk
 sample_pb.nc

PB2NCConfig

In this example, the PB2NC tool will process the input sample_pb.blk file applying
the configuration specified in the PB2NCConfig file and write the output to a file named
sample_pb.nc.

3.5.2 pb2nc configuration file

The default configuration file for the PB2NC tool named PB2NCConfig_default can
be found in the data/config directory in the MET distribution. The version used for
the example run in Chapter 2 is available in scripts/config. It is recommended that
users make a copy of these files prior to modifying their contents. Each configuration
file contains many comments describing its contents.

When editing configuration files, environment variables may be used for setting the
configurable parameters if convenient. The configuration file parser expands any
environment variables to their full value before proceeding. Within the configuration file,
environment variables must be specified in the form: ${VAR_NAME}.

For example, using an environment variable to set the message_type (see below)
parameter to use ADPUPA and ADPSFC message types might consist of the following:
• In a C-Shell: setenv MSG_TYP ‘ ”ADPUPA”, ”ADPSFC” ‘
• In the configuration file: message_type[] = [${MSG_TYP}];

The example script for running MODE included in section 10.2 provides another
example of using environment variables in configuration files.

The contents of the default pb2nc configuration file found in data/config are
described in the subsections below.

message_type[] = [];

Each PrepBufr message is tagged with one of eighteen message types as listed in the
configuration file. The “message_type” refers to the type of observation from which the
observation value (or “report”) was derived. The user may specify a comma-separated
list of message types to be retained. Providing an empty list indicates that all message
types should be retained.

Chapter 3: MET Data I/O and Re-Formatting 3-9

station_id[] = [];

Each PrepBufr message has a station identification string associated with it. The user
may specify a comma-separated list of station IDs to be retained. Providing an empty
list indicates that messages from all station IDs will be retained.

beg_ds = -5400;
end_ds = 5400;

Each PrepBufr file has an observation time associated with it. Every PrepBufr message
within the file has a time-offset defined relative to that file’s observation time. The
beg_ds and end_ds variables define a time window around the file's observation time
for PrepBufr messages that should be retained. beg_ds indicates how many seconds
relative to the file’s observation time to begin retaining observations to be used for
verification (the negative sign indicates this window begins prior to the time assigned to
the PrepBufr file). end_ds indicates how many seconds after the file’s time to stop
retaining observations for verification. The time window shown above is +/- 1.5 hours
(+/- 5400 seconds) around the file observation time.

mask_grid = "";
mask_poly = "";

The mask_grid and mask_poly variables are used to define a spatial masking region
for retaining observations. mask_grid may be set to one of the pre-defined NCEP
grids which are specified as GNNN where NNN is the three digit designation for the
grid. mask_poly may be set to a pre-defined or a user-created file consisting of a
name for the polygon followed by a series of lat/lon points used to define a masking
region. If a masking region is specified, only observations falling inside the region will
be retained. Refer to Appendix B for a list of the grids available for mask_grid and
pre-defined polylines for mask_poly.

beg_elev = -1000;
end_elev = 100000;

The beg_elev and end_elev variables are used to stratify the elevation (in meters) of
the observations to be retained. The range shown above is set to -1000 to 100000
meters, which essentially retains every observation.

pb_report_type[] = [];

Chapter 3: MET Data I/O and Re-Formatting 3-10

in_report_type[] = [];
instrument_type[] = [];

The pb_report_type, in_report_type, and instrument_type variables are
used to specify comma-separated lists of PrepBufr report types, input report types, and
instrument types to be retained, respectively. If left empty, all PrepBufr report types,
input report types, and instrument types will be retained.

beg_level = 1;
end_level = 255;

The beg_level and end_level variables are used to stratify the model level of
observations to be retained. The range shown above is 1 to 255, which is the current
maximum possible level.

obs_grib_code[] = [“SPFH”, “TMP”, “HGT”, “UGRD”, “VGRD”];

Each PrepBufr message will likely contain multiple observation variables. The
obs_grib_code variable is used to specify which observation variables are to be
retained or derived. The GRIB code itself or the corresponding abbreviation may be
used to specify which observation variables are to be retained or derived. The following
GRIB codes may be derived: DPT, WIND, RH, MIXR, and PRMSL for dewpoint, wind
speed, relative humidity, mixing ratio, and pressure reduced to MSL. The list of GRIB
codes shown above indicates that specific humidity, temperature, height, and the u and
v components of the wind are to be retained.

quality_mark_thresh = 2;

Each observation has a quality mark value associated with it. The
quality_mark_thresh is used to stratify out which quality marks will be retained.
The value shown above indicates that only observations with quality marks less than or
equal to 2 will be retained.

event_stack_flag = 1;

A PrepBufr message may contain duplicate observations with different quality mark
values. The event_stack_flag indicates whether to use the observations at the top
of the event stack (observation values have had more quality control processing
applied) or the bottom of the event stack (observation values have had no quality
control processing applied). The flag value of 1 listed above indicates the observations
with the most amount of quality control processing should be used.

Chapter 3: MET Data I/O and Re-Formatting 3-11

level_category[] = [];

The level_category variable is used to specify a comma-separated list of Prepbufr
data level categories to retain. An empty string indicates that all level categories should
be retained. Accepted values and their meanings are described in the table below.
These represent the same categories available from
http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_1.htm

Table 3-1. Values for the level_category option.
Level category value Description

0 Surface level
1 Mandatory level

2 Significant temperature
level

3 Winds-by-pressure level
4 Winds-by-height level
5 Tropopause level
6 Reports on a single level

7
Auxiliary levels generated

via interpolation from
spanning levels

tmp_dir = “/tmp”;

The tmp_dir indicates where temporary files should be written.

output_prefix = "";

This option specifies a string to be used in the output file name. It can be useful for
keeping results for different models or variables from overwriting each other.

version = “V3.1”;

The version indicates the version of the pb2nc configuration file used. Future
versions of MET may include changes to pb2nc and the pb2nc configuration file. This
value should not be modified.

Chapter 3: MET Data I/O and Re-Formatting 3-12

3.5.3 PB2NC output

Each NetCDF file generated by the PB2NC tool contains the dimensions and variables
shown in the following tables.

Table 3-2. NetCDF file dimensions for pb2nc output.
pb2nc NetCDF DIMENSIONS

NetCDF
Dimension Description
mxstr Maximum string length (16)
hdr_arr_len Number of entries in each PrepBufr message header array (3)
obs_arr_len Number of entries in each PrepBufr observation array (5)
nobs Number of PrepBufr observations in the file (UNLIMITED)
nhdr Number of PrepBufr messages in the file (variable)

Table 3-3. NetCDF variables in pb2nc output.

pb2nc NetCDF VARIABLES
NetCDF
Variable Dimension Description

obs_arr nobs,
obs_arr_len

Array of floats containing values for each observation
including:
• Reference to the entry in the hdr_arr with which

this observation is associated
• GRIB code corresponding to this observation type
• Pressure level in hPa or accumulation interval
• Height in meters above sea level
• Observation value

hdr_typ nmsg,
mxstr

Text string containing the message type for each
PrepBufr message

hdr_sid nmsg,
mxstr

Text string containing the station id for each PrepBufr
message

hdr_vld nmsg,
mxstr

Text string containing the observation valid time for
each PrepBufr message in YYYYMMDD_HHMMSS
format

hdr_arr nhdr,
hdr_arr_len

Array of floats containing values for each PrepBufr
message including:
• Latitude in degrees north
• Longitude in degrees east
• Elevation in meters above sea level

Chapter 3: MET Data I/O and Re-Formatting 3-13

3.6 ASCII2NC tool

This section describes how to run the ASCII2NC tool. The ASCII2NC tool is used to
reformat ASCII point observations into the NetCDF format expected by the Point-Stat
tool. For those users wishing to verify against point observations that are not available
in PrepBufr format, the ASCII2NC tool provides a way of incorporating those
observations into MET. Since the ASCII2NC tool simply performs a reformatting step,
no configuration file is needed.

The initial version of the ASCII2NC tool supports a single input ASCII point observation
format consisting of 10 columns of data for each observation value. The ASCII2NC tool
may be enhanced in future releases of MET to support additional ASCII point
observation formats directly, based on community input and resource availability.

The input ASCII point observation format consists of one row of data per observation
value. Each row of data consists of 10 columns as shown in the following table.

ascii2nc ASCII Point Observation Format
Column Name Description

1 Message_Type
Text string containing the observation message
type as described in the previous section on the
PB2NC tool.

2 Station_ID Text string containing the station id.

3 Valid_Time Text string containing the observation valid time
in YYYYMMDD_HHMMSS format.

4 Lat Latitude in degrees north of the observing
location.

5 Lon Longitude in degrees east of the observation
location.

6 Elevation Elevation in msl of the observing location.

7 Grib_Code Integer grib code value corresponding to this
observation type.

8 Level Pressure level in hPa or accumulation interval in
hours for the observation value.

9 Height Height in msl of the observation value.

10 Observation_Value Observation value in units consistent with the
grib code definition.

3.6.1 ascii2nc usage

Once the ASCII point observations have been formatted as expected, the ASCII file is
ready to be processed by the ASCII2NC tool. The usage statement for ASCII2NC tool
is shown below:

Chapter 3: MET Data I/O and Re-Formatting 3-14

Usage: ascii2nc
 ascii_file
 netcdf_file
 [-format ASCII_format]
 [-log file]
 [-v level]

ascii2nc has two required arguments and can take optional ones.

Required arguments for ascii2nc

1. The ascii_file argument indicates the name of the ASCII point observation file to
be processed.

2. The netcdf_file argument indicates the name given to the output NetCDF file.

Optional arguments for ascii2nc

1. The –format ASCII_format will be used in future releases of MET to define
the ASCII point observation format contained in the ASCII point observation file.
Since the ASCII2NC tool currently only reads one point observation format, users
will not need to specify this argument.

2. The -log file option directs output and errors to the specified log file. All
messages will be written to that file as well as cout and cerr. Thus, users can
save the messages without having to redirect the output on the command line.
The default behavior is no logfile.

3. The -v level option indicates the desired level of verbosity. The value of “level”

will override the default setting of 1. Setting the verbosity to 0 will make the tool
run with no log messages, while increasing the verbosity above 1 will increase
the amount of logging.

An example of the ascii2nc calling sequence is shown below:

Ascii2nc sample_ascii_obs.txt
 sample_ascii_obs.nc

In this example, the ASCII2NC tool will reformat the input sample_ascii_obs.txt
file into NetCDF format and write the output to a file named sample_ascii_obs.nc.

Chapter 3: MET Data I/O and Re-Formatting 3-15

3.7 MADIS2NC tool

This section describes how to run the MADIS2NC tool. The MADIS2NC tool is used to
reformat Meteorological Assimilation Data Ingest System (MADIS) point observations
into the NetCDF format expected by the Point-Stat tool. More information about MADIS
data and formatting is available at madis.noaa.gov. Since the MADIS2NC tool simply
performs a reformatting step, no configuration file is needed.

3.7.1 madis2nc usage

The usage statement for MADIS2NC tool is shown below:

Usage: madis2nc
 madis_file
 out_file
 [-type str]
 [-qc_dd list]
 [-lvl_dim list]
 [-rec_beg n]
 [-rec_end n]
 [-log file]
 [-v level]

madis2nc has two required arguments and can take optional ones.

Required arguments for madis2nc

1. The madis_file argument indicates the name of the point observation file to be

processed.

2. The netcdf_file argument indicates the name given to the output NetCDF file.

Optional arguments for madis2nc

3. Optional argument -type str specifies the type of MADIS observations (metar or

raob).

4. The -qc_dd list option specifies a comma-separated list of QC flag values to be
accepted (Z,C,S,V,X,Q,K,G,B).

5. The -lvl_dim list option specifies a comma-separated list of vertical level
dimensions to be processed.

Chapter 3: MET Data I/O and Re-Formatting 3-16

6. To specify the exact records to be processed, the -rec_beg n specifies the index of
the first MADIS record to process and -rec_end n specifies the index of the last
MADIS record to process. Both are zero-based.

7. The -log file option directs output and errors to the specified log file. All messages
will be written to that file as well as cout and cerr. Thus, users can save the
messages without having to redirect the output on the command line. The default
behavior is no logfile.

8. The -v level option indicates the desired level of verbosity. The value of “level” will

override the default setting of 1. Setting the verbosity to 0 will make the tool run with
no log messages, while increasing the verbosity above 1 will increase the amount of
logging.

An example of the madis2nc calling sequence is shown below:

madis2nc sample_madis_obs.txt
 sample_ madis _obs.nc –log madislog –v2

In this example, the MADIS2NC tool will reformat the input sample_madis_obs.txt
file into NetCDF format and write the output to a file named sample_madis_obs.nc.
Warnings and error messages will be written to the madislog file, and the verbosity will
be level two.

3.8 Pcp-Combine tool

This section contains a description of running the Pcp-Combine tool. The Pcp-Combine
tool is used (if needed) to modify the precipitation accumulation intervals from two or
more GRIB files into a single NetCDF file containing the desired accumulation interval,
for input to the MET statistics tools. Use of Pcp-Combine on a single file will result in
that file being written out in netCDF format, with no changes to the content. The GRIB
files being combined must have already been placed on the grid on which the user
would like to verify. The copygb utility is recommended for re-gridding GRIB files. In
addition, the Pcp-Combine tool will only operate on files with the same initialization time
unless it is indicated to ignore the initialization time.

3.8.1 pcp_combine usage
The usage statement for the Pcp-Combine tool is shown below:

Usage: pcp_combine

[[-sum] sum_args] | [-add add_args] | [-subtract
subtract_args]]

 [-gc code]

Chapter 3: MET Data I/O and Re-Formatting 3-17

 [-ptv number]
 [-log file]
 [-v level]

The arguments to pcp_combine vary depending on the mode in which it is run.

Listed below are the arguments for the sum command:

SUM_ARGS:
 init_time
 in_accum
 valid_time
 out_accum
 out_file
 [-pcpdir path]
 [-pcprx reg_exp]

Listed below are the arguments for the add:

ADD_ARGS:
 in_file1
 accum1
 [in_file2 accum2 in_file3 accum3 . . .]
 out_file

Listed below are the arguments for the subtract command:

SUBTRACT_ARGS:
 in_file1
 accum1
 in_file2
 accum2
 out_file

Required arguments for the pcp_combine

1. The Pcp-Combine tool must be run with exactly one of the –sum, –add, or –
subtract command line arguments with the corresponding additional
arguments.

Optional arguments for pcp_combine

1. The -gc code option may be used to override the default GRIB code value of 61
– for accumulated precipitation.

Chapter 3: MET Data I/O and Re-Formatting 3-18

2. The -ptv number option may be used to specify which GRIB parameter table
version number should be used for interpreting the meaning of GRIB codes.

3. The -log file option directs output and errors to the specified log file. All
messages will be written to that file as well as cout and cerr. Thus, users can
save the messages without having to redirect the output on the command line.
The default behavior is no logfile.

4. The -v level option indicates the desired level of verbosity. The contents of
“level” will override the default setting of 1. Setting the verbosity to 0 will make
the tool run with no log messages, while increasing the verbosity above 1 will
increase the amount of logging.

Required arguments for the pcp_combine sum command

1. The init_time argument, provided in YYYYMMDD[_HH[MMSS]] format, indicates
the initialization time for model data to be summed. Only files found with this
initialization time will be processed. If combining observation files, Stage II or
Stage IV data for example, the initialization time is not applicable. Providing a
string of all zeros (00000000_000000) indicates that all files, regardless of
initialization time should be processed.

2. The in_accum argument, provided in HH[MMSS] format, indicates the

accumulation interval of the model or observation GRIB files to be processed.
This value must be specified, since a model output file may contain multiple
accumulation periods for precipitation in a single file. The argument indicates
which accumulation period to extract.

3. The valid_time argument, in YYYYMMDD[_HH[MMSS]] format, indicates the

desired valid time to which the accumulated precipitation is to be summed.

4. The out_accum argument, in HH[MMSS] format, indicates the desired total
accumulation period to be summed.

5. The out_file argument indicates the name for the NetCDF file to be written.

Optional arguments for pcp_combine sum command

1. The -pcpdir path option indicates the directories in which the input GRIB files
reside. The contents of “path” will override the default setting.

2. The -pcprx reg_exp option indicates the regular expression to be used in

matching files in the precipitation directory specified. The contents of “reg_exp”
will override the default setting which matches all file names. If the precipitation
directory contains a large number of files, the user may specify that only a subset
of those files be processed using a regular expression which will speed up the
run time.

Chapter 3: MET Data I/O and Re-Formatting 3-19

Required arguments for the pcp_combine add command

1. The in_file1 argument indicates the first GRIB file to be processed.

2. The in_accum1 argument, provided in HH[MMSS] format, indicates the
accumulation interval to be extracted from the first GRIB file.

An arbitrary number of additional files and accumulations can be provided. All of them
will be added and the total will be placed in the output file.

Required arguments for the pcp_combine subtract command

1. The in_file1 argument indicates the first GRIB file to be processed.

2. The in_accum1 argument, provided in HH[MMSS] format, indicates the
accumulation interval to be extracted from the first GRIB file.

3. The in_file2 argument indicates the second GRIB file to be processed.

4. The in_accum2 argument, provided in HH[MMSS] format, indicates the

accumulation interval to be extracted from the second GRIB file. This
accumulation will be subtracted from the first.

An example of the pcp_combine calling sequence is presented below:

Example 1:
pcp_combine -sum
 20050807_000000 3
 20050808_000000 24
 sample_fcst.nc
 -pcpdir ../data/sample_fcst/2005080700

In Example 1, the Pcp-Combine tool will sum the values in model files initialized at
2005/08/07 00Z and containing 3-hourly accumulation intervals of precipitation. The
requested valid time is 2005/08/08 00Z with a requested total accumulation interval of
24 hours. The output file is to be named sample_fcst.nc, and the Pcp-Combine tool
is to search the directory indicated for the input GRIB files.

The Pcp-Combine tool will search for 8 files containing 3-hourly accumulation intervals
which meet the criteria specified. It will write out a single NetCDF file containing that 24
hours of accumulation.

A second example of the pcp_combine calling sequence is presented below:

Example 2:

Chapter 3: MET Data I/O and Re-Formatting 3-20

pcp_combine -sum
 00000000_000000 1 1
 20050808_000000 24
 sample_obs.nc
 -pcpdir ../data/sample_obs/ST2ml

Example 2 shows an example of using the Pcp-Combine tool to sum observation data.
The “init_time” has been set to all zeros to indicate that when searching through the
files in precipitation directory, the initialization time should be ignored. The “in_accum”
has been changed from 3 to 1 to indicate that the input GRIB observation files contain
1-hourly accumulations of precipitation. Lastly, -pcpdir provides a different directory
to be searched for the input GRIB files.

The Pcp-Combine tool will search for 24 files containing 1-hourly accumulation intervals
which meet the criteria specified. It will write out a single NetCDF file containing that 24
hours of accumulation.

3.8.2 pcp_combine output

The output NetCDF files contain the requested accumulation intervals as well as
information about the grid on which the data lie. That grid projection information will be
parsed out and used by the Grid-Stat, MODE, and Wavelet tools in subsequent steps.
One may use NetCDF utilities such as ncdump or ncview to view the contents of the
output file.

Each NetCDF file generated by the Pcp-Combine tool contains the dimensions and
variables shown in the following two tables.

Table 3-4. NetCDF file dimensions for pcp_combine output.
Pcp_combine NetCDF dimensions

NetCDF
dimension Description

lat Dimension of the latitude (i.e. Number of grid points in the North-
South direction)

lon Dimension of the longitude (i.e. Number of grid points in the East-
West direction)

Table 3-5. NetCDF variables for pcp_combine output.
pcp_combine NetCDF variables

NetCDF variable Dimension Description
lat lat, lon Latitude value for each point in the grid
lon lat, lon Longitude value for each point in the grid

Chapter 3: MET Data I/O and Re-Formatting 3-21

pcp_combine NetCDF variables
NetCDF variable Dimension Description

GRIB Code
Abbreviation lat, lon

Amount of precipitation for each point in the grid. The
name of the variable matches the GRIB code
abbreviation for the field.

3.9 Gen-Poly-Mask tool

This section contains a description of running the Gen-Poly-Mask tool. The Gen-Poly-
Mask tool may be run to create a bitmap verification masking region to be used by the
Grid-Stat, Point-Stat, and MODE tools. This tool enables the user to generate a polyline
masking region once for a domain and apply it to many cases. When using a complex
polyline containing hundreds of vertices, it is a good idea to use the Gen-Poly-Mask tool
to create a bitmap masking region before running the Grid-Stat, Point-Stat, and MODE
tools. Doing so will make the Grid-Stat, Point-Stat, and MODE tools run more
efficiently.

3.9.1 gen_poly_mask usage
The usage statement for the Gen-Poly-Mask tool is shown below:

Usage: gen_poly_mask
 data_file
 mask_poly
 netcdf_file
 [-rec i]
 [-log file]
 [-v level]

gen_poly_mask has three required arguments and can take up to two optional ones.

Required arguments for gen_poly_mask

1. The data_file argument indicates the name of a GRIB1 or the NetCDF output of
the Pcp-Combine tool which defines the domain over which the masking bitmap
is to be defined.

2. The mask_poly argument indicates the name of the ASCII Lat/Lon polyline file

defining the masking region.

3. The netcdf_file argument indicates the name given to the output NetCDF file.

Optional arguments for gen_poly_mask

1. The –rec i optional argument can be used to specify which GRIB record is
used to define the domain. By default, the domain information will be extracted

Chapter 3: MET Data I/O and Re-Formatting 3-22

from the first record. This argument would only be used in the case of a single
GRIB file which contains records defined on different domains.

2. The -log file option directs output and errors to the specified log file. All
messages will be written to that file as well as cout and cerr. Thus, users can
save the messages without having to redirect the output on the command line.
The default behavior is no logfile.

3. The -v level option indicates the desired level of verbosity. The value of “level”
will override the default setting of 1. Setting the verbosity to 0 will make the tool
run with no log messages, while increasing the verbosity above 1 will increase
the amount of logging.

An example of the gen_poly_mask calling sequence is shown below:

gen_poly_mask sample_fcst.grb
 CONUS.poly
 CONUS_poly.nc

In this example, the Gen-Poly-Mask tool will apply the polyline defined in the file
CONUS.poly to the domain on which the data in the file sample_fcst.grb resides. It
will create a NetCDF file containing a bitmap for the domain with a value of 1 for all grid
points inside the CONUS polyline and a value of 0 for all grid points outside. It will write
an output NetCDF file named CONUS_poly.nc.

3.10 Ensemble Stat tool

This section contains a description of running the Ensemble Stat tool. This tool may be
run to create ensemble forecasts (mean, probability, spread, etc) from a set of several
forecast model files to be used by the MET statistics tools. If observations are also
included, ensemble statistics such as rank histograms and continuous ranked
probability score are produced.

3.10.1 ensemble_stat usage
The usage statement for the Ensemble Stat tool is shown below:

Usage: ensemble_stat
 n_ens ens_file_1 ... ens_file_n | ens_file_list
 config_file
 [-grid_obs file]
 [-point_obs file]
 [-ens_valid time]
 [-ens_lead time]

Chapter 3: MET Data I/O and Re-Formatting 3-23

 [-obs_valid_beg time]
 [-obs_valid_end time]
 [-obs_lead time]
 [-outdir path]
 [-log file]
 [-v level]

ensemble_stat has two required arguments and can take up to nine optional ones.

Required arguments ensemble_stat

1. The "n_ens ens_file_1 ... ens_file_n" is the number of ensemble members
followed by a list of ensemble member file names. This argument is not required
when ensemble files are specified in the “ens_file_list”, detailed below.

2. The "ens_file_list" is an ASCII file containing a list of ensemble member file
names. This is not required when a file list is included on the command line, as in
#2 above.

3. The "config_file" is an EnsembleStatConfig file containing the desired
configuration settings.

NOTE: The ensemble members and gridded observations must be on the same grid.

Optional arguments for ensemble_stat

1. To produce rank histogram information when you have gridded observations, use
the "-grid_obs file" option to specify a gridded observation file. This option may
be used multiple times if your observations are in several files.

2. To produce rank histogram information when you have point observations, use
the "-point_obs file" to specify a NetCDF point observation file. This option may
be used multiple times if your observations are in several files.

3. The optional "-ens_valid time" in YYYYMMDD[_HH[MMSS]] format sets the
ensemble valid time to be used.

4. Setting "-ens_lead time" in HH[MMSS] format sets the ensemble lead time to be
used (optional).

5. To filter observations by time, use "-obs_valid_beg time" in
YYYYMMDD[_HH[MMSS]] format to set the beginning of the matching
observation time window.

Chapter 3: MET Data I/O and Re-Formatting 3-24

6. As above, use "-obs_valid_end time" in YYYYMMDD[_HH[MMSS]] format to set

the end of the matching observation time window.

7. Set "-obs_lead time" in HH[MMSS] format to choose the observation lead time to

be used.

4. Specify the "-outdir path" option to override the default output directory
(/out/ensemble_stat).

5. The -log file option directs output and errors to the specified log file. All
messages will be written to that file as well as cout and cerr. Thus, users can
save the messages without having to redirect the output on the command line.
The default behavior is no logfile.

6. The -v level option indicates the desired level of verbosity. The value of “level”
will override the default setting of 1. Setting the verbosity to 0 will make the tool
run with no log messages, while increasing the verbosity above 1 will increase
the amount of logging.

An example of the ensemble_stat calling sequence is shown below:

ensemble_stat \
 6 sample_fcst/2009123112/*gep*/d01_2009123112_02400.grib \
 config/EnsembleStatConfig \
 -grid_obs sample_obs/ST4/ST4.2010010112.24h \
 -point_obs out/ascii2nc/precip24_2010010112.nc \
 -outdir out/ensemble_stat -v 2

In this example, the Ensemble Stat tool will process six forecast files specified in the file
list into an ensemble forecast. Observations in both point and grid format will be
included, and used to calculate ranks separately. These ranks can then be used to plot
a rank histogram for each type of observation. Ensemble Stat will create a NetCDF file
containing requested ensemble fields and an ascii stat file.

3.10.2 ensemble_stat output
The ensemble_stat tool can calculate any of the following:

Ensemble Mean fields
Ensemble Standard Deviation fields
Ensemble Mean - 1 Standard Deviation fields
Ensemble Mean + 1 Standard Deviation fields
Ensemble Minimum fields
Ensemble Maximum fields
Ensemble Range fields

Chapter 3: MET Data I/O and Re-Formatting 3-25

Ensemble Valid Data Count fields
Ensemble Relative Frequency by threshold fields
Ranked Histograms (if Observation Field Provided)

The ensemble_stat tool then writes:

Gridded fields of Ensemble forecast values to a NetCDF file
Gridded field of Observation Ranks to a NetCDF file
Stat file with Rank Histogram and Ensemble information
Observation Rank Matched Pairs

Table 3-5. Header information for ensemble-stat output RHIST file.
HEADER

Column
Number

Header Column
Name Description

1 VERSION Version number (set to 3.0)
2 MODEL User provided text string designating model name
3 FCST_LEAD Forecast lead time in HHMMSS format
4 FCST_VALID_BEG Forecast valid start time in YYYYMMDDHH format
5 FCST_VALID_END Forecast valid end time in YYYYMMDDHH format
6 OBS_LEAD Observation lead time in HHMMSS format
7 OBS_VALID_BEG Observation valid start time in YYYYMMDDHH format
8 OBS_VALID_END Observation valid end time in YYYYMMDDHH format
9 FCST_VAR Model variable
10 FCST_LEV Selected Vertical level for forecast
11 OBS_VAR Observed variable
12 OBS_LEV Selected Vertical level for observations
13 OBTYPE Type of observation selected

14 VX_MASK
Verifying masking region indicating the masking grid or
polyline region applied

15 INTERP_MTHD Interpolation method applied to forecasts
16 INTERP_PNTS Number of points used in interpolation method
17 FCST_THRESH The threshold applied to the forecast
18 OBS_THRESH The threshold applied to the observations
19 COV_THRESH NA in Point-Stat
20 ALPHA Error percent value used in confidence intervals
21 LINE_TYPE RHIST
22 TOTAL Count of observations
23 CRPS Continuous Ranked Probability Score
24 IGN Ignorance score
25 N_RANK Number of possible ranks for observation
26-? RANK_? # of instances that observation has this rank

Chapter 3: MET Data I/O and Re-Formatting 3-26

Table 3-6. Header information for ensemble-stat output ORANK file.

Column
Number

Header
Column
Name

Description

1-21 Same as in Table 3-5 above.
22 TOTAL Count of observations
23 INDEX Line number in ORANK file
24 OBS_SID Station Identifiier
25 OBS_LAT Latitude of the observation
26 OBS_LON Longitude of the observation
27 OBS_LVL Level of the observation
28 OBS_ELV Elevation of the observation
29 OBS Value of the observation
30 PIT Probability Integral Transform
31 RANK Rank of the observation
32 N_ENS_VLD Number of valid ensemble values
33 N_ENS Number of ensemble values
34-? ENS_? Value of each ensemble member

3.9.3 ensemble_stat configuration file

The default configuration file for the Ensemble-Stat tool named
EnsembleStatConfig_default can be found in the data/config directory in the
MET distribution. Another version is located in scripts/config. We encourage
users to make a copy of these files prior to modifying their contents. Each configuration
file (both the default and sample) contains many comments describing its contents. The
contents of the configuration file are also described in the subsections below.

Note that environment variables may be used when editing configuration files, as
described in the section 3.5.2 for the PB2NC tool.

model = “WRF”;

The model variable contains a short text string identifying the name to be assigned to
the model being verified. This text string is written out as a header column of the STAT
output so that verification statistics from multiple models may be differentiated. The
value listed above is simply set to “WRF”.

ens_field[] = [“SPFH/P500”, “TMP/P500”, “HGT/P500”, “WIND/P500”,
“UGRD/P500”, “VGRD/P500”]; for GRIB input

Chapter 3: MET Data I/O and Re-Formatting 3-27

or
ens_field[] = ["RAINC(0,*,*)", "QVAPOR(0,5,*,*)"]; for NetCDF
input

The ens_field variable contains a comma-separated list of model variables and
corresponding vertical levels to be used. Each field is specified as a GRIB code or
abbreviation followed by an accumulation or vertical level indicator for GRIB files or as a
variable name followed by a list of dimensions for NetCDF files output from p_interp or
MET.

For GRIB files, the GRIB code itself or the corresponding abbreviation may be used to
specify which model fields are to be verified. A level indicator in the form “ANNN”,
“ZNNN”, “PNNN”, “PNNN-NNN”, “LNNN”, or “RNNN” must follow each GRIB code.
These indicate an accumulation interval, a single vertical level, a single pressure level, a
range of pressure levels, a generic level, and a specific GRIB record number,
respectively. “NNN” indicates the accumulation or level value.

To specify verification fields for NetCDF files, use var_name(i,...,j,*,*) for a single field.
Here, var_name is the name of the NetCDF variable, i,...,j specifies fixed dimension
values, and *,* specifies the two dimensions for the gridded field.

The values listed above indicate that specific humidity, temperature, height, wind speed,
and the U and V components of the winds should all be verified at 500 mb. All variables
are treated as scalar quantities with the exception of the U and V components of the
wind. When the U component is followed by the V component, both with the same level
indicator, they will be treated as vector quantities. A list of GRIB codes is available at
http://www.nco.ncep.noaa.gov/pmb/docs/on388/table2.html. Wind speed is typically not
available in model files, but if it is, it will be used directly. However, if wind speed is
unavailable but the U and V components of the wind are included, the wind speed will
be calculated automatically by MET, provided that WIND is included in the ens_field.

ens_thresh[] = [“gt80”, “gt0”, “gt300”, “gt5”, “gt5”, “gt5”];

For each ens_field listed in the forecast field, one or more thresholds must be
specified for use in computing discrete statistics. The thresholds are specified using the
Fortran conventions of gt, ge, eq, ne, lt, le to indicate greater than, greater than or equal
to, equal to, not equal to, less than, and less than or equal to, respectively. The number
of entries in ens_thresh must match the number of entries in ens_field. However,
multiple thresholds may be applied to each GRIB code by providing a space-separated
list within the double quotes (e.g. “gt0 le0”). It is the user's responsibility to know the
units for each model variable and to choose appropriate threshold values. For
probabilistic forecasts, thresholds must be specified using “ge” convention.

Chapter 3: MET Data I/O and Re-Formatting 3-28

vld_ens_thresh = 1.0;

When summarizing the ensemble, compute a ratio of the number of valid ensemble
fields to the total number of ensemble members. If this ratio is less than the
vld_ens_threshold, then quit with an error. This threshold must be between 0 and
1. Setting this threshold to 1 will require that all ensemble members be present to be
processed.

vld_data_thresh = 1.0;

When summarizing the ensemble, for each grid point compute a ratio of the number of
valid data values to the number of ensemble members. If that ratio is less than this
threshold, write out bad data. This threshold must be between 0 and 1. Setting this
threshold to 1 will require each grid point to contain valid data for all ensemble
members.

fcst_field[] = ["APCP_12(*,*)"];
obs_field[] = [];

The fcst_field and obs_field variables should be a comma separated list of
ensemble fields to be verified, with the corresponding observations. The obs_field
can be left blank to use the fields identical to those specified in fcst_field.

beg_ds = -5400;
end_ds = 5400;

Each gridded forecast file has a valid time associated with it. The beg_ds and end_ds
variables define a time window in seconds around the valid time of the forecast file for
the observations to be matched to it. For a forecast valid time, v, observations with a
valid time falling in the time window [v+beg_ds, v+end_ds] will be used. These
selections are overridden by the command line arguments –valid_beg and –
valid_end.

message_type[] = ["ADPUPA"];

The Ensemble-Stat tool performs verification using observations for one message type
at a time. The message_type variable contains a comma-separated list of the
message types to use for verification. By default, only surface and upper air
observations are used for verification. At least one message_type must be provided.
See http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_1.htm for
a list of the possible types.

Chapter 3: MET Data I/O and Re-Formatting 3-29

mask_grid[] = ["G212"];

The mask_grids variable contains a comma-separated list of pre-defined NCEP grids
over which to perform the Point-Stat verification. The predefined grids are specified as
“GNNN” where NNN is the three digit designation for the grid. Defining a new grid
would require code changes and recompiling MET. Supplying a value of “FULL“
indicates that the verification should be performed over the entire grid on which the data
resides. The value listed above indicates that verification should be performed over the
NCEP Grid number 212. See Appendix B for a list of grids that will be accepted.

mask_poly[] = [];

The mask_poly variable contains a comma-separated list of files that define
verification masking regions. These masking regions may be specified in two ways: as
a lat/lon polygon or using a gridded data file such as the NetCDF output of the Gen-
Poly-Mask tool.

Several masking polygons used by NCEP are predefined in the data/poly
subdirectory of the MET distribution. Creating a new polygon is as simple as creating a
text file with a name for the polygon followed by the lat/lon points which define its
boundary. Adding a new masking polygon requires no code changes and no
recompiling. Internally, the lat/lon polygon points are converted into x/y values in the
grid. The lat/lon values for the observation points are also converted into x/y grid
coordinates. The computations performed to check whether the observation point falls
within the polygon defined is done in x/y grid space.

Alternatively, any gridded data file that MET can read may be used to define a
verification masking region. Users must specify a description of the field to be used
from the input file and, optionally, may specify a threshold to be applied to that field.
Any grid point where the resulting field is 0, the mask is turned off. Any grid point where
it is non-zero, the mask is turned on.

mask_sid = "";

The mask_sid variable contains a filename that contains a space-separated list of
station ID’s at which verification should be performed.

interp_method[] = [”DW_MEAN”];

Chapter 3: MET Data I/O and Re-Formatting 3-30

The interp_method variable contains a comma-separated list of interpolation
methods to be used when interpolating forecast data to observation locations. The valid
values which may be listed are MIN, MAX, MEDIAN, UW_MEAN, DW_MEAN, LS_FIT,
and BILIN for the minimum, maximum, median, unweighted mean, distance-weighted
mean, least squares fit, and bilinear interpolation. Providing multiple interpolation
methods indicates that statistics should be computed multiple times using a different
interpolation method each time. These methods are described in Section 4.2.1.

interp_width[] = [1, 2];

The interp_width variable contains a comma-separated list of values to be used in
defining the neighborhoods over which the interpolation is performed. The
neighborhood is simply a square centered on the observation point. The
interp_width value specifies the width of that square. An interp_width value of
1 is interpreted as the nearest neighbor model grid point to the observation point. An
interp_width of 2 defines a 2 x 2 square of grid points around the observation point
(the 4 closest model grid points), while an interp_with of 3 defines a 3 x 3 square of
grid points around the observation point, and so on. The values listed above indicate
that the nearest neighbor and the 4 closest grid points should be used to define the
neighborhoods.

interp_flag = 1;

The interp_flag controls how the interpolation should be applied. A value of (1) will
smooth, e.g. apply the interpolation, to only the forecast field. A value of (2) applies
interpolation to only the observation field. To smooth both the forecast and observation
fields, set the interp_flag to 3.

interp_thresh = 1.0;

The interp_thresh variable contains a number between 0 and 1. When performing
interpolation over some neighborhood of points the ratio of the number of valid data
points to the total number of points in the neighborhood is computed. If that ratio is
greater than this threshold, the matched pair is discarded. Setting this threshold to 1,
which is the default, requires that the entire neighborhood must contain valid data. This
variable will typically come into play only along the boundaries of the verification region
chosen.

output_flag[] = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1];

Chapter 3: MET Data I/O and Re-Formatting 3-31

The output_flag array controls the type of output that the Point-Stat tool generates.
Each flag corresponds to an output line type in the STAT file. Setting the flag to 0
indicates that the line type should not be generated. Setting the flag to 1 indicates that
the line type should be written to the STAT file only. Setting the flag to 2 indicates that
the line type should be written to the STAT file as well as a separate ASCII file where
the data is grouped by line type. The output flags correspond to the following output
line types:

1. STAT and RHIST text files
2. STAT and ORANK text files
3. Ensemble Mean Field
4. Ensemble Standard Deviation Field
5. Ensemble Mean – One Standard Deviation Field
6. Ensemble Mean + One Standard Deviation Field
7. Ensemble Minimum Field
8. Ensemble Maximum Field
9. Ensemble Range Field
10. Ensemble Valid Data Count
11. Ensemble Relative Frequency by threshold Fields
12. Gridded Field of Observation Ranks written to netCDF file

Note that the first two line types are easily derived from each other. Users are free to
choose which measures are most desired. All of the line types are described in more
detail in Section 4.3.3.

Note that generating matched pair data (MPR lines) for a large number of cases is
generally not recommended. The MPR lines create very large output files and are only
intended for use on a small set of cases.

rng_type = "mt19937";

The rng_type variable defines the random number generator to be used in the
computation of bootstrap confidence intervals. Subsamples are chosen at random from
the full set of matched pairs. The randomness is determined by the random number
generator specified. Users should refer to detailed documentation of the GNU Scientific
Library for a listing of the random number generators available for use.

rng_seed = “”;

The rng_seed variable may be set to a specific value to make the computation of
bootstrap confidence intervals fully repeatable. When left empty, as shown above, the
random number generator seed is chosen automatically which will lead to slightly
different bootstrap confidence intervals being computed each time the data is run.
Specifying a value here ensures that the bootstrap confidence intervals will be
computed the same over multiple runs of the same data.

Chapter 3: MET Data I/O and Re-Formatting 3-32

grib_ptv = 2;

The grib_ptv sets the GRIB table 2 parameter version, and thus indicates how to
interpret GRIB codes between 128 and 255. The default is 2 and possible values are (2,
128, 129, 130, 131, 133, 140, 141). See the NCEP documentation at
http://www.nco.ncep.noaa.gov/pmb/docs/on388/table2.html for details.

output_prefix = "";

This option specifies a string to be used in the output file name. It can be useful for
keeping results for different models or variables from overwriting each other.

version = “V3.1”;

The version indicates the version of the point_stat configuration file used. Future
versions of MET may include changes to point_stat and the point_stat
configuration file. This value should not be modified.

Chapter 4: The Point-Stat Tool 4-1

Chapter 4 – The Point-Stat Tool

4.1 Introduction

The Point-Stat tool provides verification statistics for forecasts at observation points (as
opposed to over gridded analyses). The Point-Stat tool matches gridded forecasts to
point observation locations, using several different interpolation approaches. The tool
then computes continuous as well as categorical verification statistics. The categorical
and probabilistic statistics generally are derived by applying a threshold to the forecast
and observation values. Confidence intervals – representing the uncertainty in the
verification measures – are computed for the verification statistics.

Scientific and statistical aspects of the Point-Stat tool are discussed in the following
section. Practical aspects of the Point-Stat tool are described in Section 4.3.

4.2 Scientific and statistical aspects

The statistical methods and measures computed by the Point-Stat tool are described
briefly in this section. In addition, Section 4.2.1 discusses the various interpolation
options available for matching the forecast grid point values to the observation points.
The statistical measures computed by the Point-Stat tool are described briefly in Section
4.2.2 and in more detail in Appendix C. Section 4.2.3 describes the methods for
computing confidence intervals that are applied to some of the measures computed by
the Point-Stat tool; more detail on confidence intervals is provided in Appendix D.

4.2.1 Interpolation/matching methods

This section provides information about the various methods available in MET to match
gridded model output to point observations. Matching in the vertical and horizontal are
completed separately using different methods.

In the vertical, if forecasts and observations are at the same vertical level, then they are
paired as is. If any discrepancy exists between the vertical levels, then the forecasts are
interpolated to the level of the observation. The vertical interpolation is done in natural
log of pressure coordinates, except for specific humidity, which is interpolated using the
natural log of specific humidity in natural log of pressure coordinates. When forecasts
are for the surface, no interpolation is done. They are matched to observations with
message type ADPSFC or SFCSHP.

To match forecasts and observations in the horizontal plane, the user can select from a
number of methods described below. Many of these methods require the user to define
the width of the forecast grid W, around each observation point P, that should be
considered. For example, a width of 2 defines a 2 x 2 square of grid points enclosing P,
or simply the 4 grid points closest to P. A width of 3 defines a 3 x 3 square consisting of

Chapter 4: The Point-Stat Tool 4-2

Figure 4-1: Diagram illustrating
matching and interpolation methods used
in MET. See text for explanation.

Figure 4-2: Illustration of some matching
and interpolation methods used in MET.
See text for explanation.

9 grid points centered on the grid point closest to P. Fig. 4-1 provides illustration. The
point P denotes the observation location where the interpolated value is calculated. The
interpolation width W, shown is five.

This section describes the options for interpolation in the horizontal.

Nearest Neighbor

The forecast value at P is assigned the value at the nearest grid point. No interpolation
is performed. Here, "nearest" means spatially closest in horizontal grid coordinates.
This method is used by default when the interpolation width, W, is set to 1.

Minimum value

The forecast value at P is the minimum of the values in the W x W square.

Maximum value

The forecast value at P is the maximum of the values in the W x W square.

Chapter 4: The Point-Stat Tool 4-3

Distance-weighted mean

The forecast value at P is a weighted sum of the values in the W x W square. The
weight given to each forecast point is the reciprocal of the square of the distance (in grid
coordinates) from P. The weighted sum of forecast values is normalized by dividing by
the sum of the weights.

Unweighted mean

This method is similar to the distance-weighted mean, except all the weights are equal
to 1. The distance of any point from P is not considered.

Median

The forecast value at P is the median of the forecast values in the W x W square.

Least-Squares Fit

To perform least squares interpolation of a gridded field at a location P, MET uses an

subgrid centered (as closely as possible) at P. Figure 4-1 shows the case where
N = 5.

If we denote the horizontal coordinate in this subgrid by x, and vertical coordinate by y,
then we can assign coordinates to the point P relative to this subgrid. These
coordinates are chosen so that the center of the grid is . In the figure, for
example, P has coordinates (−0.4, 0.2). Since the grid is centered near P, the
coordinates of P should always be at most 0.5 in absolute value. At each of the
vertices of the grid (indicated by black dots in the figure), we have data values. We
would like to use these values to interpolate a value at P. We do this using least
squares. If we denote the interpolated value by z, then we fit an expression of the form

over the subgrid. The values of α, β, and γ are calculated from the data values at the
vertices. Finally,	 the coordinates of P are substituted into this expression to give
z, our least squares interpolated	 data value at P.

Bilinear Interpolation

W W×

(,)x y
(,) (0,0)x y =

2W

z x yα β γ= + +

(,)x y

Chapter 4: The Point-Stat Tool 4-4

This method is performed using the four closest grid squares. The forecast values are
interpolated linearly first in one dimension and then the other to the location of the
observation.

4.2.2 Statistical measures

The Point-Stat tool computes a wide variety of verification statistics. Broadly speaking,
these statistics can be subdivided into statistics for categorical variables and statistics
for continuous variables. The categories of measures are briefly described here;
specific descriptions of the measures are provided in Appendix C. Additional information
can be found in Wilks (2006) and Jolliffe and Stephenson (2003), and on the world-wide
web at
http://www.bom.gov.au/bmrc/wefor/staff/eee/verif/verif_web_page.html.

In addition to these verification measures, the Point-Stat tool also computes partial
sums and other FHO statistics that are produced by the NCEP verification system.
These statistics are also described in Appendix C.

Measures for categorical variables
Categorical verification statistics are used to evaluate forecasts that are in the form of a
discrete set of categories rather than on a continuous scale. Currently, Point-Stat
computes categorical statistics for variables in two categories. In future versions, MET
will include the capability to compute measures for multi-category forecasts. The
categories for dichotomous (i.e., 2-category) variables can be intrinsic (e.g., rain/no-
rain) or they may be formed by applying a threshold to a continuous variable (e.g.,
temperature < 273.15°K). See Appendix C for more information.

Measures for continuous variables
For continuous variables, many verification measures are based on the forecast error
(i.e., f – o). However, it also is of interest to investigate characteristics of the forecasts,
and the observations, as well as their relationship. These concepts are consistent with
the general framework for verification outlined by Murphy and Winkler (1987). The
statistics produced by MET for continuous forecasts represent this philosophy of
verification, which focuses on a variety of aspects of performance rather than a single
measure. See Appendix C for specific information.

Measures for probabilistic forecasts and dichotomous outcomes
For probabilistic forecasts, many verification measures are based on reliability, accuracy
and bias. However, it also is of interest to investigate joint and conditional distributions
of the forecasts and the observations, as in Wilks (2006). See Appendix C for specific
information.

Probabilistic forecast values are assumed to have a range of either 0 to 1 or 0 to 100. If
the max data value is > 1, we assume the data range is 0 to 100, and divide all the
values by 100. If the max data value is <= 1, then we use the values as is. Further,

Chapter 4: The Point-Stat Tool 4-5

thresholds are applied to the probabilities with equality on the lower end. For example,
with a forecast probability p, and thresholds t1 and t2, the range is defined as: t1 <= p <
t2. The exception is for the highest set of thresholds, when the range includes 1: t1 <=
p <= 1.

4.2.3 Statistical confidence intervals

A single summary score gives an indication of the forecast performance, but it is a
single realization from a random process that neglects uncertainty in the score’s
estimate. That is, it is possible to obtain a good score, but it may be that the “good”
score was achieved by chance and does not reflect the “true” score. Therefore, when
interpreting results from a verification analysis, it is imperative to analyze the uncertainty
in the realized scores. One good way to do this is to utilize confidence intervals. A
confidence interval indicates that if the process were repeated many times, say 100,
then the true score would fall within the interval 100(1-α)% of the time. Typical values
of α are 0.01, 0.05, and 0.10. The Point-Stat tool allows the user to select one or more
specific α-values to use.

For continuous fields (e.g., temperature), it is possible to estimate confidence intervals
for some measures of forecast performance based on the assumption that the data, or
their errors, are normally distributed. The Point-Stat tool computes confidence intervals
for the following summary measures: forecast mean and standard deviation,
observation mean and standard deviation, correlation, mean error, and the standard
deviation of the error. In the case of the respective means, the central limit theorem
suggests that the means are normally distributed, and this assumption leads to the
usual 100(1-α)% confidence intervals for the mean. For the standard deviations of each
field, one must be careful to check that the field of interest is normally distributed, as this
assumption is necessary for the interpretation of the resulting confidence intervals.

For the measures relating the two fields (i.e., mean error, correlation and standard
deviation of the errors), confidence intervals are based on either the joint distributions of
the two fields (e.g., with correlation) or on a function of the two fields. For the
correlation, the underlying assumption is that the two fields follow a bivariate normal
distribution. In the case of the mean error and the standard deviation of the mean error,
the assumption is that the errors are normally distributed, which for continuous
variables, is usually a reasonable assumption, even for the standard deviation of the
errors.

Bootstrap confidence intervals for any verification statistic are available in MET.
Bootstrapping is a nonparametric statistical method for estimating parameters and
uncertainty information. The idea is to obtain a sample of the verification statistic(s) of
interest (e.g., bias ETS, etc.) so that inferences can be made from this sample. The
assumption is that the original sample of matched forecast-observation pairs is
representative of the population. Several replicated samples are taken with
replacement from this set of forecast-observation pairs of variables (e.g., precipitation,
temperature, etc.), and the statistic(s) are calculated for each replicate. That is, given a

Chapter 4: The Point-Stat Tool 4-6

set of n forecast-observation pairs, we draw values at random from these pairs, allowing
the same pair to be drawn more than once, and the statistic(s) is (are) calculated for
each replicated sample. This yields a sample of the statistic(s) based solely on the
data without making any assumptions about the underlying distribution of the sample. It
should be noted, however, that if the observed sample of matched pairs is dependent,
then this dependence should be taken into account somehow. Currently, in the
confidence interval methods in MET do not take into account dependence, but future
releases will support a robust method allowing for dependence in the original sample.
More detailed information about the bootstrap algorithm is found in the appendix.

Confidence intervals can be calculated from the sample of verification statistics obtained
through the bootstrap algorithm. The most intuitive method is to simply take the
appropriate quantiles of the sample of statistic(s). For example, if one wants a 95% CI,
then one would take the 2.5 and 97.5 percentiles of the resulting sample. This method
is called the percentile method, and has some nice properties. However, if the original
sample is biased and/or has non-constant variance, then it is well known that this
interval is too optimistic. The most robust, accurate, and well-behaved way to obtain
accurate CIs from bootstrapping is to use the bias corrected and adjusted percentile
method (or BCa). If there is no bias, and the variance is constant, then this method will
yield the usual percentile interval. The only drawback to the approach is that it is
computationally intensive. Therefore, both the percentile and BCa methods are
available in MET, with the considerably more efficient percentile method being the
default.

The only other option associated with bootstrapping currently available in MET is to
obtain replicated samples smaller than the original sample (i.e., to sample m<n points at
each replicate). Ordinarily, one should use m=n, and this is the default. However, there
are cases where it is more appropriate to use a smaller value of m (e.g., when making
inference about high percentiles of the original sample). See Gilleland (2008) for more
information and references about this topic.

MET provides parametric confidence intervals based on assumptions of normality for
the following categorical statistics:

• Base Rate
• Forecast Mean
• Accuracy
• Probability of Detection
• Probability of Detection of the non-event
• Probability of False Detection
• False Alarm Ratio
• Critical Success Index
• Hanssen-Kuipers Discriminant
• Odds Ratio

MET provides parametric confidence intervals based on assumptions of normality for
the following continuous statistics:

Chapter 4: The Point-Stat Tool 4-7

• Forecast and Observation Means
• Forecast, Observation, and Error Standard Deviations
• Pearson Correlation Coefficient
• Mean Error

MET provides parametric confidence intervals based on assumptions of normality for
the following probabilistic statistics:

• Brier Score

MET provides non-parametric bootstrap confidence intervals for 13 categorical and 17
continuous statistics. Kendall’s Tau and Spearman’s Rank correlation coefficients are
the only exceptions. Computing bootstrap confidence intervals for these statistics would
be computationally unrealistic.

For more information on confidence intervals pertaining to verification measures, see
Wilks (2006), Jolliffe and Stephenson (2003), and Bradley (2008).

4.3 Practical information

This section contains a description of how to configure and run the Point-Stat tool. The
Point-Stat tool is used to perform verification of a gridded model field using point
observations. The gridded model field to be verified must be in GRIB-1 format or in the
NetCDF format that is output by the Pcp-Combine tool. The point observations must be
in NetCDF format as the output of the pb2nc or ascii2nc step. The Point-Stat tool
provides the capability of interpolating the gridded forecast data to the observation
points using a variety of methods as described in Section 4.2.1. The Point-Stat tool
computes a number of continuous statistics on the matched pair data as well as discrete
statistics once the matched pair data have been thresholded.

4.3.1 point_stat usage

The usage statement for the Point-Stat tool is shown below:

Usage: point_stat
 fcst_file
 obs_file
 config_file
 [-climo climo_file]
 [-point_obs netcdf_observation_file]
 [-fcst_valid time]
 [-fcst_lead time]
 [-obs_valid_beg time]
 [-obs_valid_end time]
 [-outdir path]
 [-log file]
 [-v level]

Chapter 4: The Point-Stat Tool 4-8

point_stat has three required arguments and can take up to eight optional ones.

Required arguments for point_stat

1. The fcst_file argument names the GRIB file or the NetCDF output of
pcp_combine containing the model data to be verified.

2. The obs_file argument indicates the NetCDF file containing the point

observations to be used for verifying the model.

3. The config_file argument indicates the name of the configuration file to be used.
The contents of the configuration file are discussed below.

Optional arguments for point_stat

1. The -climo climo_file identifies the GRIB file containing climatological values
on the same grid as the forecast file to be used when computing scalar and
vector anomaly measures. If the “climo_file” is not provided, scalar and vector
anomaly values will not be computed.

2. The –point_obs netcdf_file may be used to pass additional NetCDF point

observation files to be used in the verification.

3. The –fcst_valid time option in YYYYMMDD[_HH[MMSS]] format sets the

valid time of the forecast, for use with files that contain multiple forecasts.

4. The –fcst_lead time option in HH[MMSS] format sets the forecast lead time,

for use with files that contain multiple forecasts.

5. The –obs_valid_beg time option in YYYYMMDD[_HH[MMSS]] format sets the

beginning of the observation matching time window.

6. The –obs_valid_end time option in YYYYMMDD[_HH[MMSS]] format sets the

end of the observation matching time window.

7. The -outdir path indicates the directory where output files should be written.

8. The -log file option directs output and errors to the specified log file. All

messages will be written to that file as well as cout and cerr. Thus, users can
save the messages without having to redirect the output on the command line.
The default behavior is no logfile.

9. The -v level option indicates the desired level of verbosity. The value of “level”

will override the default setting of 1. Setting the verbosity to 0 will make the tool

Chapter 4: The Point-Stat Tool 4-9

run with no log messages, while increasing the verbosity above 1 will increase
the amount of logging.

An example of the point_stat calling sequence is shown below:

point_stat sample_fcst.grb
 sample_pb.nc
 PointStatConfig

In this example, the Point-Stat tool evaluates the model data in the sample_fcst.grb
GRIB file using the observations in the NetCDF output of pb2nc, sample_pb.nc,
applying the configuration options specified in the PointStatConfig file.

4.3.2 point_stat configuration file

The default configuration file for the Point-Stat tool named
PointStatConfig_default can be found in the data/config directory in the MET
distribution. Another version is located in scripts/config. A web tool that
generates config file text is available via a link from the MET Users’ web site. This
tool contains reasonable defaults for most fields. We encourage users to make a copy
of these files prior to modifying their contents. Each configuration file (both the default
and sample) contains many comments describing its contents. The contents of the
configuration file are also described in the subsections below.

Note that environment variables may be used when editing configuration files, as
described in the section 3.5.2 for the PB2NC tool.

model = “WRF”;

The model variable contains a short text string identifying the name to be assigned to
the model being verified. This text string is written out as a header column of the STAT
output so that verification statistics from multiple models may be differentiated. The
value listed above is simply set to “WRF”.

beg_ds = -5400;
end_ds = 5400;

Each gridded forecast file has a valid time associated with it. The beg_ds and end_ds
variables define a time window in seconds around the valid time of the forecast file for
the observations to be matched to it. For a forecast valid time, v, observations with a
valid time falling in the time window [v+beg_ds, v+end_ds] will be used. These

Chapter 4: The Point-Stat Tool 4-10

selections are overridden by the command line arguments –valid_beg and –
valid_end.

fcst_field[] = [“SPFH/P500”, “TMP/P500”, “HGT/P500”,
“WIND/P500”, “UGRD/P500”, “VGRD/P500”]; for GRIB input
or
fcst_field[] = ["POP/L0/PROB"]; for probability forecasts

or
fcst_field[] = ["RAINC(0,*,*)", "QVAPOR(0,5,*,*)"]; for NetCDF
input

The fcst_field variable contains a comma-separated list of model variables and
corresponding vertical levels to be verified. Each field is specified as a GRIB code or
abbreviation followed by an accumulation or vertical level indicator for GRIB files or as a
variable name followed by a list of dimensions for NetCDF files output from p_interp or
MET.

For GRIB files, the GRIB code itself or the corresponding abbreviation may be used to
specify which model fields are to be verified. A level indicator in the form “ANNN”,
“ZNNN”, “PNNN”, “PNNN-NNN”, “LNNN”, or “RNNN” must follow each GRIB code.
These indicate an accumulation interval, a single vertical level, a single pressure level, a
range of pressure levels, a generic level, and a specific GRIB record number,
respectively. “NNN” indicates the accumulation or level value.

To specify verification fields for NetCDF files, use var_name(i,...,j,*,*) for a single field.
Here, var_name is the name of the NetCDF variable, i,...,j specifies fixed dimension
values, and *,* specifies the two dimensions for the gridded field.

The values listed above indicate that specific humidity, temperature, height, wind speed,
and the U and V components of the winds should all be verified at 500 mb. All variables
are treated as scalar quantities with the exception of the U and V components of the
wind. When the U component is followed by the V component, both with the same level
indicator, they will be treated as vector quantities. A list of GRIB codes is available at
http://www.nco.ncep.noaa.gov/pmb/docs/on388/table2.html. Wind speed is typically not
available in model files, but if it is, it will be used directly. However, if wind speed is
unavailable but the U and V components of the wind are included, the wind speed will
be calculated automatically by MET, provided that WIND is included in the
fcst_field.

To indicate that a forecast field should be treated as probabilities, append the string
“/PROB” to the end of the field description. Probability fields should contain values in
the range [0, 1] or [0, 100]. However, when MET encounters a probability field with a

Chapter 4: The Point-Stat Tool 4-11

range [0, 100], it will automatically rescale it to be [0, 1] before applying the probabilistic
verification methods.

obs_field[] = ["APCP_12(*,*)"];

The obs_field variable is identical to the fcst_field except that it applies to the
observation field. It can be left blank to use the fields identical to those specified in
fcst_field.

fcst_thresh[] = [“gt80”, “gt0”, “gt300”, “gt5”, “gt5”];

For each fcst_field listed in the forecast field, one or more thresholds must be
specified for use in computing discrete statistics. The thresholds are specified using the
Fortran conventions of gt, ge, eq, ne, lt, le to indicate greater than, greater than or equal
to, equal to, not equal to, less than, and less than or equal to, respectively. The number
of entries in fcst_thresh must match the number of entries in fcst_field.
However, multiple thresholds may be applied to each GRIB code by providing a space-
separated list within the double quotes (e.g. “gt0 le0”). It is the user's responsibility to
know the units for each model variable and to choose appropriate threshold values. For
probabilistic forecast, thresholds must be specified using “ge” convention.

obs_thresh[] = [“gt80”, “gt0”, “gt300”, “gt5”, “gt5”];

For each observation field, one or more thresholds can be specified for use in
computing discrete statistics. Specification is done exactly as for fcst_thresh.

fcst_wind_thresh[] = ["NA", "ge1.0"];

obs_wind_thresh[] = [];

 When verifying winds via either the u and v components or the speed and direction, it
can be desirable to eliminate winds below a certain speed. This threshold filters the
winds based on speed, even when u and v winds are input. Format is the same as for
fcst_thresh.

message_type[] = ["ADPUPA"];

Chapter 4: The Point-Stat Tool 4-12

The Point-Stat tool performs verification using observations for one message type at a
time. The message_type variable contains a comma-separated list of the message
types to use for verification. By default, only surface and upper air observations are
used for verification. At least one message_type must be provided. See
http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_1.htm for a list
of the possible types.

mask_grid[] = ["G212"];

The mask_grids variable contains a comma-separated list of pre-defined NCEP grids
over which to perform the Point-Stat verification. The predefined grids are specified as
“GNNN” where NNN is the three digit designation for the grid. Defining a new grid
would require code changes and recompiling MET. Supplying a value of “FULL“
indicates that the verification should be performed over the entire grid on which the data
resides. The value listed above indicates that verification should be performed over the
NCEP Grid number 212. See Appendix B for a list of grids that will be accepted.

mask_poly[] = [];

The mask_poly variable contains a comma-separated list of files that define
verification masking regions. These masking regions may be specified in two ways: as
a lat/lon polygon or using a gridded data file such as the NetCDF output of the Gen-
Poly-Mask tool.

Several masking polygons used by NCEP are predefined in the data/poly
subdirectory of the MET distribution. Creating a new polygon is as simple as creating a
text file with a name for the polygon followed by the lat/lon points which define its
boundary. Adding a new masking polygon requires no code changes and no
recompiling. Internally, the lat/lon polygon points are converted into x/y values in the
grid. The lat/lon values for the observation points are also converted into x/y grid
coordinates. The computations performed to check whether the observation point falls
within the polygon defined is done in x/y grid space.

Alternatively, any gridded data file that MET can read may be used to define a
verification masking region. Users must specify a description of the field to be used
from the input file and, optionally, may specify a threshold to be applied to that field.
Any grid point where the resulting field is 0, the mask is turned off. Any grid point where
it is non-zero, the mask is turned on.

mask_sid = "";

Chapter 4: The Point-Stat Tool 4-13

The mask_sid variable contains a filename that contains a space-separated list of
station ID’s at which verification should be performed.

ci_alpha[] = [0.05];

The ci_alpha variable contains a comma-separated list of alpha values to be used
when computing confidence intervals. The confidence interval computed is 1 minus the
ci_alpha value. The value of 0.05 listed above indicates that the 95th percentile
confidence interval should be computed. Refer to Section 4.2.3 for more information
about confidence intervals and recommended values.

boot_interval = 1;

The boot_interval variable indicates what method should be used for computing
bootstrap confidence intervals. A value of 0 indicates that the highly accurate but
computationally intensive BCa (bias-corrected percentile) method should be used. A
value of 1 indicates that the somewhat less accurate but efficient percentile method
should be used.

boot_rep_prop = 1.0;

The boot_rep_prop variable must be set to a value between 0 and 1. When
computing bootstrap confidence intervals over n sets of matched pairs, the size of the
subsample, m, may be chosen less than or equal to the size of the sample, n. This
variable defines the size of m as a proportion relative to the size of n. A value of 1, as
shown above, indicates that the size of the subsample, m, should be equal to the size of
the sample, n.

n_boot_rep = 1000;

The n_boot_rep variable defines the number of subsamples that should be taken
when computing bootstrap confidence intervals. This variable should be set large
enough so that when confidence intervals are computed multiple times for the same set
of data, the intervals do not change much. Setting this variable to zero disables the
computation of bootstrap confidence intervals that may be necessary to run in realtime
or near-realtime over large domains. Setting this variable to 1000, as shown above,
indicates that bootstrap confidence interval should be computed over 1000 subsamples
of the matched pairs.

boot_rng = "mt19937";

Chapter 4: The Point-Stat Tool 4-14

The boot_rng variable defines the random number generator to be used in the
computation of bootstrap confidence intervals. Subsamples are chosen at random from
the full set of matched pairs. The randomness is determined by the random number
generator specified. Users should refer to detailed documentation of the GNU Scientific
Library for a listing of the random number generators available for use.

boot_seed = “”;

The boot_seed variable may be set to a specific value to make the computation of
bootstrap confidence intervals fully repeatable. When left empty, as shown above, the
random number generator seed is chosen automatically which will lead to slightly
different bootstrap confidence intervals being computed each time the data is run.
Specifying a value here ensures that the bootstrap confidence intervals will be
computed the same over multiple runs of the same data.

interp_method[] = [”DW_MEAN”];

The interp_method variable contains a comma-separated list of interpolation
methods to be used when interpolating forecast data to observation locations. The valid
values which may be listed are MIN, MAX, MEDIAN, UW_MEAN, DW_MEAN, LS_FIT,
and BILIN for the minimum, maximum, median, unweighted mean, distance-weighted
mean, a least squares fit, and bilinear interpolation. Providing multiple interpolation
methods indicates that statistics should be computed multiple times using a different
interpolation method each time. These methods are described in Section 4.2.1.

interp_width[] = [1, 2];

The interp_width variable contains a comma-separated list of values to be used in
defining the neighborhoods over which the interpolation is performed. The
neighborhood is simply a square centered on the observation point. The
interp_width value specifies the width of that square. An interp_width value of
1 is interpreted as the nearest neighbor model grid point to the observation point. An
interp_width of 2 defines a 2 x 2 square of grid points around the observation point
(the 4 closest model grid points), while an interp_with of 3 defines a 3 x 3 square of
grid points around the observation point, and so on. The values listed above indicate
that the nearest neighbor and the 4 closest grid points should be used to define the
neighborhoods.

interp_thresh = 1.0;

Chapter 4: The Point-Stat Tool 4-15

The interp_thresh variable contains a number between 0 and 1. When performing
interpolation over some neighborhood of points the ratio of the number of valid data
points to the total number of points in the neighborhood is computed. If that ratio is
greater than this threshold, the matched pair is discarded. Setting this threshold to 1,
which is the default, requires that the entire neighborhood must contain valid data. This
variable will typically come into play only along the boundaries of the verification region
chosen.

output_flag[] = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1];

The output_flag array controls the type of output that the Point-Stat tool generates.
Each flag corresponds to an output line type in the STAT file. Setting the flag to 0
indicates that the line type should not be generated. Setting the flag to 1 indicates that
the line type should be written to the STAT file only. Setting the flag to 2 indicates that
the line type should be written to the STAT file as well as a separate ASCII file where
the data is grouped by line type. The output flags correspond to the following output
line types:

1. FHO for Forecast, Hit, Observation Rates
2. CTC for Contingency Table Counts
3. CTS for Contingency Table Statistics
4. MCTC for Multi-category Contingency Table Counts
5. MCTS for Multi-category Contingency Table Statistics
6. CNT for Continuous Statistics
7. PCT for Contingency Table counts for Probabilistic forecasts
8. PSTD for contingency table Statistics for Probabilistic forecasts with

Dichotomous outcomes
9. PJC for Joint and Conditional factorization for Probabilistic forecasts
10. PRC for Receiver Operating Characteristic for Probabilistic forecasts
11. SL1L2 for Scalar L1L2 Partial Sums
12. SAL1L2 for Scalar Anomaly L1L2 Partial Sums when climatological data is

supplied
13. VL1L2 for Vector L1L2 Partial Sums
14. VAL1L2 for Vector Anomaly L1L2 Partial Sums when climatological data is

supplied
15. MPR for Matched Pair data

Note that the first two line types are easily derived from each other. Users are free to
choose which measures are most desired. All of the line types are described in more
detail in Section 4.3.3.

Note that generating matched pair data (MPR lines) for a large number of cases is
generally not recommended. The MPR lines create very large output files and are only
intended for use on a small set of cases.

Chapter 4: The Point-Stat Tool 4-16

rank_corr_flag = 1;

The rank_corr_flag variable may be set to 0 (“no”) or 1 (“yes”) to indicate whether
or not Kendall’s Tau and Spearman’s Rank correlation coefficients should be computed.
The computation of these rank correlation coefficients is very slow when run over many
matched pairs. By default, this flag is turned on, as shown above, but setting it to 0
should improve the runtime performance.

grib_ptv = 2;

The grib_ptv sets the GRIB table 2 parameter version, and thus indicates how to
interpret GRIB codes between 128 and 255. The default is 2 and possible values are (2,
128, 129, 130, 131, 133, 140, 141). See the NCEP documentation at
http://www.nco.ncep.noaa.gov/pmb/docs/on388/table2.html for details.

tmp_dir = "/tmp";

This option specifies the directory where temp files should be written by the Point-Stat
tool.

output_prefix = "";

This option specifies a string to be used in the output file name. It can be useful for
keeping results for different models or variables from overwriting each other.

version = “V3.1”;

The version indicates the version of the point_stat configuration file used. Future
versions of MET may include changes to point_stat and the point_stat
configuration file. This value should not be modified.

4.3.3 point_stat output

point_stat produces output in STAT and, optionally, ASCII format. The ASCII output
duplicates the STAT output but has the data organized by line type. The output files will
be written to the default output directory or the directory specified using the “-outdir”

Chapter 4: The Point-Stat Tool 4-17

command line option. The output STAT file will be named using the following naming
convention: point_stat_PREFIX_HHMMSSL_YYYYMMDD_HHMMSSV.stat
where PREFIX indicates the user-defined output prefix, YYYMMDDHH indicates the
forecast lead time and YYYYMMDD_HHMMSS indicates the forecast valid time. The
output ASCII files are named similarly:
point_stat_PREFIX_HHMMSSL_YYYYMMDD_HHMMSSV_TYPE.txt where
TYPE is one of fho, ctc, cts, cnt, mctc, mcts, pct, pstd, pjc, prc,
sl1l2, sal1l2, vl1l2, or val1l2 to indicate the line type it contains.

The first set of header columns are common to all of the output files generated by the
Point-Stat tool. Tables describing the contents of the header columns and the contents
of the additional columns for each line type are listed in the following tables.

Table 4-2. Header information for each file point-stat outputs.
HEADER

Column
Number

Header Column
Name Description

1 VERSION Version number (set to 3.0)
2 MODEL User provided text string designating model name
3 FCST_LEAD Forecast lead time in HHMMSS format
4 FCST_VALID_BEG Forecast valid start time in YYYYMMDDHH format
5 FCST_VALID_END Forecast valid end time in YYYYMMDDHH format
6 OBS_LEAD Observation lead time in HHMMSS format
7 OBS_VALID_BEG Observation valid start time in YYYYMMDDHH format
8 OBS_VALID_END Observation valid end time in YYYYMMDDHH format
9 FCST_VAR Model variable
10 FCST_LEV Selected Vertical level for forecast
11 OBS_VAR Observed variable
12 OBS_LEV Selected Vertical level for observations
13 OBTYPE Type of observation selected

14 VX_MASK
Verifying masking region indicating the masking grid or
polyline region applied

15 INTERP_MTHD Interpolation method applied to forecasts
16 INTERP_PNTS Number of points used in interpolation method
17 FCST_THRESH The threshold applied to the forecast
18 OBS_THRESH The threshold applied to the observations
19 COV_THRESH NA in Point-Stat
20 ALPHA Error percent value used in confidence intervals
21 LINE_TYPE

Chapter 4: The Point-Stat Tool 4-18

Table 4-3. Format information for FHO (Forecast, Hit rate, Observation rate) output line
type.

FHO OUTPUT FORMAT
Column
Number

FHO Column
Name Description

21 FHO Forecast, Hit, Observation line type
22 TOTAL Total number of matched pairs
23 F_RATE Forecast rate
24 H_RATE Hit rate
25 O_RATE Observation rate

Table 4-4. Format information for CTC (Contingency Table Count) output line type.
CTC OUTPUT FORMAT

Column
Number CTC Column Name Description

21 CTC Contingency Table Counts line type
22 TOTAL Total number of matched pairs
23 FY_OY Number of forecast yes and observation yes
24 FY_ON Number of forecast yes and observation no
25 FN_OY Number of forecast no and observation yes
26 FN_ON Number of forecast no and observation no

Table 4-5. Format information for CTS (Contingency Table Statistics) output line type.
CTS OUTPUT FORMAT

Column
Number CTS Column Name Description

21 CTS Contingency Table Statistics line type
22 TOTAL Total number of matched pairs

23-27

BASER,
BASER_NCL,
BASER_NCU,
BASER_BCL,
BASER_BCU

Base rate including normal and bootstrap upper and
lower confidence limits

28-32

FMEAN,
FMEAN_NCL,
FMEAN_NCU,
FMEAN_BCL,
FMEAN_BCU,

Forecast mean including normal and bootstrap upper
and lower confidence limits

33-37

ACC,
ACC_NCL,
ACC_NCU,
ACC_BCL,

Accuracy including normal and bootstrap upper and
lower confidence limits

Chapter 4: The Point-Stat Tool 4-19

CTS OUTPUT FORMAT
Column
Number CTS Column Name Description

ACC_BCU

38-40
FBIAS,
FBIAS_BCL,
FBIAS_BCU

Frequency Bias including bootstrap upper and lower
confidence limits

41-45

PODY,
PODY_NCL,
PODY_NCU,
PODY_BCL,
PODY_BCU

Probability of detecting yes including normal and
bootstrap upper and lower confidence limits

46-50

PODN,
PODN_NCL,
PODN_NCU,
PODN_BCL,
PODN_BCU

Probability of detecting no including normal and
bootstrap upper and lower confidence limits

51-55

POFD,
POFD_NCL,
POFD_NCU,
POFD_BCL,
POFD_BCU

Probability of false detection including normal and
bootstrap upper and lower confidence limits

56-60

FAR,
FAR_NCL,
FAR_NCU,
FAR_BCL,
FAR_BCU

False alarm ratio including normal and bootstrap upper
and lower confidence limits

61-65

CSI,
CSI_NCL,
CSI_NCU,
CSI_BCL,
CSI_BCU

Critical Success Index including normal and bootstrap
upper and lower confidence limits

66-68
GSS,
GSS_BCL,
GSS_BCU

Gilbert Skill Score including bootstrap upper and lower
confidence limits

69-73

HK,
HK_NCL,
HK_NCU,
HK_BCL,
HK_BCU

Hanssen-Kuipers Discriminant including normal and
bootstrap upper and lower confidence limits

74-76
HSS,
HSS_BCL,
HSS_BCU

Heidke Skill Score including bootstrap upper and lower
confidence limits

77-81
ODDS,
ODDS_NCL,
ODDS_NCU,

Odds Ratio including normal and bootstrap upper and
lower confidence limits

Chapter 4: The Point-Stat Tool 4-20

CTS OUTPUT FORMAT
Column
Number CTS Column Name Description

ODDS_BCL,
ODDS_BCU

Table 4-6. Format information for CNT(Continuous Statistics) output line type.
CNT OUTPUT FORMAT

Column
Number CNT Column Name Description

21 CNT Continuous statistics line type
22 TOTAL Total number of matched pairs

23-27

FBAR,
FBAR_NCL,
FBAR_NCU,
FBAR_BCL,
FBAR_BCU

Forecast mean including normal and bootstrap upper
and lower confidence limits

28-32

FSTDEV,
FSTDEV_NCL,
FSTDEV_NCU,
FSTDEV_BCL,
FSTDEV_BCU

Standard deviation of the forecasts including normal
and bootstrap upper and lower confidence limits

33-37

OBAR,
OBAR_NCL,
OBAR_NCU,
OBAR_BCL,
OBAR_BCU

Observation mean including normal and bootstrap
upper and lower confidence limits

38-42

OSTDEV,
OSTDEV_NCL,
OSTDEV_NCU,
OSTDEV_BCL,
OSTDEV_BCU

Standard deviation of the observations including
normal and bootstrap upper and lower confidence
limits

43-47

PR_CORR,
PR_CORR_NCL,
PR_CORR_NCU,
PR_CORR_BCL,
PR_CORR_BCU

Pearson correlation coefficient including normal and
bootstrap upper and lower confidence limits

48 SP_CORR Spearman’s rank correlation coefficient
49 KT_CORR Kendall’s tau statistic

50 RANKS Number of ranks used in computing Kendall’s tau
statistic

51 FRANK_TIES Number of tied forecast ranks used in computing
Kendall’s tau statistic

52 ORANK_TIES Number of tied observation ranks used in computing
Kendall’s tau statistic

Chapter 4: The Point-Stat Tool 4-21

CNT OUTPUT FORMAT
Column
Number CNT Column Name Description

53-57

ME,
ME_NCL,
ME_NCU,
ME_BCL,
ME_BCU

Mean error (F-O) including normal and bootstrap upper
and lower confidence limits

58-62

ESTDEV,
ESTDEV_NCL,
ESTDEV_NCU,
ESTDEV_BCL,
ESTDEV_BCU

Standard deviation of the error including normal and
bootstrap upper and lower confidence limits

63-65
MBIAS,
MBIAS_BCL,
MBIAS_BCU

Multiplicative bias including bootstrap upper and lower
confidence limits

66-68
MAE,
MAE_BCL,
MAE_BCU

Mean absolute error including bootstrap upper and
lower confidence limits

68-71
MSE,
MSE_BCL,
MSE_BCU

Mean squared error including bootstrap upper and
lower confidence limits

72-74
BCMSE,
BCMSE_BCL,
BCMSE_BCU

Bias-corrected mean squared error including bootstrap
upper and lower confidence limits

75-77
RMSE,
RMSE_BCL,
RMSE_BCU

Root mean squared error including bootstrap upper
and lower confidence limits

78-92

E10,
E10_BCL,
E10_BCU,
E25,
E25_BCL,
E25_BCU,
E50,
E50_BCL,
E50_BCU,
E75,
E75_BCL,
E75_BCU,
E90,
E90_BCL,
E90_BCU

10th, 25th, 50th, 75th, and 90th percentiles of the error
including bootstrap upper and lower confidence limits

Chapter 4: The Point-Stat Tool 4-22

Table 4-7. Format information for MCTC (Multi-category Contingency Table Count)
output line type.

MCTC OUTPUT FORMAT
Column
Number CTC Column Name Description

21 MCTC Multi-category Contingency Table Counts line type
22 TOTAL Total number of matched pairs
23 DIM Dimension of the contingency table.

24-?? Fi_Oj Count of events in forecast category i and observation
category j, with the observations incrementing first.

Table 4-8. Format information for MCTS (Multi- category Contingency Table Statistics)
output line type.

MCTS OUTPUT FORMAT
Column
Number CTS Column Name Description

21 MCTS Multi-category Contingency Table Statistics line type
22 TOTAL Total number of matched pairs

23 N_CAT
The total number of categories in each of dimension of
the contingency table. So the total number of cells is
N_CAT*N_CAT.

24-28

ACC,
ACC_NCL,
ACC_NCU,
ACC_BCL,
ACC_BCU

Accuracy, normal confidence limits and bootstrap
confidence limits

29-31
HK,
HK_BCL,
HK_BCU

Hanssen and Kuipers Discriminant and bootstrap
confidence limits

32-34
HSS,
HSS_BCL,
HSS_BCU

Heidke Skill Score and bootstrap confidence limits

35-37
GER,
GER_BCL,
GER_BCU

Gerrity Score and bootstrap confidence limits

Table 4-9. Format information for PCT (Contingency Table Counts for Probabilistic
forecasts) output line type.
PCT OUTPUT FORMAT

Column
Number PCT Column Name Description

21 PCT Probability contingency table count line type
22 TOTAL Total number of matched pairs

Chapter 4: The Point-Stat Tool 4-23

PCT OUTPUT FORMAT
Column
Number PCT Column Name Description

23 N_THRESH Number of probability thresholds
24 THRESH_i The ith probability threshold value (repeated)

25 OY_i Number of observation yes when forecast is between
the ith and i+1th probability thresholds (repeated)

26 ON_i Number of observation no when forecast is between
the ith and i+1th probability thresholds (repeated)

* THRESH_n Last probability threshold value

Table 4-10. Format information for PSTD (Contingency Table Statistics for
Probabilistic forecasts) output line type.

PSTD OUTPUT FORMAT
Column
Number

PSTD Column
Name Description

21 PSTD Probabilistic statistics for dichotomous outcome line
type

22 TOTAL Total number of matched pairs
23 N_THRESH Number of probability thresholds

24-26
BASER,
BASER_NCL,
BASER_NCU

The Base Rate, including normal upper and lower
confidence limits

27 RELIABILITY Reliability
28 RESOLUTION Resolution
29 UNCERTAINTY Uncertainty
30 ROC_AUC Area under the receiver operating characteristic curve

312-33
BRIER,
BRIER_NCL,
BRIER_NCU

Brier Score including normal upper and lower
confidence limits

34 THRESH_i The ith probability threshold value (repeated)

Table 4-11. Format information for PJC (Joint and Conditional factorization for
Probabilistic forecasts) output line type.

PJC OUTPUT FORMAT
Column
Number PJC Column Name Description

21 PJC Probabilistic Joint/Continuous line type
22 TOTAL Total number of matched pairs
23 N_THRESH Number of probability thresholds
24 THRESH_i The ith probability threshold value (repeated)

Chapter 4: The Point-Stat Tool 4-24

PJC OUTPUT FORMAT
Column
Number PJC Column Name Description

25 OY_TP_i
Number of observation yes when forecast is between
the ith and i+1th probability thresholds as a proportion
of the total OY (repeated)

26 ON_TP_i
Number of observation no when forecast is between
the ith and i+1th probability thresholds as a proportion
of the total ON (repeated)

27 CALIBRATION _i Calibration when forecast is between the ith and i+1th
probability thresholds (repeated)

28 REFINEMENT_i Refinement when forecast is between the ith and i+1th
probability thresholds (repeated)

29 LIKELIHOOD_i Likelihood when forecast is between the ith and i+1th
probability thresholds (repeated)

30 BASER_i Base rate when forecast is between the ith and i+1th
probability thresholds (repeated)

* THRESH_n Last probability threshold value

Table 4-12. Format information for PRC (PRC for Receiver Operating Characteristic
for Probabilistic forecasts) output line type.

PRC OUTPUT FORMAT
Column
Number

PRC Column
Name Description

21 PRC Probability ROC points line type
22 TOTAL Total number of matched pairs
23 N_THRESH Number of probability thresholds
24 THRESH_i The ith probability threshold value (repeated)

25 PODY_i Probability of detecting yes when forecast is between
the ith and i+1th probability thresholds (repeated)

26 POFD_i Probability of false detection when forecast is between
the ith and i+1th probability thresholds (repeated)

* THRESH_n Last probability threshold value

Table 4-13. Format information for SL1L2 (Scalar Partial Sums) output line type.
SL1L2 OUTPUT FORMAT

Column
Number

SL1L2 Column
Name Description

21 SL1L2 Scalar L1L2 line type

22 TOTAL Total number of matched pairs of forecast (f) and
observation (o)

23 FBAR Mean(f)

Chapter 4: The Point-Stat Tool 4-25

SL1L2 OUTPUT FORMAT
Column
Number

SL1L2 Column
Name Description

24 OBAR Mean(o)
25 FOBAR Mean(f*o)
26 FFBAR Mean(f2)
27 OOBAR Mean(o2)

Table 4-14. Format information for SAL1L2 (Scalar Anomaly Partial Sums) output line

type.
SAL1L2 OUTPUT FORMAT

Column
Number

SAL1L2 Column
Name Description

21 SAL1L2 Scalar Anomaly L1L2 line type

22 TOTAL Total number of matched triplets of forecast (f),
observation (o), and climatological value (c)

23 FABAR Mean(f-c)
24 OABAR Mean(o-c)
25 FOABAR Mean((f-c)*(o-c))
26 FFABAR Mean((f-c)2)
27 OOABAR Mean((o-c)2)

Table 4-15. Format information for VL1L2 (Vector Partial Sums) output line type.
VL1L2 OUTPUT FORMAT

Column
Number

VL1L2 Column
Name Description

21 VL1L2 Vector L1L2 line type

22 TOTAL Total number of matched pairs of forecast winds (uf,
vf) and observation winds (uo, vo)

23 UFBAR Mean(uf)
24 VFBAR Mean(vf)
25 UOBAR Mean(uo)
26 VOBAR Mean(vo)
27 UVFOBAR Mean(uf*uo+vf*vo)
28 UVFFBAR Mean(uf2+vf2)
29 UVOOBAR Mean(uo2+vo2)

Chapter 4: The Point-Stat Tool 4-26

Table 4-18. Format information for VAL1L2 (Vector Anomaly Partial Sums) output line
type.

VAL1L2 OUTPUT FILE
Column
Number

VAL1L2 Column
Name Description

21 VAL1L2 Vector Anomaly L1L2 line type

22 TOTAL
Total number of matched triplets of forecast winds (uf,
vf), observation winds (uo, vo), and climatological
winds (uc, vc)

23 UFABAR Mean(uf-uc)
24 VFABAR Mean(vf-vc)
25 UOABAR Mean(uo-uc)
26 VOABAR Mean(vo-vc)
27 UVFOABAR Mean((uf-uc)*(uo-uc)+(vf-vc)*(vo-vc))
28 UVFFABAR Mean((uf-uc)2+(vf-vc)2)
29 UVOOABAR Mean((uo-uc)2+(vo-vc)2)

Table 4-19. Format information for MPR (Matched Pair) output line type.
MPR OUTPUT FORMAT

Column
Number

MPR Column
Name Description

21 MPR Matched Pair line type
22 TOTAL Total number of matched pairs
23 INDEX Index for the current matched pair
24 OBS_SID Station Identifier of observation
25 OBS_LAT Latitude of the observation in degrees north
26 OBS_LON Longitude of the observation in degrees east

27 OBS_LVL Pressure level of the observation in hPa or
accumulation interval in hours

28 OBS_ELV Elevation of the observation in meters above sea level
29 FCST Forecast value interpolated to the observation location
30 OBS Observation value
31 CLIMO Climatological value

The STAT output files described for point_stat may be used as inputs to the STAT
Analysis tool. For more information on using the STAT Analysis tool to create
stratifications and aggregations of the STAT files produced by point_stat, please see
Chapter 8.

Chapter 5: The Grid-Stat Tool 5-1

Chapter 5 – The Grid-Stat Tool

5.1 Introduction

The Grid-Stat tool provides verification statistics for a matched forecast and observation
grid. All of the forecast grid points in the region of interest are matched to observation
grid points on the same grid. All the matched grid points are used to compute the
verification statistics. The Grid-Stat tool functions in much the same way as the Point-
Stat tool, except that no interpolation is required because the forecasts and
observations are on the same grid. However, the interpolation parameters may be used
to perform a smoothing operation on the forecast and observation fields prior to
verification. In addition to traditional verification approaches, the Grid-Stat tool includes
neighborhood methods, designed to examine forecast performance as a function of
spatial scale.

Scientific and statistical aspects of the Grid-Stat tool are briefly described in this
chapter, followed by practical details regarding usage and output from the tool.

5.2 Scientific and statistical aspects

5.2.1 Statistical measures

The Grid-Stat tool computes a wide variety of verification statistics. Broadly speaking,
these statistics can be subdivided into three types of statistics: measures for categorical
variables, measures for continuous variables, and measures for probabilistic forecasts.
These categories of measures are briefly described here; specific descriptions of all
measures are provided in Appendix C. Additional information can be found in Wilks
(2006) and Jolliffe and Stephenson (2003), and on the world-wide web at
http://www.bom.gov.au/bmrc/wefor/staff/eee/verif/verif_web_page.html.

In addition to these verification measures, the Grid-Stat tool also computes partial sums
and other FHO statistics that are produced by the NCEP verification system. These
statistics are also described in Appendix C.

Measures for categorical variables
Categorical verification statistics are used to evaluate forecasts that are in the form of a
discrete set of categories rather than on a continuous scale. Currently, Grid-Stat
computes categorical statistics for variables in two categories. In future versions, MET
will include the capability to compute measures for multi-category forecasts. The
categories for dichotomous (i.e., 2-category) variables can be intrinsic (e.g., rain/no-
rain) or they may be formed by applying a threshold to a continuous variable (e.g.,
temperature < 273.15K). See Appendix C for more information.

Measures for continuous variables
For continuous variables, many verification measures are based on the forecast error
(i.e., f – o). However, it also is of interest to investigate characteristics of the forecasts,

Chapter 5: The Grid-Stat Tool 5-2

and the observations, as well as their relationship. These concepts are consistent with
the general framework for verification outlined by Murphy and Winkler (1987). The
statistics produced by MET for continuous forecasts represent this philosophy of
verification, which focuses on a variety of aspects of performance rather than a single
measure. See Appendix C for specific information.

Measures for probabilistic forecasts and dichotomous outcomes
For probabilistic forecasts, many verification measures are based on reliability, accuracy
and bias. However, it also is of interest to investigate joint and conditional distributions
of the forecasts and the observations, as in Wilks (2006). See Appendix C for specific
information.

Probabilistic forecast values are assumed to have a range of either 0 to 1 or 0 to 100. If
the max data value is > 1, we assume the data range is 0 to 100, and divide all the
values by 100. If the max data value is <= 1, then we use the values as is. Further,
thresholds are applied to the probabilities with equality on the lower end. For example,
with a forecast probability p, and thresholds t1 and t2, the range is defined as: t1 <= p <
t2. The exception is for the highest set of thresholds, when the range includes 1: t1 <=
p <= 1.

Use of analysis fields for verification
The Grid-Stat tool allows evaluation of model forecasts using model analysis fields.
However, users are cautioned that an analysis field is not independent of its parent
model; for this reason verification of model output using an analysis field from the same
model is generally not recommended and is not likely to yield meaningful information
about model performance.

5.2.2 Statistical confidence intervals

The confidence intervals for the Grid-Stat tool are the same as those provided for the
Point-Stat tool except that the scores are based on pairing grid points with grid points so
that there are likely more values for each field making any assumptions based on the
central limit theorem more likely to be valid. However, it should be noted that spatial
(and temporal) correlations are not presently taken into account in the confidence
interval calculations. Therefore, confidence intervals reported may be somewhat too
narrow (e.g., Efron 2007). See Appendix D for details regarding confidence intervals
provided by MET.

5.2.3 Neighborhood methods

MET also incorporates several neighborhood methods to give credit to forecasts that
are close to the observations, but not necessarily exactly matched up in space. Also
referred to as “fuzzy” verification methods, these methods do not just compare a single

Chapter 5: The Grid-Stat Tool 5-3

forecast at each grid point to a single observation at each grid point; they compare the
forecasts and observations in a neighborhood surrounding the point of interest. With
the neighborhood method, the user chooses a distance within which the forecast event
can fall from the observed event and still be considered a hit. In MET this is
implemented by defining a square search window around each grid point. Within the
search window, the number of observed events is compared to the number of forecast
events. In this way, credit is given to forecasts that are close to the observations
without requiring a strict match between forecasted events and observed events at any
particular grid point. The neighborhood methods allow the user to see how forecast skill
varies with neighborhood size and can help determine the smallest neighborhood size
that can be used to give sufficiently accurate forecasts.

There are several ways to present the results of the neighborhood approaches, such as
the Fractions Skill Score (FSS) or the Fractions Brier Score (FBS). These scores are
presented in Appendix C. One can also simply up-scale the information on the forecast
verification grid by smoothing or resampling within a specified neighborhood around
each grid point and recalculate the traditional verification metrics on the coarser grid.
The MET output includes traditional contingency table statistics for each threshold and
neighborhood window size.

The user must specify several parameters in the grid_stat configuration file to utilize
the neighborhood approach, such as the interpolation method, size of the smoothing
window, and required fraction of valid data points within the smoothing window. For
FSS-specific results, the user must specify the size of the neighborhood window, the
required fraction of valid data points within the window, and the fractional coverage
threshold from which the contingency tables are defined. These parameters are
described further in the practical information section below.

5.3 Practical information

This section contains information about configuring and running the Grid-Stat tool. The
Grid-Stat tool verifies gridded model data using gridded observations. The input
gridded model and observation datasets must be in GRIB format or in the NetCDF
format that is output by the Pcp-Combine tool. In both cases, the input model and
observation datasets must be on a common grid. The gridded observation data may be
a gridded analysis based on observations such as Stage II or Stage IV data for verifying
accumulated precipitation, or a model analysis field may be used.

The Grid-Stat tool provides the capability of verifying one or more model variables/levels
using multiple thresholds for each model variable/level. The Grid-Stat tool performs no
interpolation because the input model and observation datasets must already be on a
common grid. However, the interpolation parameters may be used to perform a
smoothing operation on the forecast field prior to verifying it to investigate how the scale
of the forecast affects the verification statistics. The Grid-Stat tool computes a number

Chapter 5: The Grid-Stat Tool 5-4

of continuous statistics for the forecast minus observation differences as well as
discrete statistics once the data have been thresholded.

5.3.1 grid_stat usage

The usage statement for the Grid-Stat tool is listed below:

Usage: grid_stat
 fcst_file
 obs_file
 config_file
 [-fcst_valid time]
 [-fcst_lead time]
 [-obs_valid time]
 [-obs_lead time]
 [-outdir path]
 [-log file]
 [-v level]

grid_stat has three required arguments and up to six optional ones.

Required arguments for grid_stat

1. The fcst_file argument indicates the GRIB file or NetCDF output of
pcp_combine containing the model data to be verified.

2. The obs_file argument indicates the GRIB file or the NetCDF output of

pcp_combine containing the gridded observations to be used for the verification
of the model.

3. The config_file argument indicates the name of the configuration file to be used.

The contents of the configuration file are discussed below.

Optional arguments for grid_stat

1. The –fcst_valid time option in YYYYMMDD[_HH[MMSS]] format sets the
valid time of the forecast, for use with files that contain multiple forecasts.

2. The –fcst_lead time option in HH[MMSS] format sets the forecast lead time,

for use with files that contain multiple forecasts.

3. The –obs_valid_beg time option in YYYYMMDD[_HH[MMSS]] format sets the

beginning of the observation matching time window.

Chapter 5: The Grid-Stat Tool 5-5

4. The –obs_valid_end time option in YYYYMMDD[_HH[MMSS]] format sets the
end of the observation matching time window.

5. The -outdir path indicates the directory where output files should be written.

6. The -log file option directs output and errors to the specified log file. All

messages will be written to that file as well as cout and cerr. Thus, users can
save the messages without having to redirect the output on the command line.
The default behavior is no logfile.

7. The -v level option indicates the desired level of verbosity. The contents of

“level” will override the default setting of 2. Setting the verbosity to 0 will make
the tool run with no log messages, while increasing the verbosity above 1 will
increase the amount of logging.

An example of the grid_stat calling sequence is listed below:

Example 1:
grid_stat sample_fcst.grb
 sample_obs.grb
 GridStatConfig

In Example 1, the Grid-Stat tool will verify the model data in the sample_fcst.grb
GRIB file using the observations in the sample_obs.grb GRIB file applying the
configuration options specified in the GridStatConfig file.

A second example of the grid_stat calling sequence is listed below:

Example 2:
grid_stat sample_fcst.nc
 sample_obs.nc
 GridStatConfig

In the second example, the Grid-Stat tool will verify the model data in the
sample_fcst.nc NetCDF output of pcp_combine, using the observations in the
sample_obs.nc NetCDF output of pcp_combine, and applying the configuration
options specified in the GridStatConfig file. Because the model and observation
files contain only a single field of accumulated precipitation, the GridStatConfig file
should be configured to specify that only accumulated precipitation be verified.

5.3.2 grid_stat configuration file

The default configuration file for the Grid-Stat tool, named
GridStatConfig_default, can be found in the data/config directory in the MET
distribution. Other versions of the configuration file are included in scripts/config.

Chapter 5: The Grid-Stat Tool 5-6

We recommend that users make a copy of the default (or other) configuration file prior
to modifying it. A web tool that generates config file text is available via a link from
the MET Users’ web site. The default configuration file contains many comments
describing its contents. The contents are also described in more detail below.

Note that environment variables may be used when editing configuration files, as
described in the section 3.5.2 for the PB2NC tool.

model = “WRF”;

The model variable contains a short text string identifying the name to be assigned to
the model being verified. This text string is written out as a header column of the STAT
output so that verification statistics from multiple models may be differentiated. The
value listed above is simply set to “WRF”.

fcst_field[] = [“SPFH/P500”, “TMP/P500”, “HGT/P500”,
“WIND/P500”, “UGRD/P500”, “VGRD/P500”]; for GRIB input
or
fcst_field[] = ["POP/L0/PROB"]; for probability forecasts
or
fcst_field[] = ["RAINC(0,*,*)", "QVAPOR(0,5,*,*)"]; for NetCDF
input

The fcst_field variable contains a comma-separated list of model variables and
corresponding vertical levels to be verified. Each field is specified as a GRIB code or
abbreviation followed by an accumulation or vertical level indicator for GRIB files or as a
variable name followed by a list of dimensions for NetCDF files output from p_interp or
MET.

For GRIB files, the GRIB code itself or the corresponding abbreviation may be used to
specify which model fields are to be verified. A level indicator in the form “ANNN”,
“ZNNN”, “PNNN”, “PNNN-NNN”, “LNNN”, or “RNNN” must follow each GRIB code.
These indicate an accumulation interval, a single vertical level, a single pressure level, a
range of pressure levels, a generic level, and a specific GRIB record number,
respectively. “NNN” indicates the accumulation or level value.

To specify verification fields for NetCDF files, use var_name(i,...,j,*,*) for a single field.
Here, var_name is the name of the NetCDF variable, i,...,j specifies fixed dimension
values, and *,* specifies the two dimensions for the gridded field.

The values listed above indicate that specific humidity, temperature, height, wind speed,
and the U and V components of the winds should all be verified at 500 mb. All variables
are treated as scalar quantities with the exception of the U and V components of the

Chapter 5: The Grid-Stat Tool 5-7

wind. When the U component is followed by the V component, both with the same level
indicator, they will be treated as vector quantities. A list of GRIB codes is available at
http://www.nco.ncep.noaa.gov/pmb/docs/on388/table2.html. Wind speed is typically not
available in model files, but if it is, it will be used directly. However, if wind speed is
unavailable but the U and V components of the wind are included, the wind speed will
be calculated automatically by MET, provided that WIND is included in the
fcst_field.

To indicate that a forecast field should be treated as probabilities, append the string
“/PROB” to the end of the field description. Probability fields should contain values in
the range [0, 1] or [0, 100]. However, when MET encounters a probability field with a
range [0, 100], it will automatically rescale it to be [0, 1] before applying the probabilistic
verification methods.

obs_field[] = ["61/A3"];

The obs_field variable can be left blank to use the same field as for the forecast, or it
can be specified as in fcst_field.

fcst_thresh[] = ["gt0.0 ge5.0"];

For each fcst_thresh listed above one or more thresholds must be specified for use
in computing discrete statistics. The thresholds are specified using the Fortran
conventions of gt, ge, eq, ne, lt, le to indicate greater than, greater than or equal to,
equal to, not equal to, less than, and less than or equal to, respectively. The number of
entries in fcst_thresh must match the number of entries in fcst_field. However,
multiple thresholds may be applied to each GRIB code by providing a space-separated
list within the double quotes. The values listed above indicate that the field of 3-hourly
accumulated precipitation will be thresholded greater than zero and greater than or
equal to 5.0 mm. It is the user's responsibility to know the units for each model variable
and to choose appropriate threshold values. For probabilistic forecast, thresholds must
be specified using “ge” convention.

obs_thresh[] = ["gt0.0 ge5.0"];

The obs_thresh field is used to define the dichotomous “observed yes” vs. “observed
no” values for contingency tables. One or more can be specified as for fcst_thresh.

fcst_wind_thresh[] = ["NA", "ge1.0"];

obs_wind_thresh[] = [];

Chapter 5: The Grid-Stat Tool 5-8

 When verifying winds via either the u and v components or the speed and direction, it
can be desirable to eliminate winds below a certain speed. This threshold filters the
winds based on speed, even when u and v winds are input. Format is the same as for
fcst_thresh.

mask_grid[] = ["G212"];

The mask_grid variable contains a comma-separated list of pre-defined NCEP grids
over which to perform the grid_stat verification. The predefined grids are specified
as “GNNN” where NNN is the three-digit designation for the grid. Defining a new grid
would require code changes and recompiling MET. Supplying a value of “FULL“
indicates that the verification should be performed over the entire grid on which the data
resides. The value listed above indicates that verification should be performed over the
NCEP Grid number 212. See Appendix B for a list of grids that will be accepted.

mask_poly[] = [];

The mask_poly variable contains a comma-separated list of files that define
verification masking regions. These masking regions may be specified in two ways: as
a lat/lon polygon or using a gridded data file such as the NetCDF output of the Gen-
Poly-Mask tool.

Several masking polygons used by NCEP are predefined in the data/poly
subdirectory of the MET distribution. Creating a new polygon is as simple as creating a
text file with a name for the polygon followed by the lat/lon points which define its
boundary. Adding a new masking polygon requires no code changes and no
recompiling. Internally, the lat/lon polygon points are converted into x/y values in the
grid.

Alternatively, any gridded data file that MET can read may be used to define a
verification masking region. Users must specify a description of the field to be used
from the input file and, optionally, may specify a threshold to be applied to that field.
Any grid point where the resulting field is 0, the mask is turned off. Any grid point where
it is non-zero, the mask is turned on.

ci_alpha[] = [0.05];

Chapter 5: The Grid-Stat Tool 5-9

The ci_alpha variable contains a comma-separated list of alpha values to be used
when computing confidence intervals. The confidence interval computed is 1 minus the
ci_alpha value. The value of 0.05 listed above indicates that the 95th percentile
confidence interval should be computed. Refer to Section 4.2.3 for more information
about confidence intervals and recommended values.

boot_interval = 1;

The boot_interval variable indicates what method should be used for computing
bootstrap confidence intervals. A value of 0 indicates that the highly accurate but
computationally intensive BCa (bias-corrected percentile) method should be used. A
value of 1 indicates that the somewhat less accurate but efficient percentile method
should be used.

boot_rep_prop = 1.0;

The boot_rep_prop variable must be set to a value between 0 and 1. When
computing bootstrap confidence intervals over n sets of matched pairs, the size of the
subsample, m, may be chosen less than or equal to the size of the sample, n. This
variable defines the size of m as a proportion relative to the size of n. A value of 1, as
shown above, indicates that the size of the subsample, m, should be equal to the size of
the sample, n.

n_boot_rep = 1000;

The n_boot_rep variable defines the number of subsamples that should be taken
when computing bootstrap confidence intervals. This variable should be set large
enough so that when confidence intervals are computed multiple times for the same set
of data, the intervals do not change much. Setting this variable to zero disables the
computation of bootstrap confidence intervals that may be necessary to run in realtime
or near-realtime over large domains. Setting this variable to 1000, as shown above,
indicates that bootstrap confidence interval should be computed over 1000 subsamples
of the matched pairs.

boot_rng = "mt19937";

The boot_rng variable defines the random number generator to be used in the
computation of bootstrap confidence intervals. Subsamples are chosen at random from
the full set of matched pairs. The randomness is determined by the random number
generator specified. Users should refer to detailed documentation of the GNU Scientific
Library for a listing of the random number generators available for use.

boot_seed = “”;

Chapter 5: The Grid-Stat Tool 5-10

The boot_seed variable may be set to a specific value to make the computation of
bootstrap confidence intervals fully repeatable. When left empty, as shown above, the
random number generator seed is chosen automatically which will lead to slightly
different bootstrap confidence intervals being computed each time the data is run.
Specifying a value here ensures that the bootstrap confidence intervals will be
computed the same over multiple runs of the same data.

interp_method[] = [”UW_MEAN”];

The interp_method variable contains a comma-separated list of operations to be
performed on the forecast field prior to performing verification. The valid values that
may be listed are MIN, MAX, MEDIAN, and UW_MEAN for the minimum, maximum,
median, and unweighted mean. If multiple interpolation methods are provided, then
statistics will be computed separately for each type of smoothing operation. These
methods are described in Section 4.2.1.

interp_width[] = [1, 3];

The interp_width variable contains a comma-separated list of values to be used in
defining the neighborhoods over which the smoothing operation is performed on the
forecast field. The neighborhood is simply a square centered on the observation point,
and thus must be odd. The interp_width value specifies the width of that square.

interp_flag = 1;

The interp_flag controls how the interpolation should be applied. A value of (1) will
smooth, e.g. apply the interpolation, to only the forecast field. A value of (2) applies
interpolation to only the observation field. To smooth both the forecast and observation
fields, set the interp_flag to 3.

interp_thresh = 1.0;

The interp_thresh variable contains a number between 0 and 1. When performing
a smoothing operation over some neighborhood of points the ratio of the number of
valid data points to the total number of points in the neighborhood is computed. If that
ratio is greater than this threshold, no smoothed value is computed. Setting this
threshold to 1, which is the default, requires that the entire neighborhood must contain
valid data. This variable will typically come into play only along the boundaries of the
verification region chosen.

Chapter 5: The Grid-Stat Tool 5-11

nbr_width[] = [3, 5];

The nbr_width variable contains a comma-separated list of values to be used in
defining the neighborhood size to be used when computing neighborhood verification
statistics. The neighborhood is simply a square centered on the current point and the
nbr_width value specifies the width of that square.

nbr_thresh = 1.0;

The nbr_thresh variable contains a number between 0 and 1. When performing
neighborhood verification over some neighborhood of points the ratio of the number of
valid data points to the total number of points in the neighborhood is computed. If that
ratio is greater than this threshold, that value is not included in the neighborhood
verification. Setting this threshold to 1, which is the default, requires that the entire
neighborhood must contain valid data. This variable will typically come into play only
along the boundaries of the verification region chosen.

cov_thresh[] = ["ge0.5"];

The cov_thresh variable contains a comma separated list of thresholds to be applied
to the neighborhood coverage field. The coverage is the proportion of forecast points in
the neighborhood that exceed the forecast threshold. For example, if 10 of the 25
forecast grid points contain values larger than a threshold of 2, then the coverage is
10/25 = 0.4. If the coverage threshold is set to 0.5, then this neighborhood is considered
to be a “No” forecast.

output_flag[]= [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1];

The output_flag array controls the type of output that the Grid-Stat tool generates.
Each flag corresponds to an output line type in the STAT file except for the last one.
Setting the flag to 0 indicates that the line type should not be generated. Setting the
flag to 1 indicates that the line type should be written to the STAT file only. Setting the
flag to 2 indicates that the line type should be written to the STAT file as well as a
separate ASCII file where the data are grouped by line type. The first fifteen output
flags correspond to the following types of output line types:

1. FHO for Forecast, Hit, Observation Rates
2. CTC for Contingency Table Counts
3. CTS for Contingency Table Statistics
4. MCTC for Multi-Category Contingency Table Counts
5. MCTS for Multi-Category Contingency Table Statistics
6. CNT for Continuous Statistics
7. SL1L2 for Scalar L1L2 Partial Sums

Chapter 5: The Grid-Stat Tool 5-12

8. VL1L2 for Vector L1L2 Partial Sums
9. PCT for Contingency Table Counts for Probabilistic forecasts
10. PSTD for Contingency Table Statistics for Probabilistic forecasts
11. PJC for Joint and Conditional factorization for Probabilistic forecasts
12. PRC for Receiver Operating Characteristic for Probabilistic forecasts
13. NBRCTC for Neighborhood Contingency Table Counts
14. NBRCTS for Neighborhood Contingency Table Statistics
15. NBRCNT for Neighborhood Continuous Statistics

Note that the first two line types are easily derived from one another. The user is free to
choose which measure is most desired. See Section 5.3.3 for more information about
the information in the output files.

The last flag in the output_flag array indicates whether or not the matched pair and
forecast minus observation difference fields should be written to a NetCDF file. Setting
the flag to 1 indicates that the NetCDF file should be created, while setting it to 0
disables its creation.

rank_corr_flag = 1;

The rank_corr_flag variable may be set to 0 (“no”) or 1 (“yes”) to indicate whether
or not Kendall’s Tau and Spearman’s Rank correlation coefficients should be computed.
The computation of these rank correlation coefficients is very slow when run over many
matched pairs. By default, this flag is turned on, as shown above, but setting it to 0
should improve the runtime performance.

grib_ptv = 2;

The grib_ptv sets the GRIB table 2 parameter version, and thus indicates how to
interpret GRIB codes between 128 and 255. The default is 2 and possible values are (2,
128, 129, 130, 131, 133, 140, 141). See the NCEP documentation at
http://www.nco.ncep.noaa.gov/pmb/docs/on388/table2.html for details.

tmp_dir = "/tmp";

This parameter indicates the directory where Grid Stat should write temporary files.

output_prefix = "";

Chapter 5: The Grid-Stat Tool 5-13

This option specifies a string to be used in the output file name. It can be useful for
keeping results for different models or variables from overwriting each other.

version = “V3.1”;

The version indicates the version of the grid_stat configuration file used. Future
versions of MET may include changes to grid_stat and the grid_stat configuration
file. This value should not be modified.

5.3.3 grid_stat output

grid_stat produces output in STAT and, optionally, ASCII and NetCDF formats. The
ASCII output duplicates the STAT output but has the data organized by line type. The
output files are written to the default output directory or the directory specified by the -
outdir command-line option.

The output STAT file is named using the following naming convention:
grid_stat__PREFIX_HHMMSSL_YYYYMMDD_HHMMSSV.stat where PREFIX
indicates the user-defined output prefix, YYYMMDDHH indicates the forecast lead time
and YYYYMMDD_HHMMSS indicates the forecast valid time. The output ASCII files
are named similarly:
point_stat_PREFIX_HHMMSSL_YYYYMMDD_HHMMSSV_TYPE.txt where
TYPE is one of fho, ctc, cts, cnt, sl1l2, vl1l2, pct, pstd, pjc, prc, nbrctc,
nbrcts, and nbrcnt to indicate the line type it contains.

The format of the STAT and ASCII output of the Grid-Stat tool are the same as the
format of the STAT and ASCII output of the Point-Stat tool with the exception of the
three additional neighborhood line types. Please refer to the tables in section 4.3.3
(point_stat output) for a description of the common output STAT and optional ASCII
file line types. The formats of the three additional neighborhood line types for
grid_stat are explained in the following tables.

Table 5-1. Header information for each file grid-stat outputs.
HEADER

Column
Number

Header Column
Name Description

1 VERSION Version number (set to 3.0)
2 MODEL User provided text string designating model name
3 FCST_LEAD Forecast lead time in HHMMSS format
4 FCST_VALID_BEG Forecast valid start time in YYYYMMDDHH format
5 FCST_VALID_END Forecast valid end time in YYYYMMDDHH format

Chapter 5: The Grid-Stat Tool 5-14

HEADER
Column
Number

Header Column
Name Description

6 OBS_LEAD Observation lead time in HHMMSS format
7 OBS_VALID_BEG Observation valid start time in YYYYMMDDHH format
8 OBS_VALID_END Observation valid end time in YYYYMMDDHH format
9 FCST_VAR Model variable
10 FCST_LEV Selected Vertical level for forecast
11 OBS_VAR Observed variable
12 OBS_LEV Selected Vertical level for observations
13 OBTYPE Type of observation selected

14 VX_MASK
Verifying masking region indicating the masking grid or
polyline region applied

15 INTERP_MTHD Interpolation method applied to forecast field
16 INTERP_PNTS Number of points used by interpolation method
17 FCST_THRESH The threshold applied to the forecast
18 OBS_THRESH The threshold applied to the observations
19 COV_THRESH Coverage threshold for neighborhood methods
20 ALPHA Error percent value used in confidence intervals
21 LINE_TYPE

Table 5-2. Format information for NBRCTC (Neighborhood Contingency Table Counts)

output line type.
NBRCTC OUTPUT FORMAT

Column
Number

NBRCTC Column
Name Description

21 NBRCTC Neighborhood Contingency Table Counts line type
22 TOTAL Total number of matched pairs
23 FY_OY Number of forecast yes and observation yes
24 FY_ON Number of forecast yes and observation no
25 FN_OY Number of forecast no and observation yes
26 FN_ON Number of forecast no and observation no

Table 5-3. Format information for NBRCTS (Neighborhood Contingency Table
Statistics) output line type.

NBRCTS OUTPUT FORMAT
Column
Number

NBRCTS Column
Name Description

21 NBRCTS Neighborhood Contingency Table Statistics line type
22 TOTAL Total number of matched pairs

23-27
BASER,
BASER_NCL,
BASER_NCU,

Base rate including normal and bootstrap upper and
lower confidence limits

Chapter 5: The Grid-Stat Tool 5-15

NBRCTS OUTPUT FORMAT
Column
Number

NBRCTS Column
Name Description

BASER_BCL,
BASER_BCU

28-32

FMEAN,
FMEAN_NCL,
FMEAN_NCU,
FMEAN_BCL,
FMEAN_BCU,

Forecast mean including normal and bootstrap upper
and lower confidence limits

33-37

ACC,
ACC_NCL,
ACC_NCU,
ACC_BCL,
ACC_BCU

Accuracy including normal and bootstrap upper and
lower confidence limits

38-40
FBIAS,
FBIAS_BCL,
FBIAS_BCU

Frequency Bias including bootstrap upper and lower
confidence limits

41-45

PODY,
PODY_NCL,
PODY_NCU,
PODY_BCL,
PODY_BCU

Probability of detecting yes including normal and
bootstrap upper and lower confidence limits

46-50

PODN,
PODN_NCL,
PODN_NCU,
PODN_BCL,
PODN_BCU

Probability of detecting no including normal and
bootstrap upper and lower confidence limits

51-55

POFD,
POFD_NCL,
POFD_NCU,
POFD_BCL,
POFD_BCU

Probability of false detection including normal and
bootstrap upper and lower confidence limits

56-60

FAR,
FAR_NCL,
FAR_NCU,
FAR_BCL,
FAR_BCU

False alarm ratio including normal and bootstrap upper
and lower confidence limits

61-65

CSI,
CSI_NCL,
CSI_NCU,
CSI_BCL,
CSI_BCU

Critical Success Index including normal and bootstrap
upper and lower confidence limits

66-68
GSS,
GSS_BCL,
GSS_BCU

Gilbert Skill Score including bootstrap upper and lower
confidence limits

Chapter 5: The Grid-Stat Tool 5-16

NBRCTS OUTPUT FORMAT
Column
Number

NBRCTS Column
Name Description

69-73

HK,
HK_NCL,
HK_NCU,
HK_BCL,
HK_BCU

Hanssen-Kuipers Discriminant including normal and
bootstrap upper and lower confidence limits

74-76
HSS,
HSS_BCL,
HSS_BCU

Heidke Skill Score including bootstrap upper and lower
confidence limits

77-81

ODDS,
ODDS_NCL,
ODDS_NCU,
ODDS_BCL,
ODDS_BCU

Odds Ratio including normal and bootstrap upper and
lower confidence limits

Table 5-4. Format information for NBRCNT(Neighborhood Continuous Statistics)
output line type.

NBRCNT OUTPUT FORMAT
Column
Number

NBRCNT Column
Name Description

21 NBRCNT Neighborhood Continuous statistics line type
22 TOTAL Total number of matched pairs

23-25
FBS,
FBS_BCL,
FBS_BCU

Fractions Brier Score including bootstrap upper and
lower confidence limits

26-28
FSS,
FSS_BCL,
FSS_BCU

Fractions Skill Score including bootstrap upper and
lower confidence limits

If requested in the output_flag array, a NetCDF file containing the matched pair and
forecast minus observation difference fields for each combination of variable type/level
and masking region applied will be generated. The output NetCDF file is named
similarly to the other output files: grid_stat_PREFIX_
HHMMSSL_YYYYMMDD_HHMMSSV_pairs.nc. Commonly available NetCDF
utilities such as ncdump or ncview may be used to view the contents of the output file.

The output NetCDF file contains the dimensions and variables shown in the following
Tables 5-5 and 5-6.

Chapter 5: The Grid-Stat Tool 5-17

 Table 5-5. Dimensions defined in NetCDF matched pair output.
grid_stat NetCDF DIMENSIONS

NetCDF
Dimension Description

Lat Dimension of the latitude (i.e. Number of grid points in the North-
South direction)

Lon Dimension of the longitude (i.e. Number of grid points in the East-
West direction)

Table 5-6. Variables defined in NetCDF matched pair output.
grid_stat NetCDF VARIABLES

NetCDF Variable Dimension Description

FCST_VAR_LVL_MASK
_INTERP_MTHD
_INTERP_PNTS

lat, lon

For each model variable (VAR), vertical level
(LVL), masking region (MASK), and, if
applicable, smoothing operation
(INTERP_MTHD and INTERP_PNTS), the
forecast value is listed for each point in the
mask

DIFF_VAR_LVL_MASK
_INTERP_MTHD
_INTERP_PNTS

lat, lon

For each model variable (VAR), vertical level
(LVL), masking region (MASK), and, if
applicable, smoothing operation
(INTERP_MTHD and INTERP_PNTS), the
difference (forecast – observation) is computed
for each point in the mask

OBS_VAR_LVL_MASK lat, lon

For each model variable (VAR), vertical level
(LVL), and masking region (MASK), the
observation value is listed for each point in the
mask

The STAT output files described for grid_stat may be used as inputs to the STAT
Analysis tool. For more information on using the STAT Analysis tool to create
stratifications and aggregations of the STAT files produced by grid_stat, please see
Chapter 8.

Chapter 6: The MODE Tool 6-1

Chapter 6 – The MODE Tool

6.1 Introduction

This chapter provides a description of the Method for Object-Based Diagnostic
Evaluation (MODE) tool, which was developed by the Verification Group at the
Research Applications Laboratory, NCAR/Boulder, USA. More information about
MODE can be found in Davis et al. (2006a,b) and Brown et al. (2007).

MODE was developed in response to a need for verification methods that can provide
diagnostic information that is more directly useful and meaningful than the information
that can be obtained from traditional verification approaches, especially in application to
high-resolution NWP output. The MODE approach was originally developed for
application to spatial precipitation forecasts, but it can also be applied to other fields
with coherent spatial structures (e.g., clouds, convection).

MODE is only one of a number of different approaches that have been developed in
recent years to meet these needs. In the future, we expect that the MET package will
include additional methods. References for many of these methods are provided at
http://www.rap.ucar.edu/projects/icp/index.html.

MODE may be used in a generalized way to compare any two fields. For simplicity,
field1 may be thought of in this chapter as “the forecast,” while field2 may be thought of
as “the observation”, which is usually a gridded analysis of some sort. The convention
of field1/field2 is also used in Table 6-2. MODE resolves objects in both the forecast
and observed fields. These objects mimic what humans would call “regions of interest”.
Object attributes are calculated and compared, and are used to associate (“merge”)
objects within a single field, as well as to “match” objects between the forecast and
observed fields. Finally, summary statistics describing the objects and object pairs are
produced. These statistics can be used to identify correlations and differences among
the objects, leading to insights concerning forecast strengths and weaknesses.

6.2 Scientific and statistical aspects

The methods used by the MODE tool to identify and match forecast and observed
objects are briefly described in this section.

6.2.1 Resolving objects

The process used for resolving objects in a raw data field is called convolution
thresholding. The raw data field is first convolved with a simple filter function as follows:

C(x, y) = φ(u,v) f (x − u)(y − v)∑ .

Chapter 6: The MODE Tool 6-2

In this formula, f is the raw data field, φ is the filter function, and C is the resulting
convolved field. The variables (x, y) and (u, v) are grid coordinates. The filter function φ
is a simple circular filter	 determined by a radius of influence R, and a height H:

 if , and otherwise.

The parameters R and H are not independent. They are related by the requirement that
the integral of φ over the grid be unity:

.

Thus, the radius of influence R is the only tunable parameter in the convolution process.
Once R is chosen, H is determined by the above equation.

Once the convolved field, C, is in hand, it is thresholded to create a mask field, M:

 if , and otherwise.

The objects are the connected regions where M = 1. Finally, the raw data are restored
to object interiors to obtain the object field, F:

.

Thus, two parameters – the radius of influence, R, and the threshold, T – control the
entire process of resolving objects in the raw data field.

An example of the steps involved in resolving objects is shown in Fig 6-1. Figure. 6-1a
shows a “raw” precipitation field, where the vertical coordinate represents the
precipitation amount. Part b shows the convolved field, and part c shows the masked
field obtained after the threshold is applied. Finally, Fig. 6-1d shows the objects once
the original precipitation values have been restored to the interiors of the objects.

(,)x y Hφ = 2 2 2x y R+ ≤ (,) 0x yφ =

2 1R Hπ =

(,) 1M x y = (,)C x y T≥ (,) 0M x y =

(,) (,) (,)F x y M x y f x y=

Chapter 6: The MODE Tool 6-3

Figure 6-1: Example of an application of the MODE object identification process to a

model precipitation field.

Chapter 6: The MODE Tool 6-4

6.2.2 Attributes

Object attributes are defined both for single objects and for object pairs. Typically one
of the objects in a pair is from the forecast field and the other is taken from the observed
field.

Area is simply a count of the number of grid squares an object occupies. If desired, a
true area (say, in km2) can be obtained by adding up the true areas of all the grid
squares inside an object, but in practice this is deemed not to be necessary.

Moments are used in the calculation of several object attributes. If we define to
be 1 for points (x, y) inside our object, and zero for points outside, then the first-order
moments, Sx and Sy, are defined as

.

Higher order moments are similarly defined and are used in the calculation of some of
the other attributes. For example, the centroid is a kind of geometric center of an
object, and can be calculated from first moments. It allows one to assign a single point
location to what may be a large, extended object.

Axis Angle, denoted by θ, is calculated from the second-order moments. It gives
information on the orientation or “tilt” of an object. Curvature is another attribute that
uses moments in its calculation, specifically, third-order moments.

Aspect Ratio is computed by fitting a rectangle around an object. The rectangle is
aligned so that it has the same axis angle as the object, and the length and width are
chosen so as to just enclose the object. We make no claim that the rectangle so
obtained is the smallest possible rectangle enclosing the given object. However, this
rectangle is much easier to calculate than a smallest enclosing rectangle and serves our
purposes just as well. Once the rectangle is determined, the aspect ratio of the object is
defined to be the width of the rectangle divided by its length.

Another object attribute defined by MODE is complexity. Complexity is defined by
comparing the area of an object to the area of its convex hull.

All the attributes discussed so far are defined for single objects. Once these are
determined, they can be used to calculate attributes for pairs of objects. One example
is centroid difference. This measure is simply the (vector) difference between the
centroids of the two objects. Another example is angle difference, the difference
between the axis angles.

Several area measures are also used for pair attributes. Union Area is the total area
that is in either one (or both) of the two objects. Intersection Area is the area that is

(,)x yξ

, ,

(,) and (,)x y
x y x y

S x x y S y x yξ ξ= =∑ ∑

Chapter 6: The MODE Tool 6-5

inside both objects simultaneously. Symmetric Difference is the area inside at least one
object, but not inside both.

6.2.3 Fuzzy logic

Once object attributes are estimated, some of them are used as input to a
fuzzy logic engine that performs the matching and merging steps. Merging refers to
grouping together objects in a single field, while matching refers to grouping together
objects in different fields, typically the forecast and observed fields. Interest maps, Ii,
are applied to the individual attributes, αi, to convert them into interest values, which
range from zero (representing no interest) to one (high interest). For example, the
default interest map for centroid difference is one for small distances, and falls to zero
as the distance increases. For other attributes (e.g., intersection area), low values
indicate low interest, and high values indicate more interest.

The next step is to define confidence maps, Ci, for each attribute. These maps (again
with values ranging from zero to one) reflect how confident we are in the calculated
value of an attribute. The confidence maps generally are functions of the entire attribute

vector , in contrast to the interest maps, where each Ii is a function only
of αi. To see why this is necessary, imagine an electronic anemometer that outputs a
stream of numerical values of wind speed and direction. It is typically the case for such
devices that when the wind speed becomes small enough, the wind direction is poorly
resolved. The wind must be at least strong enough to overcome friction and turn the
anemometer. Thus, in this case, our confidence in one attribute (wind direction) is
dependent on the value of another attribute (wind speed). In MODE, all of the
confidence maps except the map for axis angle are set to a constant value of 1. The
axis angle confidence map is a function of aspect ratio, with values near one having low
confidence, and values far from one having high confidence.	

Next, scalar weights, wi, are assigned to each attribute, representing an empirical
judgment regarding the relative importance of the various attributes. As an example, in
initial applications of MODE, centroid distance was weighted more heavily than other
attributes, because the location of storm systems close to each other in space seemed
to be a strong indication (stronger than that given by any other attribute) that they were
related.

Finally, all these ingredients are collected into a single number called the total interest,
T, given by

1 2, ,..., nα α α

1 2(, ,...,)nα α α α=

() ()
()

()

i i i i
i

i i
i

wC I
T

wC

α α
α

α
=
∑

∑

Chapter 6: The MODE Tool 6-6

This total interest value is then thresholded, and pairs of objects that have total interest
values above the threshold are merged (if they are in the same field) or matched (if they
are in different fields).

Another merging method is available in MODE, which can be used instead of, or along
with, the fuzzy logic based merging just described. Recall that the convolved field was
thresholded to produce the mask field. A second (lower) threshold can be specified so
that objects that are separated at the higher threshold but joined at the lower threshold
are merged.

6.2.4 Summary statistics

Once MODE has been run, summary statistics are written to an output file. These files
contain information about all single and cluster objects and their attributes. Total
interest for object pairs is also output, as are percentiles of intensity inside the objects.
The output file is in a simple flat ASCII tabular format (with one header line) and thus
should be easily readable by just about any programming language, scripting language,
or statistics package. (See the examples using awk in Chapter 10.) Refer to Section
6.3.3 for lists of the statistics included in the mode output files. Example scripts will be
posted on the MET website in the future.

6.3 Practical information

This section contains a description of how MODE can be configured and run. The
MODE tool is used to perform a features-based verification of gridded model data using
gridded observations. The input gridded model and observation datasets must be in
GRIB format or in NetCDF format as the output of the pcp_combine tool. In both cases,
the input model and observation dataset must be on a common grid. The gridded
analysis data may be based on observations, such as Stage II or Stage IV data for
verifying accumulated precipitation, or a model analysis field may be used. However,
users are cautioned that it is generally unwise to verify model output using an analysis
field produced by the same model.

MODE provides the capability to select a single model variable/level from which to
derive objects to be analyzed. MODE was developed and tested using accumulated
precipitation. However, the code has been generalized to allow the use of any gridded
model and observation field. Based on the options specified in the configuration file,
MODE will define a set of simple objects in the model and observation fields. It will then
compute an interest value for each pair of objects across the fields using a fuzzy engine
approach. Those interest values are thresholded, and any pairs of objects above the
threshold will be matched/merged. Through the configuration file, MODE offers a wide
range of flexibility in how the objects are defined, processed, matched, and merged.

Chapter 6: The MODE Tool 6-7

6.3.1 mode usage

The usage statement for the MODE tool is listed below:

Usage: mode
 fcst_file
 obs_file
 config_file
 [-config_merge merge_config_file]
 [-fcst_valid time]
 [-fcst_lead time]
 [-obs_lead time]
 [-outdir path]
 [-plot]
 [-obj_plot]
 [-obj_stat]
 [-ct_stat]
 [-log file]
 [-v level]

The MODE tool has three required arguments and can accept several optional
arguments.

Required arguments for mode

1. The fcst_file argument indicates the GRIB file or NetCDF output of
pcp_combine containing the model field to be verified.

2. The obs_file argument indicates the GRIB file or the NetCDF output of

pcp_combine containing the gridded observations to be used for the verification
of the model.

3. The config_file argument indicates the name of the configuration file to be used.

The contents of the configuration file are discussed below.

Optional arguments for mode

1. The –config_merge merge_config_file argument indicates the name of a
second configuration file to be used when performing fuzzy engine merging by
comparing the model or observation field to itself. The MODE tool provides the
capability of performing merging within a single field by comparing the field to
itself. Interest values are computed for each object and all of its neighbors. If an
object and its neighbor have an interest value above some threshold, they are
merged. The merge_config_file controls the settings of the fuzzy engine used
to perform this merging step. If a merge_config_file is not provided, the
configuration specified by the config_file in the previous argument will be used.

Chapter 6: The MODE Tool 6-8

2. The –fcst_valid time option in YYYYMMDD[_HH[MMSS]] format sets the
valid time of the forecast, for use with files that contain multiple forecasts.

3. The –fcst_lead time option in HH[MMSS] format sets the forecast lead time,

for use with files that contain multiple forecasts.

4. The –obs_lead time option in HHMMSS format sets the observation lead time

to be used.

5. The –outdir path indicates the directory where output files should be written.

6. The –plot option disables the generation of the output PostScript plot
containing a summary of the features-based verification technique.

7. The –obj_plot option disables the generation of the output NetCDF file

containing the forecast and observation simple and cluster object fields.

8. The –obj_stat option disables the generation of the output ASCII file
containing the attributes of the simple and cluster objects and pairs of objects.

9. The –ct_stat option disables the generation of the output ASCII file containing

the contingency table counts and statistics for the raw, filtered, and object fields.

10. The -log file option directs output and errors to the specified log file. All
messages will be written to that file as well as cout and cerr. Thus, users can
save the messages without having to redirect the output on the command line.
The default behavior is no logfile.

10. The –v level option indicates the desired level of verbosity. The contents of
“level” will override the default setting of 1. Setting the verbosity to 0 will make
the tool run with no log messages, while increasing the verbosity above 1 will
increase the amount of logging.

An example of the MODE calling sequence is listed below:

Example 1
mode sample_fcst.grb
 sample_obs.grb
 WrfModeConfig_grb

In Example 1, the MODE tool will verify the model data in the sample_fcst.grb GRIB
file using the observations in the sample_obs.grb GRIB file applying the configuration
options specified in the WrfModeConfig_grb file.

A second example of the MODE calling sequence is presented below:

Chapter 6: The MODE Tool 6-9

Example 2
mode sample_fcst.nc
 sample_obs.nc
 WrfModeConfig_nc

In Example 2, the MODE tool will verify the model data in the sample_fcst.nc
NetCDF output of pcp_combine using the observations in the sample_obs.nc
NetCDF output of pcp_combine, using the configuration options specified in the
WrfModeConfig file. Since the model and observation files contain only a single field
of accumulated precipitation, the WrfModeConfig_nc file should specify that
accumulated precipitation be verified.

6.3.2 mode configuration file

The default configuration file for the MODE tool, WrfModeConfig_default, can be
found in the data/config directory in the MET distribution. Another version of the
configuration file is provided in scripts/config. We encourage users to make a
copy of the configuration files prior to modifying their contents. A web tool that
generates config file text is available via a link from the MET Users’ web site.
Each configuration file contains many comments describing its contents. Descriptions
of WrfModeConfig_default and the required variables for any mode configuration
file are also provided below. While the configuration file contains many entries, most
users will only need to change a few for their use. Specific options are described in the
following subsections.

Note that environment variables may be used when editing configuration files, as
described in the section 3.5.2 for the PB2NC tool.

model = “WRF”;

The model variable contains a short text string identifying the name to be assigned to
the model being verified. This text string is written out in the first column of the ASCII
output so that verification statistics from multiple models may be differentiated. The
value listed above is simply set to “WRF”.

grid_res = 4;

The grid_res variable is the nominal spacing for each grid square in kilometers. The
variable is not used directly in the code, but subsequent variables in the configuration
file are defined in terms of it. Therefore, setting this appropriately will help ensure that
appropriate default values are used for these variables.

fcst_field = "APCP/A3" ;

Chapter 6: The MODE Tool 6-10

obs_field = "APCP/A3" ;

The fcst_field and obs_field variables specify the model variable and
observation variable, respectively, and correspond to the vertical level to be verified.
The GRIB code itself or the corresponding abbreviation may be used to specify which
model field is to be verified. A slash and a level indicator in the form “ANNN”, “ZNNN”,
“PNNN”, “PNNN-NNN”, “LNNN”, or “RNNN” must follow each GRIB code. These
indicate an accumulation interval, a single vertical level, a single pressure level, a range
of pressure levels, a generic level, and a specific GRIB record number, respectively.
“NNN” indicates the accumulation or level value. The value listed above indicates that
accumulated precipitation (GRIB code 61) with a 3-hourly accumulation interval should
be verified. A list of GRIB codes is available at
 http://www.nco.ncep.noaa.gov/pmb/docs/on388/table2.html.

mask_missing_flag = 0;

The mask_missing_flag variable specifies how missing data in the raw model and
observation fields will be treated.

• 0 indicates no additional processing is to be done.
• 1 indicates missing data in the observation field should be used to mask the

forecast field.
• 2 indicates missing data in the forecast field should be used to mask the

observation field.
• 3 indicates masking should be performed in both directions (i.e., mask the

forecast field with the observation field and vice-versa).

Prior to defining objects, it is recommended that the raw fields be made to look similar to
each other by assigning a value of 3 to this parameter. However, by default no masking
is performed.

mask_grid = “”;

The mask_grid variable specifies a pre-defined NCEP grid with which to mask the raw
forecast and observation fields. The predefined grids are specified as “GNNN” where
NNN is the three digit designation for the grid. By default, no masking grid is applied. A
list of the set of pre-defined masks included with the MODE tool is presented in
Appendix B.

mask_grid_flag = 0;

The mask_grid_flag variable specifies how the mask_grid should be applied.

• 0 indicates that the masking grid should not be applied.

Chapter 6: The MODE Tool 6-11

• 1 indicates that the masking grid should be applied to the forecast field.
• 2 indicates that the masking grid should be applied to the observation field.
• 3 indicates that the masking grid should be applied to both fields.

By default, the masking grid is not applied.

mask_poly = “”;

Similar to the mask_grid variable above, the mask_poly variable is the name of a file
that defines a verification masking region. These masking regions may be specified in
two ways: as a lat/lon polygon or using a gridded data file such as the NetCDF output of
the Gen-Poly-Mask tool.

Several masking polygons used by NCEP are predefined in the data/poly
subdirectory of the MET distribution. Creating a new polygon is as simple as creating a
text file with a name for the polygon followed by the lat/lon points which define its
boundary. Adding a new masking polygon requires no code changes and no
recompiling. Internally, the lat/lon polygon points are converted into x/y values in the
grid.

Alternatively, any gridded data file that MET can read may be used to define a
verification masking region. Users must specify a description of the field to be used
from the input file and, optionally, may specify a threshold to be applied to that field.
Any grid point where the resulting field is 0, the mask is turned off. Any grid point where
it is non-zero, the mask is turned on.

mask_poly_flag = 0;

Similar to the mask_grid_flag variable above, the mask_poly_flag variable
specifies how the masking polygon should be applied.

• 0 indicates the masking polygon should be applied to neither field.
• 1 indicates the masking polygon should be applied to the forecast field.
• 2 indicates the masking polygon should be applied to the observation field.
• 3 indicates that the masking polygon should be applied to both fields.

By default, the masking polygon is not applied.

fcst_raw_thresh = “ge0.0”;
obs_raw_thresh = “ge0.0”;

The fcst_raw_thresh and obs_raw_thresh variables are used to threshold the
raw fields. Prior to defining objects, it is recommended that the raw fields should be
made to look similar to each other. For example, if the model only predicts values for a
variable above some threshold, the observations should be thresholded at that same

Chapter 6: The MODE Tool 6-12

level. The thresholds are specified using the Fortran conventions of gt, ge, eq, ne, lt,
le to indicate greater than, greater than or equal to, equal to, not equal to, less than,
and less than or equal to, respectively. By default, the raw fields are thresholded
greater than or equal to zero.

fcst_conv_radius = 60/grid_res;
obs_conv_radius = 60/grid_res;

The fcst_conv_radius and obs_conv_radius variables define the radius of the
circular convolution applied to smooth the raw fields. The radii are specified in terms of
grid units. The default convolution radii are defined in terms of the previously defined
grid_res variable.

bad_data_thresh = 0.5;

The bad_data_thresh variable must be set between 0 and 1. When performing the
circular convolution step if the proportion of bad data values in the convolution area is
greater than or equal to this threshold, the resulting convolved value will be bad data. If
the proportion is less than this threshold, the convolution will be performed on only the
valid data. By default, the bad_data_thresh is set to 0.5.

fcst_conv_thresh = “ge5.0”;
obs_conv_thresh = “ge5.0”;

The fcst_conv_thresh and obs_conv_thresh variables specify the threshold
values to be applied to the convolved field to define objects. The thresholds are
specified using the Fortran conventions of gt, ge, eq, ne, lt, le described previously.
By default, objects are defined using a convolution threshold of 5.0.

fcst_area_thresh = “ge0”;
obs_area_thresh = “ge0”;

The fcst_area_thresh and obs_area_thresh variables specify the area threshold
values to be applied to the defined objects. The area of an object is simply a count of
the number of grid squares that comprise it. A user may, for example, want to only
consider objects that meet some minimum size criteria. The thresholds are specified
using the Fortran conventions of gt, ge, eq, ne, lt, le described previously. By
default, all objects are retained since the area thresholds are set to greater than or
equal to zero.

Chapter 6: The MODE Tool 6-13

fcst_inten_perc = 100;
fcst_inten_perc_thresh = “ge0.0”;
obs_inten_perc = 100;
obs_inten_perc_thresh = “ge0.0”;

The fcst_inten_perc, fcst_inten_perc_thresh, obs_inten_perc, and
obs_inten_perc_thresh variables specify the intensity threshold values to be
applied to the defined objects. For each object defined, the intensity values within the
object are sorted, and the requested intensity percentile value is computed. By default,
the maximum value is computed since the intensity percentiles are set to 100. Any
objects with an intensity percentile that does not meet the corresponding intensity
percentile threshold specified will be discarded. A user may, for example, want to only
consider objects that meet some maximum intensity criteria. By default, the intensity
percentile threshold applied is greater than or equal to zero.

fcst_merge_thresh = “ge1.25”;
obs_merge_thresh = “ge1.25”;

The fcst_merge_thresh and obs_merge_thresh variables are used to define
larger objects for use in merging the original objects. These variables define the
threshold value used in the double thresholding merging technique. Note that in order
to use this merging technique, it must be requested using the fcst_merge_flag and
obs_merge_flag. These thresholds should be chosen to define larger objects that
fully contain the originally defined objects. For example, for objects defined as ge5.0,
a merge threshold of ge2.5 will define larger objects that fully contain the original
objects. Any two original objects contained within the same larger object will be
merged. By default, the merge thresholds are set to be greater than or equal to 1.25.

fcst_merge_flag = 1;
obs_merge_flag = 1;

The fcst_merge_flag and obs_merge_flag variable control what type of merging
techniques will be applied to the objects defined in each field.

• 0 indicates that no merging should be applied.
• 1 indicates that the double thresholding merging technique should be applied.
• 2 indicates that objects in each field should be merged by comparing the objects

to themselves using a fuzzy engine approach.
• 3 indicates that both techniques should be used.

By default, the double thresholding merging technique is applied.

match_flag = 1;

Chapter 6: The MODE Tool 6-14

The match_flag variable controls how matching will be performed when comparing
objects from the forecast field to objects from the observation field. An interest value is
computed for each possible pair of forecast/observation objects. The interest values
are then thresholded to define which objects match. If two objects in one field happen
to match the same object in the other field, then those two objects could be merged.
The match_flag controls what type of merging is allowed in this context.

• 0 indicates that no matching should be performed between the fields at all.
• 1 indicates that additional merging is allowed in both fields.
• 2 indicates that additional merging is allowed only in the forecast field.
• 3 indicates that no additional merging is allowed in either field, meaning that

each object will match at most one object in the other field.
By default, additional merging is allowed in both fields.

max_centroid_dist = 800/grid_res;

Computing the attributes for all possible pairs of objects can take some time depending
on the numbers of objects. The max_centroid_dist variable is used to specify how
far apart objects should be in order to conclude that they have no chance of matching.
No pairwise attributes are computed for pairs of objects whose centroids are farther
away than this distance, defined in terms of grid units. Setting this variable to a
reasonable value will improve the execution time of the MODE tool. By default, the
maximum centroid distance is defined in terms of the previously defined grid_res
variable.

centroid_dist_weight = 2.0;
boundary_dist_weight = 4.0;
convex_hull_dist_weight = 0.0;
angle_diff_weight = 1.0;
area_ratio_weight = 1.0;
int_area_ratio_weight = 2.0;
complexity_ratio_weight = 0.0;
intensity_ratio_weight = 0.0;

The weight variables listed above control how much weight is assigned to each
pairwise attribute when computing a total interest value for object pairs. The weights
listed above correspond to the centroid distance between the objects, the boundary
distance (or minimum distance), the convex hull distance (or minimum distance
between the convex hulls of the objects), the orientation angle difference, the object
area ratio, the intersection divided by the union area ratio, the complexity ratio,
and the intensity ratio. The weights need not sum to any particular value. When the
total interest value is computed, the weighted sum is normalized by the sum of the
weights listed above.

Chapter 6: The MODE Tool 6-15

intensity_percentile = 50;

The intensity_percentile variable corresponds to the
intensity_ratio_weight variable listed above. The intensity_percentile
should be set between 0 and 100 to define which percentile of intensity should be
compared for pairs of objects. By default, the 50th percentile, or median value, is
chosen.

centroid_dist_if = {
 (0.0, 1.0)
 (40.0/grid_res, 1.0)
 (400.0/grid_res, 0.0)
};

boundary_dist_if = {
 (0.0, 1.0)
 (160.0/grid_res, 1.0)
 (800.0/grid_res, 0.0)
};

convex_hull_dist_if = {
 (0.0, 1.0)
 (160.0/grid_res, 1.0)
 (800.0/grid_res, 0.0)
};

angle_diff_if = {
 (0.0, 1.0)
 (30.0, 1.0)
 (90.0, 0.0)
};

corner = 0.8;
ratio_if = {
 (0.0, 0.0)
 (corner, 1.0)
 (1.0, 1.0)
};

area_ratio_if(x) = ratio_if(x);

int_area_ratio_if = {
 (0.00, 0.00)
 (0.10, 0.50)
 (0.25, 1.00)
 (1.00, 1.00)
};

Chapter 6: The MODE Tool 6-16

complexity_ratio_if(x) = ratio_if(x);

intensity_ratio_if(x) = ratio_if(x);

The set of interest function variables listed above define which values are of interest for
each pairwise attribute measured. The interest functions may be defined as a
piecewise linear function or as an algebraic expression. A piecewise linear function is
defined by specifying the corner points of its graph. An algebraic function may be
defined in terms of several built-in mathematical functions. See the documentation for
the configuration file language on the MET User’s website
(http://www.dtcenter.org/met/users) for more details. By default, many of these
functions are defined in terms of the previously defined grid_res variable.

aspect_ratio_conf(t) = ((t – 1)^2/(t^2 + 1))^0.3 ;

The aspect_ratio_conf variable defines a confidence function applied to the angle
difference attribute. Objects that have an aspect ratio that is nearly one will be close to
circular in shape. Therefore, the object’s angle is not well defined. Thus, lower
confidence is given to the computed angle difference attribute.

area_ratio_conf(t) = t ;

The area_ratio_conf variable defines a confidence function applied to the centroid
distance attribute. Two objects that are very different in size will have an area ratio that
is close to zero. For cases like this, the area_ratio_conf variable allows the user to
assign less confidence to the measured distance between their centroids.

total_interest_thresh = 0.7;

The total_interest_thresh variable should be set between 0 and 1. This
threshold is applied to the total interest values computed for each pair of objects.
Object pairs that have an interest value that is above this threshold will be matched,
while those with an interest value that is below this threshold will remain unmatched.
Increasing the threshold will decrease the number of matches while decreasing the
threshold will increase the number of matches. By default, the total interest threshold is
set to 0.7.

print_interest_thresh = 0.0;

The print_interest_thresh variable determines which pairs of object attributes
will be written to the output object attribute ASCII file. The user may choose to set the
print_interest_thresh to the same value as the total_interest_thresh,

Chapter 6: The MODE Tool 6-17

meaning that only object pairs that actually match are written to the output file. By
default, the print interest threshold is set to zero, meaning that all object pair attributes
will be written as long as the distance between the object centroids is less than the
max_centroid_dist variable.

met_data_dir = “MET_BASE/data”;

The MODE tool uses several static data files when generating plots. If it cannot find the
data it needs in the expected directory, it will error out. The met_data_dir variable
may be set to the path that contains the data/ subdirectory of the top-level MET
directory to instruct MODE where to find the static data files.

fcst_raw_color_table =
“MET_BASE/data/colortables/met_default.ctable”;
obs_raw_color_table =
“MET_BASE/data/colortables/met_default.ctable”;
mode_color_table =
“MET_BASE/data/colortables/mode_obj.ctable”;

The fcst_raw_color_table, obs_raw_color_table and mode_color_table
variables indicate which color table files are to be used when generating the output
PostScript plot. The forecast and observation raw field are plotted using values in the
fcst_raw_color_table and obs_raw_color_table, while the objects identified
are plotted using the values in the mode_color_table. By default, these variables
point to color tables in the MET distribution. Users are free to create their own color
tables following the format in the examples. Note that the range defined for the default
raw color table is 0 to 1. By convention, when a color table is defined with a range of 0
to 1, it will be scaled to match the actual range of the data present in raw field.

fcst_raw_plot_min = 0.0;
fcst_raw_plot_max = 0.0;
obs_raw_plot_min = 0.0;
obs_raw_plot_max = 0.0;

These variables indicate the min and max data values to be plotted for the forecast and
observation fields. If set to non-zero values, the forecast and observation raw color
tables specified above will be rescaled to match the specified range.

stride_length = 1;

The MODE tool generates a color bar to represent the contents of the colorable that
was used to plot a field of data. The number of entries in the color bar matches the

Chapter 6: The MODE Tool 6-18

number of entries in the color table. The values defined for each color in the color table
are also plotted next to the color bar. The stride_length variable is used to define
the frequency with which the color table values should be plotted. Setting this variable
to 1, as shown above, indicates that every color table value should be plotted. Setting it
to an integer, n > 1, indicates that only every nth color table value should be plotted.

zero_border_size = 1;

The MODE tool is not able to define objects that touch the edge of the grid. After the
convolution step is performed the outer columns and rows of data are zeroed out to
enable MODE to identify objects. The zero_border_size variable specifies how
many outer columns and rows of data are to be zeroed out.

plot_valid_flag = 0;

When applied, the plot_valid_flag variable indicates that only the region containing
valid data after masking is applied should be plotted.

• 0 indicates the entire domain should be plotted.
• 1 indicates only the region containing valid data after masking should be

plotted.

The default value of this flag is 0.

plot_gcarc_flag = 0;

When applied, the plot_gcarc_flag variable indicates that the edges of polylines
should be plotted using great circle arcs as opposed to straight lines in the grid. The
default value of this flag is 0.

grib_ptv = 2;

The grib_ptv sets the GRIB table 2 parameter version, and thus indicates how to
interpret GRIB codes between 128 and 255. The default is 2 and possible values are (2,
128, 129, 130, 131, 133, 140, 141). See the NCEP documentation at
http://www.nco.ncep.noaa.gov/pmb/docs/on388/table2.html for details.

output_prefix = "";

Chapter 6: The MODE Tool 6-19

This option specifies a string to be used in the output file name. It can be useful for
keeping results for different models or variables from overwriting each other.

version = “V3.1”;

The version indicates the version of the mode configuration file used. Future
versions of MET may include changes to mode and the mode configuration file. This
value should not be modified.

6.3.3 mode output

MODE produces output in ASCII, NetCDF, and PostScript formats.

The MODE tool creates two ASCII output files. The first ASCII file contains contingency
table counts and statistics for comparing the forecast and observation fields. This file
consists of 4 lines. The first is a header line containing column names. The second line
contains data comparing the two raw fields after any masking of bad data or based on a
grid or lat/lon polygon has been applied. The third contains data comparing the two
fields after any raw thresholds have been applied. The fourth, and last, line contains
data comparing the derived object fields scored using traditional measures. This file
uses the following naming convention:
mode_PREFIX_FCST_VAR_LVL_vs_
OBS_VAR_LVL_HHMMSSL_YYYYMMDD_HHMMSSV_ HHMMSSA_cts.txt where
PREFIX indicates the user-defined output prefix, FCST_VAR_LVL is the forecast
variable and vertical level being used, OBS_VAR_LVL is the observation variable and
vertical level being used, HHMMSSL indicates the forecast lead time,
YYYYMMDD_HHMMSSV indicates the forecast valid time, and HHMMSSA indicates
the accumulation period. The cts string stands for contingency table statistics. The
generation of this file can be disabled using the –ct_stat command line option. This
CTS output file differs somewhat from the CTS output of the Point-Stat and Grid-Stat
tools. The columns of this output file are summarized in table 6-1.

Table 6-1. Format of CTS output file.
MODE ASCII CONTINGENCY TABLE OUTPUT FORMAT

Column
Number

MODE CTS Column
Name Description

1 VERSION Version number (set to 3.0)
2 MODEL User provided text string designating model name

Chapter 6: The MODE Tool 6-20

MODE ASCII CONTINGENCY TABLE OUTPUT FORMAT
Column
Number

MODE CTS Column
Name Description

3 FCST_LEAD Forecast lead time in HHMMSS format
4 FCST_VALID Forecast valid start time in YYYYMMDDHH format
5 FCST_ACCUM Forecast accumulation time in HHMMSS format

6
OBS_LEAD

Observation lead time in HHMMSS format; when
field2 is actually an observation, this should be
“000000”

7 OBS_VALID
Observation valid start time in YYYYMMDDHH
format

8 OBS_ACCUM
Observation accumulation time in HHMMSS
format

9 FCST_RAD Forecast convolution radius in grid squares
10 FCST_THR Forecast convolution threshold
11 OBS_RAD Observation convolution radius in grid squares
12 OBS_THR Observation convolution threshold
13 FCST_VAR Forecast variable
14 FCST_LEV Forecast vertical level
15 OBS_VAR Observation variable
16 OBS_LEV Observation vertical level

17

FIELD

Field type for this line:
• RAW for the raw input fields
• FILTER for the raw fields after applying the raw

thresholds
• OBJECT for the resolved object fields

18 TOTAL Total number of matched pairs
19 FY_OY Number of forecast yes and observation yes
20 FY_ON Number of forecast yes and observation no
21 FN_OY Number of forecast no and observation yes
22 FN_ON Number of forecast no and observation no
23 BASER Base rate
24 FMEAN Forecast mean
25 ACC Accuracy
26 FBIAS Frequency Bias
27 PODY Probability of detecting yes
28 PODN Probability of detecting no
29 POFD Probability of false detection
30 FAR False alarm ratio
31 CSI Critical Success Index
32 GSS Gilbert Skill Score
33 HK Hanssen-Kuipers Discriminant
34 HSS Heidke Skill Score
35 ODDS Odds Ratio

Chapter 6: The MODE Tool 6-21

The second ASCII file the MODE tool generates contains all of the attributes for simple
objects, the merged cluster objects, and pairs of objects. Each line in this file contains
the same number of columns, though those columns not applicable to a given line
contain fill data. The first row of every MODE object attribute file is a header containing
the column names. The number of lines in this file depends on the number of objects
defined. This file contains lines of 6 types that are indicated by the contents of the
“object_id” column. The “object_id” can take the following 6 forms: FNNN, ONNN,
FNNN_ONNN, CFNNN, CONNN, CFNNN_CONNN. In each case, NNN is a three-digit
number indicating the object index. While all lines have the first 18 header columns in
common, these 6 forms for “object_id” can be divided into two types – one for single
objects and one for pairs of objects. The single object lines (FNNN, ONNN, CFNNN,
and CONNN) contain valid data in columns 19-39 and fill data in columns 40-51. The
object pair lines (FNNN_ONNN and CFNNN_CONNN) contain valid data in columns 40-
51 and fill data in columns 19-39. These object identifiers are described in Table 6-2.
The generation of this file can be disabled using the –obj_stat command line option.

Table 6-2. Object identifier descriptions for MODE object attribute output files.
Object identifier (object_id) Valid Data Columns Description of valid data
FNNN,
ONNN 1-18, 19-39 Attributes for simple forecast,

observation objects

FNNN_ONNN 1-18, 40-51
Attributes for pairs of simple
forecast and observation
objects

CFNNN,
CONNN 1-18, 19-39

Attributes for merged cluster
objects in forecast,
observation fields

CFNNN_CONNN 1-18, 40-51
Attributes for pairs of
forecast, observation cluster
objects

A note on terminology: a cluster (referred to as “composite” in earlier versions) object
need not necessarily consist of more than one simple object. A cluster object is by
definition any set of one or more objects in one field which match a set of one or more
objects in the other field. When a single simple forecast object matches a single simple
observation object, they are each considered to be cluster objects as well.

The contents of the columns in this ASCII file are summarized in Table 6-3.

Table 6-3. Format of MODE object attribute output files.
MODE ASCII OBJECT ATTRIBUTE OUTPUT FORMAT

Column
Number MODE Column Name Description

1 VERSION Version number (set to 3.0)

Chapter 6: The MODE Tool 6-22

MODE ASCII OBJECT ATTRIBUTE OUTPUT FORMAT
Column
Number MODE Column Name Description

2 MODEL User provided text string designating model name
3 FCST_LEAD Forecast lead time in HHMMSS format
4 FCST_VALID Forecast valid start time in YYYYMMDDHH format
5 FCST_ACCUM Forecast accumulation time in HHMMSS format

6 OBS_LEAD
Observation lead time in HHMMSS format; when
field2 is actually an observation, this should be
“000000”

7 OBS_VALID Observation valid start time in YYYYMMDDHH
format

8 OBS_ACCUM Observation accumulation time in HHMMSS
format

9 FCST_RAD Forecast convolution radius in grid squares
10 FCST_THR Forecast convolution threshold
11 OBS_RAD Observation convolution radius in grid squares
12 OBS_THR Observation convolution threshold
13 FCST_VAR Forecast variable
14 FCST_LEV Forecast vertical level
15 OBS_VAR Observation variable
16 OBS_LEV Observation vertical level

17 OBJECT_ID Object numbered from 1 to the number of objects
in each field

18 OBJECT_CAT Object category indicating to which cluster object it
belongs

19-20 CENTROID_X, _Y Location of the centroid (in grid units)
21-22 CENTROID_LAT, _LON Location of the centroid (in lat/lon degrees)
23 AXIS_ANG Object axis angle (in degrees)
24 LENGTH Length of the enclosing rectangle (in grid units)
25 WIDTH Width of the enclosing rectangle (in grid units)
26 AREA Object area (in grid squares)

27 AREA_FILTER Area of the object containing non-zero data in the
filtered field (in grid squares)

28 AREA_THRESH
Area of the object containing data values in the
filtered field that meet the object definition
threshold criteria (in grid squares)

29 CURVATURE Radius of curvature of the object defined in terms
of third order moments (in grid units)

30-31 CURVATURE_X, _Y Center of curvature (in grid coordinates)

32 COMPLEXITY Ratio of the area of an object to the area of its
convex hull (unitless)

33-37 INTENSITY_10, _25,
_50, _75, _90

10th, 25th, 50th, 75th, and 90th percentiles of
intensity of the filtered field within the object
(various units)

Chapter 6: The MODE Tool 6-23

MODE ASCII OBJECT ATTRIBUTE OUTPUT FORMAT
Column
Number MODE Column Name Description

38 INTENSITY_NN
The percentile of intensity chosen for use in the
percentile intensity ratio (column 50; variable
units)

39 INTENSITY_SUM Sum of the intensities of the filtered field within the
object (variable units)

40 CENTROID_DIST Distance between two objects centroids (in grid
units)

41 BOUNDARY_DIST Minimum distance between the boundaries of two
objects (in grid units)

42 CONVEX_HULL_DIST Minimum distance between the convex hulls of
two objects (in grid units)

43 ANGLE_DIFF Difference between the axis angles of two objects
(in degrees)

44 AREA_RATIO
Ratio of the areas of two objects defined as the
lesser of the forecast area divided by the
observation area or its reciprocal (unitless)

45 INTERSECTION_AREA Intersection area of two objects (in grid squares)
46 UNION_AREA Union area of two objects (in grid squares)

47 SYMMETRIC_DIFF Symmetric difference of two objects (in grid
squares)

48 INTERSECTION_OVER
_AREA Ratio of intersection area to union area (unitless)

49 COMPLEXITY_RATIO
Ratio of complexities of two objects defined as the
lesser of the forecast complexity divided by the
observation complexity or its reciprocal (unitless)

50 PERCENTILE_INTENSI
TY_RATIO

Ratio of the nth percentile (column 37) of intensity
of the two objects defined as the lesser of the
forecast intensity divided by the observation
intensity or its reciprocal (unitless)

51 INTEREST Total interest value computed for a pair of simple
objects (unitless)

The MODE tool creates a NetCDF output file containing the object fields that are
defined. The NetCDF file contains 4 gridded fields: indices for the simple forecast
objects, indices for the simple observation objects, indices for the matched cluster
forecast objects, and indices for the matched cluster observation objects. The NetCDF
file also contains lat/lon and x/y data for the vertices of the polygons for the boundaries
of the simple forecast and observation objects. The generation of this file can be
disabled using the –obj_plot command line option.

The dimensions and variables included in the mode NetCDF files are described in
Tables 6-4 and 6-5.

Chapter 6: The MODE Tool 6-24

Table 6-4. NetCDF dimensions for MODE output.
mode NetCDF OUTPUT FILE DIMENSIONS

NetCDF
Dimension Description

lat Dimension of the latitude (i.e. Number of grid points in the North-
South direction)

lon Dimension of the longitude (i.e. Number of grid points in the East-
West direction)

fcst_obj Number of simple forecast objects

fcst_bdy Number of points used to define the boundaries of all of the simple
forecast objects

obs_obj Number of simple observation objects

obj_bdy Number of points used to define the boundaries of all of the simple
observation objects

Table 6-5. Variables contained in MODE NetCDF output.
mode NetCDF OUTPUT FILE VARIABLES

NetCDF Variable Dimension Description
fcst_obj_id lat, lon Simple forecast object id number for each grid point
fcst_comp_id lat, lon Cluster forecast object id number for each grid point

obs_obj_id lat, lon Simple observation object id number for each grid
point

obs_comp_id lat, lon Cluster observation object id number for each grid
point

n_fcst_obj - Number of simple forecast objects
n_obs_obj - Number of simple observation objects

fcst_obj_bdy_start fcst_obj Index into the forecast boundary lat/lon and x/y arrays
for this object

fcst_obj_bdy_npts fcst_obj Number of boundary points in the lat/lon and x/y
arrays for this object

fcst_bdy_lat fcst_bdy Latitude value for the forecast boundary points
fcst_bdy_lon fcst_bdy Longitude value for the forecast boundary points
fcst_bdy_x fcst_bdy Grid-x value for the forecast boundary points
fcst_bdy_y fcst_bdy Grid-y value for the forecast boundary points

obs_obj_bdy_start obs_obj Index into the observation boundary lat/lon and x/y
arrays for this object

obs_obj_bdy_npts obs_obj Number of boundary points in the lat/lon and x/y
arrays for this object

obs_bdy_lat obs_bdy Latitude value for the observation boundary points
obs_bdy_lon obs_bdy Longitude value for the observation boundary points
obs_bdy_x obs_bdy Grid-x value for the observation boundary points
obs_bdy_y obs_bdy Grid-y value for the observation boundary points

Chapter 6: The MODE Tool 6-25

Lastly, the MODE tool creates a PostScript plot summarizing the features-based
approach used in the verification. The PostScript plot is generated using internal
libraries and does not depend on an external plotting package. The generation of this
PostScript output can be disabled using the -plot command line option.

The PostScript plot will contain 5 summary pages at a minimum, but the number of
pages will depend on the merging options chosen. Additional pages will be created if
merging is performed using the double thresholding or fuzzy engine merging techniques
for the forecast and/or observation fields. Examples of the PostScript plots can be
obtained by running the example cases provided with the MET tarball.

The first page of PostScript output contains a great deal of summary information. Six
tiles of images provide thumbnail images of the raw fields, matched/merged object
fields, and object index fields for the forecast and observation grids. In the
matched/merged object fields, matching colors of objects across fields indicate that the
corresponding objects match, while within a single field, black outlines indicate merging.
Note that objects that are colored royal blue are unmatched. Along the bottom of the
page, the criteria used for object definition and matching/merging are listed. Along the
right side of the page, total interest values for pairs of simple objects are listed in sorted
order. The numbers in this list correspond to the object indices shown in the object
index plots.

The second and third pages of the PostScript output file display enlargements of the
forecast and observation raw and object fields, respectively. The fourth page displays
the forecast object with the outlines of the observation objects overlaid, and vice versa.
The fifth page contains summary information about the pairs of matched cluster objects.

If the double threshold merging or the fuzzy engine merging techniques have been
applied, the output from those steps is summarized on additional pages.

Chapter 7: The Wavelet-Stat Tool 7-1

Chapter 7 – The Wavelet-Stat Tool

7.1 Introduction

The Wavelet-Stat tool decomposes two-dimensional forecasts and observations
according to intensity and scale. This chapter provides a description of the MET
Wavelet-Stat Tool, which enables users to apply the Intensity-Scale verification
technique described by Casati et al. (2004).

The Intensity-Scale technique is one of the recently developed verification approaches
that focus on verification of forecasts defined over spatial domains. Spatial verification
approaches, as opposed to point-by-point verification approaches, aim to account for
the presence of features and for the coherent spatial structure characterizing
meteorological fields. Since these approaches account for the intrinsic spatial
correlation existing between nearby grid-points, they do not suffer from point-by-point
comparison related verification issues, such as double penalties. Spatial verification
approaches aim to account for the observation and forecast time-space uncertainties,
and aim to provide feedback on the forecast error in physical terms.

The Intensity-Scale verification technique, as most of the spatial verification
approaches, compares a forecast field to an observation field. To apply the Intensity-
Scale verification approach, observations need to be defined over the same spatial
domain of the forecast to be verified.

Within the spatial verification approaches, the Intensity-Scale technique belongs to the
scale-decomposition (or scale-separation) verification approaches. The scale-
decomposition approaches enable users to perform the verification on different spatial
scales. Weather phenomena on different scales (e.g. frontal systems versus convective
showers) are often driven by different physical processes. Verification on different
spatial scales can therefore provide deeper insights into model performance at
simulating these different processes.

The spatial scale components are obtained usually by applying a single band spatial
filter to the forecast and observation fields (e.g. Fourier, Wavelets). The scale-
decomposition approaches measure error, bias and skill of the forecast on each
different scale component. The scale-decomposition approaches therefore provide
feedback on the scale dependency of the error and skill, on the no-skill to skill transition
scale, and on the capability of the forecast of reproducing the observed scale structure.

The Intensity-Scale technique evaluates the forecast skill as a function of the intensity
values and of the spatial scale of the error. The scale components are obtained by
applying a two dimensional Haar wavelet filter. Note that wavelets, because of their
locality, are suitable for representing discontinuous fields characterized by few sparse
non-zero features, such as precipitation. Moreover, the technique is based on a
categorical approach, which is a robust and resistant approach, suitable for non-
normally distributed variables, such as precipitation. The intensity-scale technique was

Chapter 7: The Wavelet-Stat Tool 7-2

specifically designed to cope with the difficult characteristics of precipitation fields, and
for the verification of spatial precipitation forecasts. However, the intensity-scale
technique can also be applied to verify other variables, such as cloud fraction.

7.2 Scientific and statistical aspects

7.2.1 The method

Casati et al (2004) applied the Intensity-Scale verification to preprocessed and re-
calibrated (unbiased) data. The preprocessing was aimed to mainly normalize the data,
and defined categorical thresholds so that each categorical bin had a similar sample
size. The recalibration was performed to eliminate the forecast bias. Preprocessing and
recalibration are not strictly necessary for the application of the Intensity-Scale
technique. The MET Intensity-Scale Tool does not perform either, and applies the
Intensity-Scale approach to biased forecasts, for categorical thresholds defined by the
user.

Chapter 7: The Wavelet-Stat Tool 7-3

Figure 7.1: NIMROD 3h lead-time forecast and corresponding verifying analysis field
(precipitation rate in mm/h, valid the 05/29/99 at 15:00 UTC); forecast and analysis binary
fields obtained for a threshold of 1mm/h, the binary field difference has their corresponding
Contingency Table Image (see Table 7.1). The forecast shows a storm of 160 km
displaced almost its entire length.

Chapter 7: The Wavelet-Stat Tool 7-4

The Intensity Scale approach can be summarized in the following 5 steps:

5. For each threshold, the forecast and observation fields are transformed into
binary fields: where the grid-point precipitation value meets the threshold criteria
it is assigned 1, where the threshold criteria are not met it is assigned 0. Figure
7.1 illustrates an example of a forecast and observation fields, and their
corresponding binary fields for a threshold of 1mm/h. This case shows an intense
storm of the scale of 160 km displaced almost its entire length. The displacement
error is clearly visible from the binary field difference and the contingency table
image obtained for the same threshold (Table 7.1).

6. The binary forecast and observation fields obtained from the thresholding are

then decomposed into the sum of components on different scales, by using a 2D
Haar wavelet filter (Fig 7.2). Note that the scale components are fields, and their
sum adds up to the original binary field. For a forecast defined over square
domain of 2n x 2n grid-points, the scale components are n+1: n mother wavelet
components + the largest father wavelet (or scale-function) component. The n
mother wavelet components have resolution equal to 1, 2, 4, ... 2n-1 grid-points.
The largest father wavelet component is a constant field over the 2n x 2n grid-
point domain with value equal to the field mean.
Note that the wavelet transform is a linear operator: this implies that the
difference of the spatial scale components of the binary forecast and observation
fields (Fig 7.2) are equal to the spatial scale components of the difference of the
binary forecast and observation fields (Fig. 7.3), and these scale components
also add up to the original binary field difference (Fig. 7.1). The intensity-scale
technique considers thus the spatial scale of the error. For the case illustrated
(Fig 7.1 and Fig 7.3) note the large error associated at the scale of 160 km, due
the storm, 160km displaced almost its entire length.
Note also that the means of the binary forecast and observation fields (i.e. their
largest father wavelet components) are equal to the proportion of forecast and
observed events above the threshold, (a+b)/n and (a+c)/n, evaluated from the
contingency table counts (Table 7.1) obtained from the original forecast and
observation fields by thresholding with the same threshold used to obtained the
binary forecast and observation fields. This relation is intuitive when observing
forecast and observation binary fields and their corresponding contingency table
image (Fig 7.1). The comparison of the largest father wavelet component of
binary forecast and observation fields therefore provides feedback on the whole
field bias.

7. For each threshold (t) and for each scale component (j) of the binary forecast and
observation, the Mean Squared Error (MSE) is then evaluated (Figure 7.4). The
error is usually large for small thresholds, and decreases as the threshold
increases. This behavior is partially artificial, and occurs because the smaller the
threshold the more events will exceed it, and therefore the larger would be the
error, since the error tends to be proportional to the amount of events in the

Chapter 7: The Wavelet-Stat Tool 7-5

binary fields. The artificial effect can be diminished by normalization: because of
the wavelet orthogonal properties, the sum of the MSE of the scale components
is equal to the MSE of the original binary fields: MSE(t) = Σj MSE(t,j). Therefore,
the percentage that the MSE for each scale contributes to the total MSE may be
computed: for a given threshold, t, MSE%(t,j) = MSE(t,j)/MSE(t). The MSE%
does not exhibit the threshold dependency, and usually shows small errors on
large scales and large errors on small scales, with the largest error associated to
the smallest scale and highest threshold. For the NIMROD case illustrated note
the large error at 160 km and between the thresholds of ½ and 4 mm/h, due to
the storm, 160km displaced almost its entire length.
Note that the MSE of the original binary fields is equal to the proportion of the
counts of misses (c/n) and false alarms (b/n) for the contingency table (Table 71)
obtained from the original forecast and observation fields by thresholding with the
same threshold used to obtain the binary forecast and observation fields: MSE(t)
= (b+c)/n. This relation is intuitive when comparing the forecast and observation
binary field difference and their corresponding contingency table image (Fig 71).

8. The MSE for the random binary forecast and observation fields is estimated by
MSE(t)random=FBI*Br*(1-Br) + Br*(1-FBI*Br), where FBI=(a+b)/(a+c) is the
frequency bias index and Br=(a+c)/n is the sample climatology from the
contingency table (Table 7.1) obtained from the original forecast and observation
fields by thresholding with the same threshold used to obtain the binary forecast
and observation fields. This formula follows by considering the Murphy and
Winkler (1987) framework, appling the Bayes' theorem to express the joint
probabilities b/n and c/n as product of the marginal and conditional probability
(e.g. Jolliffe and Stephenson, 2003; Wilks, 2006), and then noticing that for a
random forecast the conditional probability is equal to the unconditional one, so
that b/n and c/n are equal to the product of the corresponding marginal
probabilities solely.

9. For each threshold (t) and scale component (j), the skill score based on the MSE
of binary forecast and observation scale components is evaluated (Figure 7.5).
The standard skill score definition as in Jolliffe and Stephenson (2003) or Wilks
(2006) is used, and random chance is used as reference forecast. The MSE for
the random binary forecast is equipartitioned on the n+1 scales to evaluate the
skill score: SS(t,j)=1-MSE(t,j)*(n+1)/MSE(t)random
The Intensity-Scale (IS) skill score evaluates the forecast skill as a function of the
precipitation intensity and of the spatial scale of the error. Positive values of the
IS skill score are associated to a skillful forecast, whereas negative values are
associated to no skill. Usually large scales exhibit positive skill (large scale
events, such as fronts, are well predicted), whereas small scales exhibit negative
skill (small scale events, such as convective showers, are less predictable), and
the smallest scale and highest thresholds exhibit the worst skill. For the NIMROD
case illustrated note the negative skill associated to the 160 km scale, for the
thresholds ½ to 4 mm/h, due to the 160 km storm displaced almost its entire
length.

Chapter 7: The Wavelet-Stat Tool 7-6

Table 7-1: 2x2 contingency table in terms of counts. The nij values in the table
represent the counts in each forecast-observation category, where i represents the

forecast and j represents the observations. The “.” symbols in the total cells represent
sums across categories.

Forecast Observation Total o = 1 (e.g., “Yes”) o = 0 (e.g., “No”)
f = 1 (e.g., “Yes”) Hits = a False Alarms = b a + b
f = 0 (e.g., “No”) Misses = c Correct rejections =

d
c + d

Total a + c b + d a + b + c + d

In addition to the MSE and the SS, the energy squared is also evaluated, for each
threshold and scale (Fig 7.6). The energy squared of a field X is the average of the
squared values: En2(X)= Σi xi

2. The energy squared provides feedback on the amount of
events present in the forecast and observation fields for each scale, for a given
threshold. Usually, small thresholds are associated to a large energy, since many
events exceed the threshold. Large thresholds are associated to a small energy, since
few events exceed the threshold. Comparison of the forecast and observed squared
energy provide feedback on the bias on different scales, for each threshold.

The En2 bias for each threshold and scale is assessed by the En2 relative difference,
equal to the difference between forecast and observed squared energies normalized by
their sum: [En2(F)-En2(O)]/[En2(F)+End2(O)]. Since defined in such a fashion, the En2
relative difference accounts for the difference between forecast and observation
squared energies relative to their magnitude, and it is sensitive therefore to the ratio of
the forecast and observed squared energies. The En2 relative difference ranges
between -1 and 1, positive values indicate over-forecast and negative values indicate
under-forecast. For the NIMROD case illustrated the forecast exhibits over-forecast for
small thresholds, quite pronounced on the large scales, and under-forecast for high
thresholds.

Chapter 7: The Wavelet-Stat Tool 7-7

Figure 7.2: NIMROD binary forecast (top) and binary analysis (bottom) spatial scale
components obtained by a 2D Haar wavelet transform (th=1 mm/h). Scale 1 to 8
refer to mother wavelet components (5, 10, 20, 40, 80, 160, 320, 640 km resolution);
scale 9 refer to the largest father wavelet component (1280 km resolution)

Chapter 7: The Wavelet-Stat Tool 7-8

Figure 7.3: NIMROD binary field difference spatial scale components obtained by a 2D Haar
wavelet transform (th=1 mm/h). Scales 1 to 8 refer to mother wavelet components (5, 10, 20, 40,
80, 160, 320, 640 km resolution); scale 9 refers to the largest father wavelet component (1280 km
resolution). Note the large error at the scale 6 = 160 km, due to the storm, 160 km displaced
almost of its entire length.

Chapter 7: The Wavelet-Stat Tool 7-9

Figure 7.5: Intensity-Scale skill score for the NIMROD forecast and analysis shown in
Fig 7.1. The skill score is a function of the intensity of the precipitation rate and spatial
scale of the error. Note the negative skill associated to the scale 6 = 160 km, for the
thresholds ½ to 4 mm/h, associated to the displaced storm.

Figure 7.4: MSE and MSE % for the NIMROD binary forecast and analysis spatial scale
components. In the MSE%, note the large error associated to the scale 6 = 160 km, for the
thresholds ½ to 4 mm/h, associated to the displaced storm.

Chapter 7: The Wavelet-Stat Tool 7-10

Figure 7.6: Energy squared and energy squared percentages, for each threshold and
scale, for the NIMROD forecast and analysis, and forecast and analysis En2 and En2%
relative differences.

Chapter 7: The Wavelet-Stat Tool 7-11

As for the MSE, the sum of the energy of the scale components is equal to the energy
of the original binary field: En2(t) = Σj En2(t,j). Therefore, the percentage that the En2
for each scale contributes the total En2 may be computed: for a given threshold, t,
En2%(t,j) = En2(t,j)/En2(t). Usually, for precipitation fields, low thresholds exhibit most
of the energy percentage on large scales (and less percentage on the small scales),
since low thresholds are associated to large scale features, such as fronts. On the other
hand, for higher thresholds the energy percentage is usually larger on small scales,
since intense events are associated to small scales features, such as convective cells
or showers. The comparison of the forecast and observation squared energy
percentages provides feedback on how the events are distributed across the scales,
and enable the comparison of forecast and observation scale structure.

For the NIMROD case illustrated, the scale structure is assessed again by the relative
difference, but calculated of the squared energy percentages. For small thresholds the
forecast over-estimates the number of large scale events and under-estimates the
number of small scale events, in proportion to the total number of events. On the other
hand, for larger thresholds the forecast under-estimates the number of large scale
events and over-estimates the number of small scale events, again in proportion to the
total number of events. Overall it appears that the forecast over-estimates the
percentage of events associated to high occurrence, and under-estimate the
percentage of events associated to low occurrence. The En2% for the 64 mm/h
thresholds is homogeneously under-estimated for all the scales, since the forecast does
not have any event exceeding this threshold.

Note that the energy squared of the observation binary field is identical to the sample
climatology Br=(a+c)/n. Similarly, the energy squared of the forecast binary field is equal
to (a+b)/n. The ratio of the squared energies of the forecast and observation binary
fields is equal to the FBI=(a+b)/(a+c), for the contingency table (Table 7.1) obtained
from the original forecast and observation fields by thresholding with the same threshold
used to obtained the binary forecast and observation fields.

7.2.2 The spatial domain constraints

The Intensity-Scale technique is constrained by the fact that orthogonal wavelets
(discrete wavelet transforms) are usually performed on square domains of 2n x 2n grid-
points. The Wavelet-Stat tool handles this issue based on settings in the configuration
file. The Wavelet-Stat tool can define tiles of dimensions 2n x 2n over the input domain
in the following ways:

1. User-Defined Tiling: The user may define one or more tiles of size 2n x 2n over

Chapter 7: The Wavelet-Stat Tool 7-12

their domain to be applied. This is done by selecting the grid coordinates for the
lower-left corner of the tile(s) and the tile dimension to be used. If the user
specifies more than one tile, the Intensity-Scale method will be applied to each
tile separately. At the end, the results will automatically be aggregated across all
the tiles and written out with the results for each of the individual tiles. Users are
encouraged to select tiles which consist entirely of valid data.

2. Automated Tiling: This tiling method is essentially the same as the user-defined

tiling method listed above except that the tool automatically selects the location
and size of the tile(s) to be applied. It figures out the maximum tile of dimension
2n x 2n that fits within the domain and places the tile at the center of the domain.
For domains that are very elongated in one direction, it defines as many of these
tiles as possible that fit within the domain.

3. Padding: If the domain size is only slightly smaller than 2n x 2n, for certain

variables (e.g. precipitation), it is advisable to expand the domain out to 2n x 2n
grid-points by adding extra rows and/or columns of fill data. For precipitation
variables, a fill value of zero is used. For continuous variables, such as
temperature, the fill value is defined as the mean of the valid data in the rest of
the field. A drawback to the padding method is the introduction of artificial data
into the original field. Padding should only be used when a very small number of
rows and/or columns need to be added.

7.2.3 Aggregation of statistics on multiple cases

The Stat-Analysis tool aggregates the intensity scale technique results. Since the
results are scale-dependent, it is sensible to aggregate results from multiple model runs
(e.g. daily runs for a season) on the same spatial domain, so that the scale components
for each singular case will be the same number, and the domain, if not a square domain
of 2n x 2n grid-points, will be treated in the same fashion. Similarly, the intensity
thresholds for each run should all be the same.

The MSE and forecast and observation squared energy for each scale and thresholds
are aggregated simply with a weighted average, where weights are proportional to the
number of grid-points used in each single run to evaluate the statistics. If the same
domain is always used (and it should) the weights result all the same, and the weighted
averaging is a simple mean. For each threshold, the aggregated Br is equal to the
aggregated squared energy of the binary observation field, and the aggregated FBI is
obtained as the ratio of the aggregated squared energies of the forecast and
observation binary fields. From aggregated Br and FBI, the MSErandom for the
aggregated runs can be evaluated using the same formula as for the single run. Finally,
the Intensity-Scale Skill Score is evaluated by using the aggregated statistics within the
same formula used for the single case.

Chapter 7: The Wavelet-Stat Tool 7-13

7.3 Practical information

The following sections describe the usage statement, required arguments and optional
arguments for the Stat-Analysis tool.

7.3.1 Wavelet_stat usage

The usage statement for the Wavelet-Stat tool is shown below:

Usage: wavelet_stat
 fcst_file
 obs_file
 config_file
 [-fcst_valid time]
 [-time]
 [-obs_valid time]
 [-obs_lead time]
 [-outdir path]
 [-ps]
 [-nc]
 [-log file]
 [-v level]

Wavelet_stat has three required arguments and accepts up to seven optional ones.

Required arguments for wavelet_stat

1. The fcst_file argument indicates the GRIB file or NetCDF output of
pcp_combine containing the model data to be verified.

2. The obs_file argument indicates the GRIB file or the NetCDF output of

pcp_combine containing the gridded observations to be used for the verification
of the model.

3. The config_file argument indicates the name of the configuration file to be used.

The contents of the configuration file are discussed below.

Optional arguments for wavelet_stat

1. The –fcst_valid time option in YYYYMMDD[_HH[MMSS]] format sets the
valid time of the forecast, for use with files that contain multiple forecasts.

Chapter 7: The Wavelet-Stat Tool 7-14

2. The –fcst_lead time option in HH[MMSS] format sets the forecast lead time,
for use with files that contain multiple forecasts.

3. The –obs_valid_beg time option in YYYYMMDD[_HH[MMSS]] format sets the

beginning of the observation matching time window.

4. The –obs_valid_end time option in YYYYMMDD[_HH[MMSS]] format sets the
end of the observation matching time window.

5. The -outdir path indicates the directory where output files should be written.

6. The -ps option disables the PostScript output file.

7. The -log file option directs output and errors to the specified log file. All
messages will be written to that file as well as cout and cerr. Thus, users can
save the messages without having to redirect the output on the command line.
The default behavior is no logfile.

8. The -v level option indicates the desired level of verbosity. The contents of
“level” will override the default setting of 2. Setting the verbosity to 0 will make
the tool run with no log messages, while increasing the verbosity above 1 will
increase the amount of logging.

An example of the wavelet_stat calling sequence is listed below:

Example:
wavelet_stat sample_fcst.grb
 sample_obs.grb
 WaveletStatConfig

In the example, the Wavelet-Stat tool will verify the model data in the
sample_fcst.grb GRIB file using the observations in the sample_obs.grb GRIB
file applying the configuration options specified in the WaveletStatConfig file.

7.3.2 wavelet_stat configuration file

The default configuration file for the Wavelet-Stat tool,
WaveletStatConfig_default, can be found in the data/config directory in the
MET distribution. Another version of the configuration file is provided in
scripts/config. We encourage users to make a copy of the configuration files prior
to modifying their contents. Each configuration file contains many comments describing
its contents. Descriptions of WaveletStatConfig_default and the required
variables for any wavelet_stat configuration file are also provided below. While the
configuration file contains many entries, most users will only need to change a few for
their use. Specific options are described in the following subsections.

Chapter 7: The Wavelet-Stat Tool 7-15

Note that environment variables may be used when editing configuration files, as
described in the section 3.5.2 for the PB2NC tool.

model = “WRF”;

The model variable contains a short text string identifying the name to be assigned to
the model being verified. This text string is written out in the first column of the ASCII
output so that verification statistics from multiple models may be differentiated. The
value listed above is simply set to “WRF”.

fcst_field[] = ["APCP/A3"];
obs_field[] = [];

The fcst_field and obs_field variables specify one or more data fields to be
selected from the forecast and observation files to be compared. The fields should be
specified in the same way that they’re specified for the other MET tools.

fcst_thresh[] = ["gt0.0 ge5.0"];
obs_thresh[] = [];

The fcst_thresh and obs_thresh variables specify one or more thresholds that
should be applied to each fields selected above. The thresholds should be specified in
the same way that they’re specified for the other MET tools.

mask_missing_flag = 0;

The mask_missing_flag variable specifies how missing data in the raw model and
observation fields will be treated.

• 0 indicates no additional processing is to be done.
• 1 indicates missing data in the observation field should be used to mask the

forecast field.
• 2 indicates missing data in the forecast field should be used to mask the

observation field.
• 3 indicates masking should be performed in both directions (i.e., mask the

forecast field with the observation field and vice-versa).

grid_decomp_flag = 0;

The grid_decomp_flag variable specifies how tiling should be performed:

Chapter 7: The Wavelet-Stat Tool 7-16

• 0 indicates that the automated-tiling should be done.
• 1 indicates that the user-defined tiles should be applied.
• 2 indicated that the data should be padded out to the nearest dimension of 2n

x 2n

tile_xll[] = [0];
tile_yll[] = [0];
tile_dim = 0;

The tile_xll, tile_yll, and tile_dim variables allow users to manually define
the tiles of dimension they would like to apply. The tile_xll and tile_yll variables
specify the location of one or more lower-left tile grid (x, y) points. The tile_dim
variable must be set to a value of 2n and defines the dimension for all tiles to be
applied.

wavelet_flag = 0;
wavelet_k = 2;

The wavelet_flag and wavelet_k variables specify the type and shape of the
wavelet to be used for the scale decomposition. The Casati et al. (2004) method uses a
Haar wavelet which is a good choice for discontinuous fields like precipitation.
However, users may choose to apply any wavelet family/shape that is available in the
GNU Scientific Library. Values for the wavelet_flag variable, and associated
choices for k, are described below:

• 0 for the Haar wavelet (k = 2).
• 1 for the Centered-Haar wavelet (k = 2).
• 2 for the Daubechies wavelet (k = 4, 6, 8, 10, 12, 14, 16, 18, 20).
• 3 for the Centered-Daubechies wavelet (k = 4, 6, 8, 10, 12, 14, 16, 18, 20).

• 4 for the Bspline wavelet (k = 103, 105, 202, 204, 206, 208, 301, 303, 305, 307,

309).
• 5 for the Centered-Bspline wavelet (k = 103, 105, 202, 204, 206, 208, 301, 303,

305, 307, 309).

output_flag[] = [2, 1, 1];

The output_flag array controls the type of output that the Wavelet-Stat tool
generates. Setting the flag to 0 indicates that the output should not be generated.
Setting the flag to 1 (or 2) indicates that it should. The three output flags correspond to
the following:

Chapter 7: The Wavelet-Stat Tool 7-17

1. ISC for Intensity-Scale STAT lines.
2. NetCDF output file containing the scale decompositions for each combination of

tile/field/threshold.
3. PostScript output file summarizing the Intensity-Scale method.

met_data_dir = “MET_BASE/data”;

The Wavelet-Stat tool uses several static data files when generating plots. If it cannot
find the data it needs in the expected directory, it will error out. The met_data_dir
variable may be set to the path that contains the data/ subdirectory of the top-level
MET directory to instruct MODE where to find the static data files.

fcst_raw_color_table =
“MET_BASE/data/colortables/met_default.ctable”;
obs_raw_color_table =
“MET_BASE/data/colortables/met_default.ctable”;
wvlt_color_table =
“ MET_BASE/data/colortables/NCL_colortables/BlWhRe.ctable”;

The fcst_raw_color_table, obs_raw_color_table, and
wvlt_color_table variables indicate which color table files should be used when
generating the Wavelet-Stat PostScript output.

fcst_raw_plot_min = 0.0;
fcst_raw_plot_max = 0.0;
obs_raw_plot_min = 0.0;
obs_raw_plot_max = 0.0;
wvlt plot_min = -1.0;
wvlt_plot_max = 1.0;

These variables indicate the min and max data values to be plotted for the raw and
wavelet fields. If set to non-zero values, the forecast and observation raw color tables
specified above will be rescaled to match the specified range.

grib_ptv = 2;

The grib_ptv sets the GRIB table 2 parameter version, and thus indicates how to
interpret GRIB codes between 128 and 255. The default is 2 and possible values are (2,
128, 129, 130, 131, 133, 140, 141). See the NCEP documentation at
http://www.nco.ncep.noaa.gov/pmb/docs/on388/table2.html for details.

Chapter 7: The Wavelet-Stat Tool 7-18

output_prefix = "";

This option specifies a string to be used in the output file name. It can be useful for
keeping results for different models or variables from overwriting each other.

version = “V3.1”;

The version indicates the version of the mode configuration file used. Future
versions of MET may include changes to mode and the mode configuration file. This
value should not be modified.

7.3.3 wavelet_stat output

wavelet_stat produces output in STAT and, optionally, ASCII and NetCDF and
PostScript formats. The ASCII output duplicates the STAT output but has the data
organized by line type. While the Wavelet-Stat tool currently only outputs one STAT
line type, additional line types may be added in future releases. The output files are
written to the default output directory or the directory specified by the -outdir
command-line option.

The output STAT file is named using the following naming convention:
wavelet_stat_PREFIX_HHMMSSL_YYYYMMDD_HHMMSSV.stat where PREFIX
indicates the user-defined output prefix, HHMMSS indicates the forecast lead time, and
YYYYMMDD_HHMMSS indicates the forecast valid time.

The output ASCII files are named similarly:
wavelet_stat_PREFIX_HHMMSSL_YYYYMMDD_HHMMSSV_TYPE.txt where
TYPE is isc to indicate that this is an intensity-scale line type.

The format of the STAT and ASCII output of the Wavelet-Stat tool is similar to the
format of the STAT and ASCII output of the Point-Stat tool. Please refer to the tables in
section 4.3.3 (point_stat output) for a description of the common output for STAT
files types. The information contained in the STAT and isc files are identical. However,
for consistency with the STAT files produced by other tools, the STAT file will only have
column headers for the first 21 fields. The isc file contains all headers. The format of
the isc line type is explained in the following table.

Table 7-2. Header information for each file wavelet-stat outputs.
HEADER

Column
Number

Header Column
Name Description

21 LINE_TYPE ISC

Chapter 7: The Wavelet-Stat Tool 7-19

HEADER
Column
Number

Header Column
Name Description

22 TOTAL The number of grid points (forecast locations) used
23 TILE_DIM The dimensions of the tile
24 TILE_XLL Horizontal coordinate of the lower left corner of the tile
25 TILE_YLL Vertical coordinate of the lower left corner of the tile
26 NSCALE Total number of scales used in decomposition
27 ISCALE The scale at which all information following applies
28 MSE Mean squared error for this scale
29 ISC The intensity scale skill score
30 FENERGY2 Forecast energy squared for this scale
31 OENERGY2 Observed energy squared for this scale
32 BASER The base rate (not scale dependent)
33 FBIAS The frequency bias

The Wavelet-Stat tool creates a NetCDF output file containing the raw and decomposed
values for the forecast, observation, and difference fields for each combination of
variable and threshold value.

The dimensions and variables included in the wavelet_stat NetCDF files are
described in Tables 7-3 and 7-4.

Table 7-3. NetCDF dimensions for Wavelet-Stat output.
mode NetCDF OUTPUT FILE DIMENSIONS

NetCDF
Dimension Description

x Dimension of the tile which equals 2n
y Dimension of the tile which equals 2n

scale
Dimension for the number of scales. This is set to n+2, where 2n is
the tile dimension. The 2 extra scales are for the binary image and
the wavelet averaged over the whole tile.

tile Dimension for the number of tiles used

Table 7-4. Variables contained in Wavelet-Stat NetCDF output.
Wavelet-stat NetCDF OUTPUT FILE VARIABLES

NetCDF Variable Dimension Description

FCST_FIELD_LEVEL_RAW tile,
x, y

Raw values for the forecast field
specified by “FIELD_LEVEL”

OBS_FIELD_LEVEL_RAW tile,
x, y

Raw values for the observation field
specified by “FIELD_LEVEL”

DIFF_FIELD_LEVEL_RAW tile,
x, y

Raw values for the difference field (f-o)
specified by “FIELD_LEVEL”

FCST_FIELD_LEVEL_THRESH tile,
scale,

Wavelet scale-decomposition of the
forecast field specified by

Chapter 7: The Wavelet-Stat Tool 7-20

Wavelet-stat NetCDF OUTPUT FILE VARIABLES
NetCDF Variable Dimension Description

x, y “FIELD_LEVEL_THRESH”

OBS_FIELD_LEVEL_THRESH
tile,
scale,
x, y

Wavelet scale-decomposition of the
observation field specified by
“FIELD_LEVEL_THRESH”

DIFF_FIELD_LEVEL_THRESH
tile,
scale,
x, y

Wavelet scale-decomposition of the
difference field (f-o) specified by
“FIELD_LEVEL_THRESH”

Lastly, the Wavelet-Stat tool creates a PostScript plot summarizing the scale-
decomposition approach used in the verification. The PostScript plot is generated using
internal libraries and does not depend on an external plotting package. The generation
of this PostScript output can be disabled using the -ps command line option.

The PostScript plot begins with one summary page illustrating the tiling method that was
applied to the domain. The remaining pages depict the Intensity-Scale method that was
applied. For each combination of field, tile, and threshold, the binary difference field (f-
o) is plotted followed by the difference field for each decomposed scale. Underneath
each difference plot, the statistics applicable to that scale are listed. Examples of the
PostScript plots can be obtained by running the example cases provided with the MET
tarball.

Chapter 8: The Stat-Analysis Tool 8-1

Chapter 8 – The Stat-Analysis Tool

8.1 Introduction

The Stat-Analysis tool ties together results from the Point-Stat, Grid-Stat, and Wavelet-
Stat tools by providing summary statistical information and a way to filter their STAT
output files.

The Stat-Analysis tool requires STAT output from Point-Stat, Grid-Stat, and/or Wavelet-
Stat. See Sections 4.3.3, 5.3.3 or 7.3.3, respectively, for information on the STAT
output format of the Point-Stat, Grid-Stat, and Wavelet-Stat tools.

8.2 Scientific and statistical aspects

The Stat-Analysis tool (i) aggregates results over a user-specified time; (ii) stratifies
statistics based on time of day, model initialization time, lead-time, model run identifier,
output filename, or wavelet decomposition scale; and (iii) computes specific verification
indices such as the GO Index1 and wind direction statistics. Future functionality may
include information about time-trends and/or calculations based on climatology (e.g.,
anomaly correlation). This section summarizes the capabilities of the Stat-Analysis tool
and describes how the GO Index, wind direction, summary statistics, and aggregated
statistics are computed.

8.2.1 Filter STAT lines

The Stat-Analysis tool can be used to simply filter out specific STAT lines based on
user-specified search criteria. All of the STAT lines that are retained from one or many
files are written to a single output file.

8.2.2 Summary statistics for columns

The Stat-Analysis tool can be used to produce summary information for a single column
of data. After the user specifies the specific line type, specific column of interest, and
any other relevant search criteria, summary information is produced from values in that
column of data. The summary statistics produced are: mean, standard deviation,
minimum, maximum, and the 10th, 25th, 50th, 75th, and 90th percentiles.

Confidence intervals are computed for the mean and standard deviation of the column
of data. For the mean, the confidence interval is computed two ways – based on an
assumption of normality and also using the bootstrap method. For the standard
deviation, the confidence interval is computed using the bootstrap method. In this
application of the bootstrap method, the values in the column of data being summarized

1 The GO Index is a summary measure for NWP models that is used by the Air Force Weather Agency. It
combines verification statistics for several forecast variables and lead times.

Chapter 8: The Stat-Analysis Tool 8-2

are resampled, and for each replicated sample, the mean and standard deviation are
computed.

8.2.3 Aggregated values from multiple STAT lines

The Stat-Analysis tool can be used to create aggregated values from multiple STAT
lines of the same type. The user may specify the specific line type of interest and any
other relevant search criteria. The Stat-Analysis tool then creates sums of each of the
values in all lines matching the search criteria. The aggregated data are output as the
same line type as the user specified. The STAT line types which may be aggregated in
this way are the contingency table (FHO, CTC, PCT, NBRCTC) and partial sums
(SL1L2, SAL1L2, VL1L2, and VAL1L2) line types.

8.2.4 Aggregate STAT lines and produce aggregated statistics

The Stat-Analysis tool can be used to aggregate multiple STAT lines of the same type
together and produce relevant statistics from the aggregated line. This may be done in
the same manner listed above in 8.2.3. However, rather than writing out the aggregated
STAT line itself, the relevant statistics generated from that aggregated line are provided
in the output. Specifically, if a contingency table line type (FHO, CTC, PCT, or
NBRCTC) has been aggregated, a contingency table statistics (CTS, PSTD, or
NBRCTS) line type will be written out. If a partial sums line type (SL1L2 or SAL1L2)
has been aggregated, a continuous statistics (CNT) line type will be written out. If the
matched pair line type (MPR) has been aggregated, the user may choose the line type
to be output (FHO, CTC, CTS, CNT, SL1L2, SAL1L2, PCT, PSTD, PJC, or PRC). Only
wind vector statistics are produced from the vector partial sums line types (VL1L2 or
VAL1L2).

When aggregating the matched pair line type (MPR) and computing an output
contingency table statistics (CTS) or continuous statistics (CNT) line type, the
bootstrapping method is applied for computing confidence intervals. The bootstrapping
method is applied here in the same way that it is applied in the Point-Stat and Grid-Stat
tools. For a set of n matched forecast-observation pairs, the matched pairs are
resampled with replacement many times. For each replicated sample, the
corresponding statistics are computed. The confidence intervals are derived from the
statistics computed for each replicated sample.

8.2.5 Skill Score Index, including GO Index

The Stat-Analysis tool can be used to calculate the skill score indices by weighting
scores for different meteorological fields at different pressure levels and for different
lead times. Specifically, the GO Index can be computed. The GO index is a weighted
average of the RMSE values for wind speed, dewpoint temperature, temperature,
height, and pressure at several levels in the atmosphere. The variables, levels, and
lead times included in the index are shown in Table 8-1. The partial sums (SL1L2 lines
in the STAT output) for each of these variables at each level and lead time must have

Chapter 8: The Stat-Analysis Tool 8-3

been computed in a previous step. The STAT analysis tool then uses the weights in
Table 8-1 to compute values for the GO Index. For a general skill score index, the user
can specify the weights and variables to use in the calculations.

Table 8-1. Variables, levels, and weights used to compute the GO Index.

Variable Level Weights by lead time
12 h 24 h 36 h 48 h

Wind speed

250 hPa 4 3 2 1
400 hPa 4 3 2 1
850 hPa 4 3 2 1
Surface 8 6 4 2

Dewpoint
temperature

400 hPa 8 6 4 2
700 hPa 8 6 4 2
850 hPa 8 6 4 2
Surface 8 6 4 2

Temperature 400 hPa 4 3 2 1
Surface 8 6 4 2

Height 400 hPa 4 3 2 1

Pressure Mean sea
level 8 6 4 2

8.2.6 Wind Direction Statistics

The Stat-Analysis tool can be used to calculate the error statistics for the wind direction.
The vector partial sums (VL1L2) for the UWND and VWND must have been computed
in a previous step, i.e. by Point-Stat or Grid-Stat tools. This job computes an average
forecast wind direction and an average observed wind direction along with their
difference. The output is in degrees. In Point-Stat and Grid-Stat, the UWND and VWND
can be verified using thresholds on their values or on the calculated wind speed. If
thresholds have been applied, the wind direction statistics are calculated for each
threshold.

The first step in verifying wind direction is running the Grid-Stat and/or Point-Stat tools
to verify each forecast of interest and generate the VL1L2 line(s). When running these
tools, please note:

 1. To generate VL1L2 lines, the user must request the verification of the U-component
of the wind followed by the V-component, both at the same vertical level.

2. To generate VL1L2 lines, the user must set the “output_flag” to indicate that the
VL1L2 line should be computed and written out.

3. The user may select one or more spatial verification regions over which to
accumulate the vector partial sums.

Chapter 8: The Stat-Analysis Tool 8-4

4. The user may select one or more wind speed thresholds to be applied to the U and V
wind components when computing the VL1L2 lines. It may be useful to investigate the
performance of wind forecasts using multiple wind speed thresholds.

Once the VL1L2 lines have been generated for each verification time of interest, the
user may run the STAT-Analysis tool to analyze them. The STAT-Analysis job
”aggregate_stat”, along with the “-output_line_type WDIR” option, reads all of the input
VL1L2 lines and computes statistics about the wind direction. When running this job the
user is encouraged to use the many STAT-Analysis options to filter the input VL1L2
lines down to the set of lines of interest. The output of the wind direction analysis job
consists of two lines with wind direction statistics computed in two slightly different
ways. The two output lines begin with “ROW_MEAN_WDIR” and “AGGR_WDIR”, and
the computations are described below:

1. For the “ROW_MEAN_WDIR” line, each of the input VL1L2 lines is treated separately
and given equal weight. The mean forecast wind direction, mean observation wind
direction, and the associated error are computed for each of these lines. Then the
means are computed across all of these forecast wind directions, observation wind
directions, and their errors.

2. For the “AGGR_WDIR” line, the input VL1L2 lines are first aggregated into a single
line of partial sums where the weight for each line is determined by the number of points
it represents. From this aggregated line, the mean forecast wind direction, observation
wind direction, and the associated error are computed and written out.

8.3 Practical information

The following sections describe the usage statement, required arguments and optional
arguments for the Stat-Analysis tool.

8.3.1 stat_analysis usage

The usage statement for the Stat-Analysis tool is shown below:

Usage: stat_analysis
 -lookin path
 [-out name]
 [-tmp_dir path]
 [-log file]
 [-v level]
 [-config config_file] | [JOB COMMAND LINE]

Stat_analysis has two required arguments and accepts optional ones.

Chapter 8: The Stat-Analysis Tool 8-5

In the usage statement for the STAT analysis tool, some additional terminology is
introduced. In the STAT analysis tool, the term “job” refers to a set of tasks to be
performed after applying user-specified options (i.e., “filters”). The filters are used to
pare down a collection of output from grid_stat, point_stat, or wavelet_stat
to only those lines that are desired for the analysis. The job and its filters together
comprise the “job command line”. The “job command line” may be specified either on
the command line to run a single analysis job or within the configuration file to run
multiple analysis jobs at the same time. If jobs are specified in both the configuration
file and the command line, only the jobs indicated in the configuration file will be run.
The various jobs types are described in Table 8-2 and the filtering options are described
in section 8.3.2.

Required arguments for stat_analysis

1. The –lookin path specifies the name of a specific STAT file (any file ending in
.stat) or the name of a directory where the Stat-Analysis tool will search for STAT
files. This option may be used multiple times to specify multiple locations.

2. Either a configuration file must be specified with the –config option, or a “JOB
COMMAND LINE” must be denoted. The “JOB COMMAND LINE” is described in
section 8.3.2,

Optional arguments for stat_analysis

1. The –config config_file specifies the configuration file to be used. The
contents of the configuration file are discussed below.

2. The –out name option indicates the filename to which output data should be
written. If this option is not used, the output is directed to standard output.

3. The –tmp_dir path option selects the directory for writing out temporary files.
4. The -log file option directs output and errors to the specified log file. All

messages will be written to that file as well as cout and cerr. Thus, users can
save the messages without having to redirect the output on the command line.
The default behavior is no logfile.

5. The –v level indicates the desired level of verbosity. The contents of “level” will
override the default setting of 2. Setting the verbosity to 0 will make the tool run
with no log messages, while increasing the verbosity above 1 will increase the
amount of logging.

An example of the Stat_analysis calling sequence is shown below.

stat_analysis -lookin ../out/point_stat
 -config STATAnalysisConfig

Chapter 8: The Stat-Analysis Tool 8-6

In this example, the stat analysis tool will search for valid STAT lines located in the
../out/point_stat directory that meet the options specified in the configuration file,
config/STATAnalysisConfig.

8.3.2 stat_analysis configuration file

The default configuration file for the stat analysis tool named
STATAnalysisConfig_default can be found in the data/config directory in the
MET distribution. The version used for the example run in Chapter 2 is also available in
scripts/config. Like the other configuration files described in this document, it is
recommended that users make a copy of these files prior to modifying their contents.

Most of the user-specified parameters listed in the STAT analysis configuration file are
used to filter the ASCII statistical output from grid_stat and/or point_stat down to
a desired subset of lines over which statistics are to be computed. Only output from
grid_stat and/or point_stat that meet all of the parameters specified in the STAT
analysis configuration file will be retained.

The configuration file for the STAT analysis tool contains many comments describing its
contents. A more detailed explanation of the user-specified parameters is provided
below.

Note that the options specified in the first section of the configuration file below, prior to
the joblist, will be applied to every job specified in the joblist. However, if an individual
job specifies a particular option that was specified above, it will be applied for that job.
For example, if the model[] option is set at the top to [“Run 1”, “Run2”], but a job in the
joblist sets the –model option as “Run1”, that job will be performed only on “Run1” data.

Also note that environment variables may be used when editing configuration files, as
described in the section 3.5.2 for the PB2NC tool.

model[] = [];

The user may specify a comma-separated list of model names to be used for all
analyses performed. The names must be in double quotation marks. If multiple models
are listed, the analyses will be performed on their union. These selections may be
further refined by using the “-model” option within the job command lines.

fcst_lead[] = [];
obs_lead[] = [];

Chapter 8: The Stat-Analysis Tool 8-7

The user may specify a comma-separated list of forecast and observation lead times in
HH[MMSS] format to be used for any analyses to be performed. If multiple times are
listed, the analyses will be performed on their union. These selections may be further
refined by using the "-fcst_lead" and “-obs_lead” options within the job
command lines.

fcst_valid_beg = "";
fcst_valid_end = "";
obs_valid_beg = "";
obs_valid_end = "";

The user may specify the beginning and ending valid times in
YYYYMMDD[_HH[MMSS]] format to be used for all analyses performed. If multiple
valid times fall within the valid time window, the analyses will be performed on their
union. These selections may be further refined by using the "-fcst_valid_beg", "—
fcst_valid_end", "-obs_valid_beg", and "—obs_valid_end" options within
the job command line.

fcst_init_beg = "";
fcst_init_end = "";
obs_init_beg = "";
obs_init_end = "";

The user may specify the beginning and ending model initialization times in
YYYYMMDD[_HH[MMSS]] format to be used for all analyses performed. If multiple init
times fall within the init time window, the analyses will be performed on their union.
These selections may be further refined by using the "-fcst_init_beg", "—
fcst_init_end", "-obs_init_beg", and "—obs_init_end" options within the
job command line.

fcst_init_hour[] = [];
obs_init_hour[] = [];

The user may specify a comma separated list of model initialization hours to be filtered
out of the data. The initialization hour is formatted as HH[MMSS] and may be used to
aggregate data over multiple runs all initialized at the same time of day. These
selections may be further refined by using the "-fcst_init_hour" and “-
obs_init_hour” options within the job command lines.

fcst_var[] = [];

Chapter 8: The Stat-Analysis Tool 8-8

obs_var[] = [];

The user may specify a comma-separated list of forecast and observation variable types
to be used for any analyses to be performed. If multiple variable types are listed, the
analyses will be performed on their union. These selections may be further refined by
using the "-fcst_var" and “-obs_var” options within the job command lines.

fcst_lev[] = [];
obs_lev[] = [];

The user may specify a comma-separated list of forecast and observation level types to
be used for any analyses to be performed. If multiple level types are listed, the
analyses will be performed on their union. These selections may be further refined by
using the "-fcst_lev" and “-obs_lev” options within the job command lines.

obtype[] = [];

The user may specify a comma-separated list of observation types to be used for all
analyses. If multiple observation types are listed, the analyses will be performed on
their union. These selections may be further refined by using the "-obtype" option
within the job command line.

vx_mask[] = [];

The user may specify a comma-separated list of verification masking regions to be used
for all analyses. If multiple verification masking regions are listed, the analyses will be
performed on their union. These selections may be further refined by using the "-
vx_mask" option within the job command line.

interp_mthd[] = [];

The user may specify a comma-separated list of interpolation methods to be used for all
analyses. If multiple interpolation methods are listed, the analyses will be performed on
their union. These selections may be further refined by using the "-interp_mthd"
option within the job command line.

interp_pnts[] = [];

The user may specify a comma-separated list of interpolation points to be used for all
analyses. If multiple interpolation points are listed, the analyses will be performed on

Chapter 8: The Stat-Analysis Tool 8-9

their union. These selections may be further refined by using the "-interp_pnts"
option within the job command line.

fcst_thresh[] = [];
obs_thresh[] = [];
cov_thresh[] = [];

The user may specify comma-separated lists of forecast, observation, and coverage
thresholds to be used for any analyses to be performed. If multiple thresholds are
listed, the analyses will be performed on their union. These selections may be further
refined by using the "-fcst_thresh", “-obs_thresh”, and “-cov_thresh”
options within the job command lines.

alpha[] = [];

The user may specify a comma-separated list alpha confidence values to be used for all
analyses. If alpha values are listed, the analyses will be performed on their union.
These selections may be further refined by using the "-alpha" option within the job
command line.

line_type[] = [];

The user may specify a comma-separated list of line types to be used for all analyses.
If multiple line types are listed, the analyses will be performed on their union. These
selections may be further refined by using the "-line_type" option within the job
command line.

joblist[] = [
"-job filter -dump_row ./filter_job.stat"
];

The user may specify one or more analysis jobs to be performed on the STAT lines that
remain after applying the filtering parameters listed above. Each entry in the joblist
contains the task and additional filtering options for a single analysis to be performed.
The format for an analysis job is as follows:

 -job job_name REQUIRED and OPTIONAL ARGUMENTS

All possible tasks for job_name are listed in Table 8-2.

Table 8-2. Description of components of the job command lines for the STAT analysis tool.

Chapter 8: The Stat-Analysis Tool 8-10

Job Name Description Required Arguments

filter

Filters out the statistics lines based
on applying options -dump_row

summary Computes the mean, standard
deviation, and percentiles (min, 10th,
25th, 50th, 75th, 90th, and max)

-line_type
-column

aggregate Aggregates the statistics output,
computing the statistic specified for
the entire collection of valid lines

-line_type

aggregate_stat Aggregates the statistics output, and
converts the input line type to the
output line type specified

-line_type
-out_line_type

go_index
Calculates the GO Index as
described in section 8.1.1.

-fcst_init_begin
-fcst_init_end

boot_interval = 1;

The boot_interval variable indicates what method should be used for computing
bootstrap confidence intervals. A value of 0 indicates that the highly accurate but
computationally intensive BCa (bias-corrected percentile) method should be used. A
value of 1 indicates that the somewhat less accurate but efficient percentile method
should be used.

boot_rep_prop = 1.0;

The boot_rep_prop variable must be set to a value between 0 and 1. When
computing bootstrap confidence intervals over n sets of matched pairs, the size of the
subsample, m, may be chosen less than or equal to the size of the sample, n. This
variable defines the size of m as a proportion relative to the size of n. A value of 1, as
shown above, indicates that the size of the subsample, m, should be equal to the size of
the sample, n.

n_boot_rep = 1000;

The n_boot_rep variable defines the number of subsamples that should be taken
when computing bootstrap confidence intervals. This variable should be set large
enough so that when confidence intervals are computed multiple times for the same set
of data, the intervals do not change much. Setting this variable to zero disables the
computation of bootstrap confidence intervals which may be necessary to run in
realtime or near-realtime over large domains. Setting this variable to 1000, as shown

Chapter 8: The Stat-Analysis Tool 8-11

above, indicates that bootstrap confidence interval should be computed over 1000
subsamples of the matched pairs.

boot_rng = "mt19937";

The boot_rng variable defines the random number generator to be used in the
computation of bootstrap confidence intervals. Subsamples are chosen at random from
the full set of matched pairs. The randomness is determined by the random number
generator specified. Users should refer to detailed documentation of the GNU Scientific
Library for a listing of the random number generators available for use.

boot_seed = “”;

The boot_seed variable may be set to a specific value to make the computation of
bootstrap confidence intervals fully repeatable. When left empty, as shown above, the
random number generator seed is chosen automatically which will lead to slightly
different bootstrap confidence intervals being computed each time the data is run.
Specifying a value here ensures that the bootstrap confidence intervals will be
computed the same over multiple runs of the same data.

rank_corr_flag = 1;

The rank_corr_flag variable may be set to 0 (“no”) or 1 (“yes”) to indicate whether
or not Kendall’s Tau and Spearman’s Rank correlation coefficients should be computed.
The computation of these rank correlation coefficients is very slow when run over many
matched pairs. By default, this flag is turned on, as shown above, but setting it to 0
should improve the runtime performance.

vif_flag = 0;

 The variance inflation factor (VIF) flag indicates whether to apply a first order variance
inflation when calculating normal confidence intervals for an aggregated time series of
contingency table counts or partial sums. The VIF adjusts the variance estimate for the
lower effective sample size caused by autocorrelation of the statistics through time. A
value of (0) will not compute confidence intervals using the VIF. A value of (1) will
include the VIF, resulting in a slightly wider normal confidence interval.

tmp_dir = "/tmp";

This parameter indicates the directory where the stat analysis tool should write
temporary files.

Chapter 8: The Stat-Analysis Tool 8-12

version = “V3.1”;

version indicates the version number for the contents of this configuration file. The
value should generally not be modified.

8.3.3 Stat-Analysis tool output

The output generated by the Stat-Analysis tool contains statistics produced by the
analysis. It also records information about the analysis job that produced the output for
each line. Generally, the output is printed to the screen. However, it can be redirected
to an output file using the “-out” option. The format of output from each STAT job
command is described below.

Job: filter
This job command finds and filters STAT lines down to those meeting criteria specified
by the filter’s options. The filtered STAT lines are written to a file specified by the “-
dump_row” option.

The output of this job is the same STAT format described in sections 4.3.3, 5.3.3, and
7.3.3.

Job: summary
This job produces summary statistics for the column name and line type specified by the
“-column” and “-line_type” options. The output of this job type consists of three
lines. The first line contains “JOB_LIST“, followed by a colon, then the filtering and job
definition parameters used for this job. The second line contains “COL_NAME”, followed
by a colon, then the column names for the data in the next line. The third line contains
the word “SUMMARY”, followed by a colon, then the total, mean with confidence intervals,
standard deviation with confidence intervals, minimum value, percentiles (10th, 25th,
50th, 75th, and 90th) and the maximum value. The output columns are shown in Table 8-
3 below.

Table 8-3. Columnar output of “summary” job output from the Stat-Analysis tool.
Column Number Description
1 SUMMARY: (job type)
2 Total
3-7 Mean including normal and

bootstrap upper and lower
confidence limits

8-10 Standard deviation including
bootstrap upper and lower

Chapter 8: The Stat-Analysis Tool 8-13

Column Number Description
confidence limits

11 Minimum
12 10th percentile
13 25th percentile
14 Median (50th percentile)
15 75th percentile
16 90th percentile
17 Maximum value

Job: aggregate
This job aggregates output from the STAT line type specified using the “-line_type”
argument. The output of this job type is in the same format as the line type specified
(see Sections 4.3.3, 5.3.3, and 7.3.3). Again the output consists of three lines. The first
line contains “JOB_LIST”, as described above. The second line contains “COL_NAME”,
followed by a colon, then the column names for the line type selected. The third line
contains the name of the line type selected followed by the statistics for that line type.

Job: aggregate_stat
This job is similar to the “aggregate” job listed above, however the format of its output
is determined by the “-out_line_type” argument. Again the output consists of three
lines for “JOB_LIST”, “COL_NAME”, and the name of the output STAT line, as described
above. Valid combinations of the “-line_type” and “-out_line_type” arguments
are listed in Table 8-4 below.

Table 8-4. Valid combinations of “-line_type” and “-out_line_type” arguments
for the “aggregate_stat” job.

Input Line Type Output Line Type
FHO or CTC CTS
MCTC MCTS
SL1L2 or SAL1L2 CNT
VL1L2 or VAL1L2 WDIR (wind direction)
PCT PSTD, PJC, PRC
NBRCTC NBRCTS
ORANK RHIST
MPR CNT, SL1L2, or SAL1L2
MPR FHO, CTC, CTS, MCTC, MCTS, PCT,

PSTD, PJC, or PRC
(must specify “-out_fcst_thresh”
and “-out_obs_thresh” arguments)

Chapter 8: The Stat-Analysis Tool 8-14

Job: go_index
The output from this job consists of three lines, the first two of which contain
“JOB_LIST” and “COL_NAME”, as described above. The third line contains “GO_INDEX”
followed by a colon and then the value computed for the GO Index.

Chapter 9: The MODE-Analysis Tool 9-1

Chapter 9 – The MODE-Analysis Tool

9.1 Introduction

MODE output files can be quite large; currently, these files contain 51 columns. This
means that it is very difficult – effectively impossible – to interpret the results by simply
browsing the files. Furthermore, for particular applications some data fields in the
MODE output files may not be of interest. Because of these and similar considerations,
the MET development team believed a tool providing basic summary statistics and
filtering capabilities for these files would be helpful for many users. The MODE analysis
tool provides these capabilities. Users who are not proficient at writing scripts can use
the tool directly, and even those using their own scripts can use this tool as a filter, to
extract only the MODE output lines that are relevant for their application.

9.2 Scientific and statistical aspects

The MODE-Analysis tool operates in two modes, called "summary" and "by case". In
summary mode, the user provides (on the command line or via a configuration file)
information regarding which fields (columns) are of interest, as well as matching criteria
that determine which lines in each file are used and which are ignored. For example, a
user may be interested in forecast object areas, but only if the object was matched, and
only if the object centroid is inside a particular region. The summary statistics
generated (for each field) are the minimum, maximum, mean, standard deviation, and
the 10th, 25th, 50th, 75th and 90th percentiles. In addition, the user may specify a
"dump" file: the individual MODE lines used to produce the statistics will be written to
this file. This option provides the user with a filtering capability. The dump file will
consist only of lines that match the specified criteria.

The other option for operating the analysis tool is "by case". Given initial and final
values for forecast lead time, the tool will output, for each valid time in the interval, the
matched area, unmatched area, and the number of forecast and observed objects that
were matched or unmatched. For the areas, the user can specify forecast or observed
objects, and also simple or cluster objects. A dump file may also be specified in this
mode.

9.3 Practical information

The MODE-Analysis tool reads lines from MODE output files and applies filtering and
computes basic statistics on the object attribute values. For each job type, filter
parameters can be set to determine which MODE output lines are used. The following
sections describe the mode_analysis usage statement, required arguments, and
optional arguments.

Chapter 9: The MODE-Analysis Tool 9-2

9.3.1 mode_analysis usage

The usage statement for the MODE-Analysis tool is shown below:

Usage: mode_analysis
 -lookin path
 -summary | -bycase
 [-column name]
 [-dump_row filename]
 [-out filename]
 [-log file]
 [-help]
 [MODE FILE LIST]
 [-config config_file] | [MODE LINE OPTIONS]

Required arguments for mode_analysis

The MODE-Analysis tool requires specification of a “job type” and a filename or
directory indicated by the -lookin option. The –lookin option may be called multiple
times.

The MODE-Analysis tool can perform two basic types of jobs, which are identified as
follows:

-summary
-bycase

Exactly one of these job types must be specified.

Specifying “-summary” will produce summary statistics for the MODE output column
specified. For this job type, a column name (or column number) must be specified
using the “-column” option. Column names are not case sensitive. The column
names are the same as described in Section 6.3.3 of Chapter 6. More information
about this option is provided in subsequent sections.

Specifying “-bycase” will produce a table of metrics for each case undergoing analysis.
Any columns specified are ignored for this option.

The output for each of these jobs types is described in later sections.

Optional arguments for mode_analysis

The mode_analysis options are described in the following section. These are divided
into sub-sections describing the analysis options and mode line options.

Chapter 9: The MODE-Analysis Tool 9-3

Analysis options
The general analysis options described below provide a way for the user to indicate
configuration files to be used, where to write lines used to perform the analysis, and
over which fields to generate statistics.

-config filename

This option gives the name of a configuration file to be read. The contents of the
configuration file are described in Section 8.3.3.

-dump_row filename

 Any MODE lines kept from the input files are written to filename.

-column column

Specifies which columns in the MODE output files to generate statistics for. Fields may
be indicated by name (case insensitive) or column number (beginning at one). This
option can be repeated to specify multiple columns.

MODE line options

MODE line options are used to create filters that determine which of the MODE output
lines that are read in, are kept. The MODE line options are numerous. They fall into
seven categories: toggles, multiple set string options, multiple set integer options,
integer max/min options, date/time max/min options, floating-point max/min options, and
miscellaneous options. These options are described in subsequent sections.

Toggles
The MODE line options described in this section are shown in pairs. These toggles
represent parameters that can have only one (or none) of two values. Any of these
toggles may be left unspecified. However, if neither option for each toggle is indicated,
the analysis will produce results that combine data from both toggles. This may
produce unintended results.

-fcst / -obs

This toggle indicates whether forecast or observed lines should be used for analysis.

Chapter 9: The MODE-Analysis Tool 9-4

-single / -pair

This toggle indicates whether single object or object pair lines should be used.

-simple / -cluster

This toggle indicates whether simple object or cluster object lines should be used.

-matched / -unmatched

This toggle indicates whether matched or unmatched object lines should be used.

Multiple-set string options
The following options set various string attributes. They can be set multiple times on
the command line but must be separated by spaces. Each of these options must be
indicated as a string. String values that include spaces may be used by enclosing the
string in quotation marks.

-model value

This option specifies which model to use; value must be a string.

-fcst_thr value
-obs_thr value

These two options specify thresholds for forecast and observation objects to be used in
the analysis, respectively.

-fcst_var value
-obs_var value

These options indicate the names of variables to be used in the analysis for forecast
and observed fields.

Chapter 9: The MODE-Analysis Tool 9-5

-fcst_lev value
-obs_lev value

These options indicate vertical levels for forecast and observed fields to be used in the
analysis.

Multiple-set integer options

The following options set various integer attributes. They can be set multiple times on
the command line but must be separated by spaces. Each of the following options may
only be indicated as an integer.

-fcst_lead value
-obs_lead value

These options are integers of the form HH[MMSS] specifying an (hour-minute-second)
lead time.

-fcst_init value
-obs_init value

These options are integers of the form HH[MMSS] specifying an (hour-minute-second)
model initialization time of day.

-fcst_accum value
-obs_accum value

These options are integers of the form HHMMSS specifying an (hour-minute-second)
accumulation time.

-fcst_rad value
-obs_rad value

These options indicate the convolution radius used for forecast or observed objects,
respectively.

Chapter 9: The MODE-Analysis Tool 9-6

Integer max/min options

These options set limits on various integer attributes. Leaving a maximum value unset
means no upper limit is imposed on the value of the attribute. The option works
similarly for minimum values.

-area_min value
-area_max value

These options are used to indicate minimum/maximum values for the area attribute to
be used in the analysis.

-area_filter_min value
-area_filter_max value

These options are used to indicate minimum/maximum values accepted for the area
filter. The area filter refers to the number of non-zero values of the raw data found
within the object.

-area_thresh_min value
-area_thresh_max value

These options are used to indicate minimum/maximum values accepted for the area
thresh. The area thresh refers to the number of values of the raw data found within the
object that meet the object definition threshold criteria used.

-intersection_area_min value
-intersection_area_max value

These options refer to the minimum/maximum values accepted for the intersection area
attribute.

-union_area_min value
-union_area_max value

These options refer to the minimum/maximum union area values accepted for analysis.

Chapter 9: The MODE-Analysis Tool 9-7

-symmetric_diff_min value
-symmetric_diff_max value

These options refer to the minimum/maximum values for symmetric difference for
objects to be used in the analysis.

Date/time max/min options
These options set limits on various date/time attributes. The values can be specified in
one of three ways:

First, the options may be indicated by a string of the form YYYYMMDD_HHMMSS. This
specifies a complete calendar date and time.

Second, they may be indicated by a string of the form YYYYMMDD_HH. Here, the
minutes and seconds are assumed to be zero.

The third way of indicating date/time attributes is by a string of the form YYYYMMDD.
Here, hours, minutes and seconds are assumed to be zero.

-fcst_valid_min yyyymmdd[_hh[mmss]]
-fcst_valid_max yyyymmdd[_hh[mmss]]

These options indicate minimum/maximum values for the forecast valid time.

-obs_valid_min yyyymmdd[_hh[mmss]]
-obs_valid_max yyyymmdd[_hh[mmss]]

These two options indicate minimum/maximum values for observation valid time.

Floating-point max/min options
Setting limits on various floating-point attributes. One may specify these as integers
(i.e., without a decimal point), if desired. The following pairs of options indicate
minimum and maximum values for each MODE attribute that can be described as a
floating-point number. Please refer to Chapter 6 for a description of these attributes as
needed.

-centroid_x_min value
-centroid_x_max value

-centroid_y_min value

Chapter 9: The MODE-Analysis Tool 9-8

-centroid_y_max value

-centroid_lat_min value
-centroid_lat_max value

-centroid_lon_min value
-centroid_lon_max value

-axis_ang_min value
-axis_ang_max value

-length_min value
-length_max value

-width_min value
-width_max value

-curvature_min value
-curvature_max value

-curvature_x_min value
-curvature_x_max value

-curvature_y_min value
-curvature_y_max value

-complexity_min value
-complexity_max value

-intensity_10_min value
-intensity_10_max value

-intensity_25_min value
-intensity_25_max value

Chapter 9: The MODE-Analysis Tool 9-9

-intensity_50_min value
-intensity_50_max value

-intensity_75_min value
-intensity_75_max value

-intensity_90_min value
-intensity_90_max value

-intensity_user_min value
-intensity_user_max value

-intensity_sum_min value
-intensity_sum_max value

-centroid_dist_min value
-centroid_dist_max value

-boundary_dist_min value
-boundary_dist_max value

-convex_hull_dist_min value
-convex_hull_dist_max value

-angle_diff_min value
-angle_diff_max value

-area_ratio_min value
-area_ratio_max value

-intersection_over_area_min value
-intersection_over_area_max value

Chapter 9: The MODE-Analysis Tool 9-10

-complexity_ratio_min value
-complexity_ratio_max value

-percentile_intensity_ratio_min value
-percentile_intensity_ratio_max value

-interest_min value
-interest_max value

Miscellaneous options
These options are used to indicate parameters that did not fall into any of the previous
categories.

-mask_poly filename

This option indicates the name of a polygon mask file to be used for filtering. The
format for these files is the same as that of the polyline files for the other MET tools.

-help

This option prints the usage message.

9.3.2 mode_analysis configuration file

To use the MODE analysis tool, the user must un-comment the options in the
configuration file to apply them and comment out unwanted options. The options in the
configuration file for mode_analysis are the same as the MODE line options
described in Section 8.3.1.

The parameters that are set in the configuration file either add to or override parameters
that are set on the command line. For the “set string” and “set integer type” options
enclosed in brackets, the values specified in the configuration file are added to any
values set on the command line. For the toggle and min/max type options, the values
specified in the configuration file override those set on the command line.

Chapter 9: The MODE-Analysis Tool 9-11

9.3.3 MODE-Analysis tool output

The output of the MODE Analysis tool is a self-describing tabular format written to
standard output. The length and contents of the table vary depending on whether –
summary or –bycase is selected. The contents also change for –summary depending
on the fields selected by the user for output.

Chapter 10: Scripting 10-1

Chapter 10 – Scripting

10.1 Example scripts for running MET tools

This section provides examples of the use of the Bourne shell, she, as a scripting
language to run some of the MET tools. The example scripts allow a MET user to
process many files at once.

Suppose we want to run the Pcp-Combine tool on a collection of precipitation files in the
directory /home/user/my_pcp_dir. We want a precipitation accumulation period of
12 hours, and a valid accumulation period of 24 hours. We’ll suppose the data are from
August 2006. We can do this using the following script:

Script 10-1

 1 #!/bin/csh
 2
 3 pcp_accum_period = 12
 4 valid_accum_period = 24
 5 day=1
 6
 7 while [“$day” –le 31]
 8 do
 9 if [“$day” =le 9]
 10 then
 11 ds=0$day
 12 else
 13 ds=$day
 14 fi
 15 pcp_combine \
 16 00000000)0000 $pcp_accum_period \
 17 200608$ds_0000 $valid_accum_period \
 18 200608$ds.pcp.nc
 19 -pcpdir /home/user/my_pcp_dir
 20 day=$((day + 1))
 21 done

The first line in Script 10-1 tells the operating system to use /bin/sh to execute the
commands in the file. If the Bourne shell resides somewhere else on your system,
you’ll have to change this accordingly. On lines 3 and 4 some variables are defined to
hold the precipitation accumulation hours and the valid accumulation hours. Line 5
initializes the day variable to 1. This variable will be the day of the month.

Chapter 10: Scripting 10-2

Line 7 starts the loop over the days in the month. The loop ends on line 21. Since
pcp_combine needs dates and times formatted in a certain way, the variable ads (for
daystring) is created, which contains the day of the month with a leading “0” if the day is
less than 10. This happens in lines 9–14.

The Pcp_Combine tool is run in lines 15–18. We’ve split the command over several
lines so that the script would fit on this page. Line 16 has the pcp_init_time
argument in this case set to zeroes so that pcp_combine will look at all files in the
directory. It also has the precipitation accumulation period, as defined in line 3. Line 17
has the valid time, which uses the ads variable calculated in lines 9–14. It also contains
the valid accumulation period variable, defined in line 4. Line 18 is our output file name.
In this example, the output file names include the calendar date and a suffix of
“.pcp.nc”. Line 19 tells pcp_combine where to look for input files. Finally, in line 20,
the last line in the body of the loop increments the day variable.

In the second example, we’ll use the grid stat tool to process some August 2006 data.
Suppose our observation files are in /d1/user/obs and the forecast files are in
/d1/user/fcst. We want the STAT files written to /d1/user/gridstat_out.

Script 10-2

 1 #!/bin/csh
 2
 3
 4 config_file=/home/user/my_grid_stat_config
 5 obs_dir=/d1/user/obs
 6 fcst_dir=/d1/user/fcst
 7 day=1
 8
 9 while [“$day” =le 31]
 10 do
 11 if [“$day” –le 9]
 12 then
 13 ds=0$day
 14 else
 15 ds=$day
 16 fi
 17 grid_stat \
 18 $fcst_dir/2006-08-$ds.fcst.pcp.nc \
 19 $obs_dir/2006-08-$ds.obs.pcp.nc \
 20 $config_file \
 21 -outdir /d1/user/gridstat_out \
 22 -v2
 23 day=$((day + 1))
 24 done

Chapter 10: Scripting 10-3

In lines 3–6 of Script 10-2, we define some useful variables: the configuration file and
the directories for the observation and forecast files. As in Script 9-1, we loop through
the days in the month. Line 7 initializes day to 1.

Lines 11–16 are copied from the Script 10-1. In lines 17–22 we run the Grid-Stat tool.
For simplicity, we assume a simple input file naming convention that consists of the
calendar data plus an appropriate suffix. Forecast, observation, and config files are
named on lines 18 through 20. Note that we use the variable ads here. Line 21 names
our desired output directory, and line 22 tells grid_stat which verbosity level to use.
As in Script 10-1, the last line in the loop body (here, line 23) increments day.

10.2 Example scripts for use with MODE output files

In script 10-3 we use the c shell to run MODE with several different object definition
parameters. We use nested foreach loops to go through (10 x 7 = 70) unique
convolution radii and intensity threshold combinations. In the outer loop, we loop
though ten convolution radii ranging from ‘00’ to ‘96’; in the inner loop, we loop through
seven intensity thresholds. We assume that the observation grid and forecast grid are
available in pcp/st2/ST2ml_2005060100.g240.nc and
pcp/wrf2caps/wrf2caps_2005053100.g240.f24.nc, respectively.

Script 10-3

 1 #!/bin/csh
 2
 3 # Loop through 10 convolution radii.
 4 foreach conv_radius (00 04 08 12 16 24 32 48 64 96)
 5
 6 # Set environmental variable conv_radius so it
 7 # may be used in the mode parameter file.
 8 setenv conv_radius $conv_radius
 9
 10 # Set output directory.
 11 set dir = mode_output/${conv_radius}km
 12 # If output directory does not exist, create it.
 13 if (! -d $dir) mkdir $dir
 14
 15 # Loop through 7 intensity thresholds.
 16 foreach conv_thresh (gt00. ge01. ge02. ge03. ge04.
ge05. ge06.)
 17
 18 # Set environmental variable conv_thresh so it
 19 # may be used in the mode parameter file.
 20 setenv conv_thresh \"$conv_thresh\"
 21
 22 # Set output directory.

Chapter 10: Scripting 10-4

 23 set dir =
mode_output/${conv_radius}km/${conv_thresh}
 24 # Create directory if it does not exist.
 25 if (! -d $dir) mkdir $dir
 26
 27 # execute mode with output directory $dir
 28 mode pcp/wrf2caps/wrf2caps_2005053100.g240.f24.nc \
 29 pcp/st2/ST2ml_2005060100.g240.nc \
 30 mode_output/WrfModeConfig_default \
 31 -outdir $dir
 32
 33 end
 34 end

Line 1 is similar to Line 1 of scripts 10-1 and 10-2. It says that the c shell will interpret
the script and the shell is found in /bin/csh. Comments are embedded in the script and
are preceded by the number sign (#). Line 4 is the beginning of the outer loop, which
runs through ten different convolution radii. These are presented in the form of 2-
character strings, which are passed on to the environmental variable conv_radius (line
8). This environmental variable is passed on to the parameter file. An excerpt from the
parameter file is shown below, in which we see how environmental variables are
specified (lines 110-111). They are contained in curly brackets and preceded by a
dollar sign. Line 11 of the shell script defines a path to the output directory. If the
directory does not exist already, then it is created in line 13. The inner loop starts on
line 16 and loops through seven intensity thresholds. Notice the use of backslashes
before the double quote characters in line 20. This is necessary when the substitution
will be for a string in the parameter file, such as for the parameters
fcst_conv_thresh and obs_conv_thresh (lines 132-133 in the excerpt below).
Again, the output directory is created if it doesn’t exist (lines 23-25) and finally, mode is
called in lines 28-31. The backslash characters at the end of the line are optional, but
they are nice for breaking up a long command line into multiple lines. In practice, a
return must immediately follow the backslash character. This script will execute mode
70 times with different object definition parameters for each execution. Each intensity
threshold/ convolution radius combination will be output to its own directory.

If you copy and paste the script to your own text file, be sure you remove the line
numbers. To execute it, change the permission of the text file to allow execution. Use
the chmod command to do this (e.g., chmod u+x script10-3.csh).

excerpt from mode parameter file to which script 10-3 refers

 107 // Radius (grid squares) for the circular convolution
applied to the raw
 108 // fcst and obs fields.
 109 //
 110 fcst_conv_radius = ${conv_radius}/grid_res;

Chapter 10: Scripting 10-5

 111 obs_conv_radius = ${conv_radius}/grid_res;
 112
 113 //
 114 // When performing the convolution step on points
containing bad data,
 115 // compute a ratio of the number of bad data points to
the total number
 116 // of points in the convolution area. If that ratio
is greater than this
 117 // threshold, set the convolved field value to bad
data. Otherwise, use
 118 // the computed convolution value. Must be between 0
and 1. Setting
 119 // this threshold to 0 will have the effect of masking
out bad data
 120 // entirely from the object field.
 121 //
 122 bad_data_thresh = 0.5;
 123
 124 //
 125 // Apply a threshold to the convolved fcst and obs
fields to define
 126 // objects using the threshold values below. The
threshold values are
 127 // specified as "xxT" where T is the threshold value
and xx is one of:
 128 // 'lt' for less than, 'le' for less than or equal
to,
 129 // 'eq' for equal to, 'ne' for not equal to,
 130 // 'gt' for greater than, and 'ge' for greater than
or equal to
 131 //
 132 fcst_conv_thresh = ${conv_thresh};
 133 obs_conv_thresh = ${conv_thresh};

Chapter 11: Plotting and Graphics Support

11-1

Chapter 11 – Plotting and Graphics Support

Once MET has been applied to forecast and observed fields (or observing locations),
and the output has been sorted through the Analysis Tool, numerous graphical and
summary analyses can be performed depending on a specific user’s needs. Here we
give some examples of graphics and summary scores that one might wish to compute
with the given output of MET. Any computing language could be used for this stage;
some scripts will be provided on the MET users web page
(http://www.dtcenter.org/met/users/) as examples to assist users.

11.1 Grid-Stat tool examples

The plots in Figure 11-1 show a time series of Frequency Bias and Gilbert Skill Score
(GSS) calculated by the Grid-Stat tool and plotted using an IDL script. The script simply
reads the columnar text output from the Grid-Stat output and summarizes the results.
These particular plots are based on the occurrence (or non-occurrence) of precipitation
greater than 1 mm over 3 h. They show skill scores for four different configurations of
model runs using different physics packages and numerics. Stage II radar-gauge
estimates are used as verification observations for this exercise. Over this month-long
period, the models all appear to do relatively well for the period 24 July to 28 July, as
the GSS rises above 0.2 and the bias drops to near 1. The time scale and ordinate
axes can be easily manipulated for closer inspection of model differences.

Figure 11-1: Time series of forecast bias and Gilbert Skill Score for several numerical
models (differentiated by line-type and color) over a 32-day period in July/Aug 2005.

Scores are based on the forecast of 1 mm or greater precipitation at 3-h intervals.
Models were run for 24 h and were initiated every day at 00 UTC.

Chapter 11: Plotting and Graphics Support

11-2

A similar plot is shown in Fig. 11-2, except the data have been stratified according to
time of day. This type of figure is particularly useful for diagnosing problems that are
tied to the diurnal cycle. In this case, two of the models (green dash-dotted and black
dotted lines) show an especially high Bias (near 3) during the afternoon (15-21 UTC; left
panel), while the skill (GSS; right panel) appears to be best for the models represented
by the solid black line and green dashed lines in the morning (09-15 UTC). Note that
any judgment of skill based on GSS should be restricted to times when the Bias is close
to one.

Figure 11-2: Time series of forecast area bias and Gilbert Skill Score for four model

configurations (different lines) stratified by time-of-day. The data used to create these
figures were the same as used for Fig. 10-1.

11.2 MODE tool examples

When using the MODE tool, it is possible to think of matched objects as hits and
unmatched objects as false alarms or misses depending on whether the unmatched
object is from the forecast or observed field, respectively. Because the objects can
have greatly differing sizes, it is useful to weight the statistics by the areas, which are
given in the output as numbers of grid squares. When doing this, it is possible to have
different matched observed object areas from matched forecast object areas so that the
number of hits will be different depending on which is chosen to be a hit. When
comparing multiple forecasts to the same observed field, it is perhaps wise to always
use the observed field for the hits so that there is consistency for subsequent
comparisons. Defining hits, misses and false alarms in this way allows one to compute
many traditional verification scores without the problem of small-scale discrepancies;
the matched objects are defined as being matched because they are “close” by the
fuzzy logic criteria. Note that scores involving the number of correct negatives may be
more difficult to interpret as it is not clear how to define a correct negative in this

Chapter 11: Plotting and Graphics Support

11-3

context. It is also important to evaluate the number and area attributes for these objects
in order to provide a more complete picture of how the forecast is performing.

Fig 11-3 gives an example of two traditional verification scores (Bias and CSI) along
with bar plots showing the total numbers of objects for the forecast and observed fields,
as well as bar plots showing their total areas. These data are from the same set of 13-
km WRF model runs analyzed in Figs. 10-1 and 10-2. The model runs were initialized
at 0 UTC and cover the period 15 July to 15 August 2005. For the forecast evaluation,
we compared 3-hour accumulated precipitation for lead times of 3-24 hours to Stage II
radar-gauge precipitation. Note that for the 3-hr lead time, indicated as the 0300 UTC
valid time in Fig. 10-3, the Bias is significantly larger than the other lead times. This is
evidenced by the fact that there are both a larger number of forecast objects, and a
larger area of forecast objects for this lead time, and only for this lead time. Dashed
lines show about 2 bootstrap standard deviations from the estimate.

Figure 11-3: Traditional verification scores applied to output of the MODE tool,

computed by defining matched observed objects to be hits, unmatched observed
objects to be misses, and unmatched forecast objects to be false alarms; weighted by
object area. Bar plots show numbers (pennultimate row) and areas (bottom row) of

observed and forecast objects, respectively.

In addition to the traditional scores, MODE output allows more information to be
gleaned about forecast performance. It is even useful when computing the traditional
scores to understand how much the forecasts are displaced in terms of both distance

Chapter 11: Plotting and Graphics Support

11-4

and direction. Fig. 11-4, for example, shows circle histograms for matched objects.
The petals show the percentage of times the forecast object centroids are at a given
angle from the observed object centroids. In Fig. 11-4 (top diagram) about 25% of the
time the forecast object centroids are west of the observed object centroids, whereas in
Fig. 11-4 (bottom diagram) there is less bias in terms of the forecast objects’ centroid
locations compared to those of the observed objects, as evidenced by the petals’
relatively similar lengths, and their relatively even dispersion around the circle. The
colors on the petals represent the proportion of centroid distances within each colored
bin along each direction. For example, Fig 11-4 (top row) shows that among the
forecast object centroids that are located to the West of the observed object centroids,
the greatest proportion of the separation distances (between the observed and forecast
object centroids) is greater than 20 grid squares.

Chapter 11: Plotting and Graphics Support

11-5

Figure 11-4: Circle histograms showing object centroid angles and distances (see text

for explanation).

References R-1

References

Bradley, A.A., S.S. Schwartz, and T. Hashino, 2008: Sampling Uncertainty and
Confidence Intervals for the Brier Score and Brier Skill Score. Weather and Forecasting,
23, 992–1006.

Brown, B.G., R. Bullock, J. Halley Gotway, D. Ahijevych, C. Davis, E. Gilleland, and L.
Holland, 2007: Application of the MODE object-based verification tool for the evaluation
of model precipitation fields. AMS 22nd Conference on Weather Analysis and
Forecasting and 18th Conference on Numerical Weather Prediction, 25-29 June, Park
City, Utah, American Meteorological Society (Boston), Available at
http://ams.confex.com/ams/pdfpapers/124856.pdf.

Casati, B., Ross, G., and Stephenson, D. 2004: A new intensity-scale approach for the
verification of spatial precipitation forecasts. Meteorol. Appl. 11, 141-154

Davis, C.A., B.G. Brown, and R.G. Bullock, 2006a: Object-based verification of
precipitation forecasts, Part I: Methodology and application to mesoscale rain areas.
Monthly Weather Review, 134, 1772-1784.

Davis, C.A., B.G. Brown, and R.G. Bullock, 2006b: Object-based verification of
precipitation forecasts, Part II: Application to convective rain systems. Monthly Weather
Review, 134, 1785-1795.

Dawid, A. P., 1984: Statistical theory: The prequential approach. J. Roy. Stat. Soc,
A147:278–292.

Ebert, E.E., Fuzzy verification of high-resolution gridded forecasts: a review and
proposed framework. Meteorological Applications, 15, 51-64.

Efron B. 2007: Correlation and large-scale significance testing. Journal of the American
Statistical Association, 102(477), 93-103.

Gneiting, T., Westveld, A., Raferty, A. and Goldman, T, 2004: Calibrated Probabilistic
Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation.
Technical Report no. 449, Department of Statistics, University of Washington. [Available
online at http://www.stat.washington.edu/www/research/reports/]
!
Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts.
Mon. Wea. Rev., 129, 550–560.

Jolliffe, I.T., and D.B. Stephenson, 2003: Forecast verification. A practitioner's guide in
atmospheric science. Wiley and Sons Ltd, 240 pp.

Murphy, A.H., and R.L. Winkler, 1987: A general framework for forecast verification.
Monthly Weather Review, 115, 1330-1338.

References R-2

Roberts, N.M., and H.W. Lean, 2008: Scale-selective verification of rainfall
accumulations from high-resolution forecasts of convective events. Monthly Weather
Review, 136, 78-97.

Stephenson, D.B., 2000: Use of the “Odds Ratio” for diagnosing forecast skill. Weather
and Forecasting, 15, 221-232.

Wilks, D., 2006: Statistical methods in the atmospheric sciences. Elsevier, San Diego.

Appendix A: How do I…? A-1

Appendix A – How do I … ?

A.1 Frequently Asked Questions

Q. Why was the MET written largely in C++ instead of FORTRAN?
A. MET relies upon the object-oriented aspects of C++, particularly in using the

MODE tool. Due to time and budget constraints, it also makes use of a pre-
existing forecast verification library that was developed at NCAR.

Q. Why is PrepBufr used?
A. The first goal of MET was to replicate the capabilities of existing verification

packages and make these capabilities available to both the DTC and the public.

Q. Why is GRIB used?
A. Forecast data from both WRF cores can be processed into GRIB format, and it is

a commonly accepted output format for many NWP models.

Q. Is GRIB2 supported?
A. Not yet. We plan to add support for forecast output in GRIB2 format in future

releases of MET.

Q. How does MET differ from the previously mentioned existing verification

packages?
A. MET is an actively maintained, evolving software package that is being made

freely available to the public through controlled version releases.

Q. How does the MODE tool differ from the Grid-Stat tool?
A. They offer different ways of viewing verification. The Grid-Stat tool provides

traditional verification statistics, while MODE provides specialized spatial
statistics.

Q. Will the MET work on data in native model coordinates?
A. No – it will not. In the future, we may add options to allow additional model grid

coordinate systems.

Q. How do I get help if my questions are not answered in the User’s Guide?
A. First, look on our website http://www.dtcenter.org/met/users. If that doesn’t

answer your question, then email: met_help@ucar.edu.

Q. Where are the graphics?
A. Currently, very few graphics are included. Further graphics support will be made

available in the future on the MET website.

Appendix A: How do I…? A-2

A.2 Troubleshooting

The first place to look for help with individual commands is this user’s guide or the
usage statements that are provided with the tools. Usage statements for the individual
MET tools are available by simply typing the name of the executable in MET’s bin/
directory. Example scripts available in the MET’s scripts/ directory show examples
of how one might use these commands on example datasets. Here are suggestions on
other things to check if you are having problems installing or running MET.

MET won’t compile

• Are you using the correct version of the Makefile (Makefile_gnu for using the
GNU compilers; Makefile_pgi for the PGI compilers, Makefile_intel for Intel
compilers, and Makefile_ibm for running on an IBM)

• In your configured Makefile, did you accidently insert any blank characters at the
end of a line? Doing so may cause the compiler options to be passed incorrectly.

• Are the correct paths specified in the Makefile for BUFRLIB, the NetCDF and
GNU Scientific libraries? Have these libraries been compiled and installed using
the same set of compilers used to build MET?

• Do you have the correct F2C (FORTRAN to C) header? This may be either
“libf2c.a” or “libg2c.a” depending on your system.

• Are you using NetCDF version 3.4 or version 4? Currently, only NetCDF version
3.6 can be used with MET.

Grid_stat won’t run

• Are both the observational and forecast datasets on the same grid?

MODE won’t run

• Do you have the same accumulation periods for both the forecast and
observations? (If you aren’t sure, run pcp_combine.)

• Are both the observation and forecast datasets on the same grid?

Point_stat won’t run

• Have you run pb2nc first on your PrepBufr observation data?

General troubleshooting

• For configuration files used, make certain to use empty square brackets (e.g. [])
to indicate no stratification is desired. Do NOT use empty double quotation
marks inside square brackets (e.g. [“”]).

• Have you designated all the required command line arguments?

Appendix A: How do I…? A-3

A.3 Where to get help

If none of the above suggestions have helped solve your problem, help is available
through: met_help@ucar.edu

A.4 How to contribute code

If you have code you would like to contribute, we will gladly consider your contribution.
Please send email to: met_help@ucar.edu

Appendix B: Map projections, Grids, and Polylines B-1

Appendix B – Map Projections, Grids, and Polylines

B.1 Map Projections

The following map projections are currently supported in MET:
• Lambert Conformal Projection
• Polar Stereographic Projection (Northern)
• Polar Stereographic Projection (Southern)
• Mercator Projection
• Lat/Lon Projection

B.2 Grids

All of NCEP’s pre-defined grids that reside on one of the projections listed above are
implemented in MET. The user may specify one of these NCEP grids in the
configuration files as “GNNN” where NNN is the 3-digit NCEP grid number. Defining a
new masking grid in MET would involve modifying the vx_data_grids library and
recompiling.

Please see NCEP’s website for a description and plot of these pre-defined grids:
http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.htmln

The NCEP grids that are pre-defined in MET are listed below by projection type:
• Lambert Conformal Projection

o G145, G146, G163, G206, G209, G211, G212, G215, G218, G221
o G222, G226, G227, G236, G237, G241, G245, G246, G247, G252

• Polar Stereographic Projection (Northern)
o G005, G006, G027, G028, G055, G056, G087, G088, G100, G101
o G103, G104, G105, G106, G107, G201, G202, G203, G205, G207
o G213, G214, G216, G217, G223, G224, G240, G242, G249

• Lat/Lon Projection
o G002, G003, G004, G029, G030, G033, G034, G045, G085, G086
o G110, G175, G228, G229, G230, G231, G232, G233, G234, G243
o G248, G250,G251

B.3 Polylines

Many of NCEP’s pre-defined verification regions are implemented in MET as lat/lon
polyline files. The user may specify one of these NCEP verification regions in the
configuration files by pointing to the lat/lon polyline file in the data/poly directory of the
distribution. Users may also easily define their own lat/lon polyline files.

Appendix B: Map projections, Grids, and Polylines B-2

See NCEP’s website for a description and plot of these pre-defined verification regions:
http://www.emc.ncep.noaa.gov/mmb/research/nearsfc/nearsfc.verf.html

The NCEP verification regions that are implemented in MET as lat/lon polylines are
listed below:
• APL.poly for the Appalachians
• ATC.poly for the Arctic Region
• CAM.poly for Central America
• CAR.poly for the Caribbean Sea
• ECA.poly for Eastern Canada
• GLF.poly for the Gulf of Mexico
• GMC.poly for the Gulf of Mexico Coast
• GRB.poly for the Great Basin
• HWI.poly for Hawaii
• LMV.poly for the Lower Mississippi Valley
• MDW.poly for the Midwest
• MEX.poly for Mexico
• NAK.poly for Northern Alaska
• NAO.poly for Northern Atlantic Ocean
• NEC.poly for the Northern East Coast
• NMT.poly for the Northern Mountain Region
• NPL.poly for the Northern Plains
• NPO.poly for the Northern Pacific Ocean
• NSA.poly for Northern South America
• NWC.poly for Northern West Coast
• PRI.poly for Puerto Rico and Islands
• SAK.poly for Southern Alaska
• SAO.poly for the Southern Atlantic Ocean
• SEC.poly for the Southern East Coast
• SMT.poly for the Southern Mountain Region
• SPL.poly for the Southern Plains
• SPO.poly for the Southern Pacific Ocean
• SWC.poly for the Southern West Coast
• SWD.poly for the Southwest Desert
• WCA.poly for Western Canada
• EAST.poly for the Eastern United States (consisting of APL, GMC, LMV, MDW,

NEC, and SEC)
• WEST.poly for the Western United States (consisting of GRB, NMT, NPL, NWC,

SMT, SPL, SWC, and SWD)
• CONUS.poly for the Continental United States (consisting of EAST and WEST)

Appendix C: Verification Measures C-1

Appendix C – Verification Measures

This appendix provides specific information about the many verification statistics and
measures that are computed by MET. These measures are categorized into measures
for categorical (dichotomous) variables; measures for continuous variables; measures
for probabilistic forecasts and measures for neighborhood methods. While the
continuous, categorical, and probabilistic statistics are computed by both the Point-Stat
and Grid-Stat tools, the neighborhood verification measures are only provided by the
Grid-Stat tool.

C.1 MET verification measures for categorical (dichotomous) variables

The verification statistics for dichotomous variables are formulated using a contingency
table such as the one shown in Table C-1. In this table f represents the forecasts and o
represents the observations; the two possible forecast and observation values are
represented by the values 0 and 1. The values in Table C-1 are counts of the number
of occurrences of the four possible combinations of forecasts and observations.

Table C-1: 2x2 contingency table in terms of counts. The nij values in the table
represent the counts in each forecast-observation category, where i represents the

forecast and j represents the observations. The “.” symbols in the total cells represent
sums across categories.

Forecast Observation Total o = 1 (e.g., “Yes”) o = 0 (e.g., “No”)
f = 1 (e.g., “Yes”) n11 n10 n1. = n11 + n10
f = 0 (e.g., “No”) n01 n00 N0.= n01 + n00

Total n.1 = n11 + n01 n.0 = n10 + n00
T = n11 + n10 +

n01 + n00

The counts, n11, n10, n01, and n00, are sometimes called the “Hits”, “False alarms”,
“Misses”, and “Correct rejections”, respectively.

By dividing the counts in the cells by the overall total, T, the joint proportions, p11, p10,
p01, and p00 can be computed. Note that p11 + p10 + p01 + p00 = 1. Similarly, if the counts
are divided by the row (column) totals, conditional proportions, based on the forecasts
(observations) can be computed. All of these combinations and the basic counts can be
produced by the Point-Stat tool.

The values in Table C-1 can also be used to compute the F, O, and H relative
frequencies that are produced by the NCEP Verification System, and the Point-Stat tool
provides an option to produce the statistics in this form. In terms of the other statistics
computed by the Point-Stat tool, F is equivalent to the Mean Forecast; H is equivalent to
POD; and O is equivalent to the Base Rate. All of these statistics are defined in the

Appendix C: Verification Measures C-2

subsections below. The Point-Stat tool also provides the total number of observations,
T.

The categorical verification measures produced by the Point-Stat and Grid-Stat tools
are described in the following subsections. They are presented in the order shown in
Tables 4-3 through 4-8.

TOTAL

The total number of forecast-observation pairs, T.

Base rate
Called “O_RATE” in FHO output (Table 4-3)
Called “BASER” in CTS output (Table 4-5)

The base rate is defined as . This value is also known as the sample

climatology, and is the relative frequency of occurrence of the event (i.e., o = 1). The
base rate is equivalent to the “O” value produced by the NCEP Verification System.

Mean forecast
Called “F_RATE” in FHO output (Table 4-3);
Called “FMEAN” in CTS output (Table 4-5)

The mean forecast value is defined as . This statistic is comparable to

the base rate and is the relative frequency of occurrence of a forecast of the event (i.e.,
f = 1). The mean forecast is equivalent to the “F” value computed by the NCEP
Verification System.

Accuracy
Called “ACC” in CTS output (Table 4-5)

Accuracy for a 2x2 contingency table is defined as n11 + n00
T

 .

 That is, it is the

proportion of forecasts that were either hits or correct rejections – the fraction that were
correct. Accuracy ranges from 0 to 1; a perfect forecast would have an accuracy value
of 1. Accuracy should be used with caution, especially for rare events, because it can
be strongly influenced by large values of n00.

Frequency Bias
Called “FBIAS” in CTS output (Table 4-5)

11 01 .1n n no
T T
+= =

11 10 1.n n nf
T T
+= =

Appendix C: Verification Measures C-3

Frequency Bias is the ratio of the total number of forecasts of an event to the total

number of observations of the event. It is defined as Bias = n11 + n10
n11 + n01

=
n1.
n1

 . A “good”

value of Frequency Bias is close to 1; a value greater than 1 indicates the event was
forecasted too frequently and a value less than 1 indicates the event was not forecasted
frequently enough.

Probability of Detection (POD)
Called “H_RATE” in FHO output (Table 4-3);
Called “PODY” in CTS output (Table 4-5)

POD is defined as POD =
n11

n11 + n01
=
n11
n1

 . It is the fraction of events that were correctly

forecasted to occur. POD is equivalent to the H value computed by the NCEP
verification system and is also known as the hit rate. POD ranges from 0 to 1; a perfect
forecast would have POD = 1.

Probability of False Detection (POFD)
Called “POFD” in CTS output (Table 4-5)

POFD is defined as POFD =
n10

n10 + n00
=
n10
n.0

. It is the proportion of non-events that were

forecast to be events. POFD is also often called the False Alarm Rate2. POFD ranges
from 0 to 1; a perfect forecast would have POFD = 0.

Probability of Detection of the non-event (PODn)
Called “PODN” in CTS output (Table 4-5)

PODn is defined as PODn = n00
n10 + n00

=
n00
n.0

 . It is the proportion of non-events that were

correctly forecasted to be non-events. Note that PODn = 1 – POFD. PODn ranges
from 0 to 1. Like POD, a perfect forecast would have PODn = 1.

False Alarm Ratio (FAR)
Called “FAR” in CTS output (Table 4-5)

FAR is defined as FAR =
n10

n11 + n10
=
n10
n1.

. It is the proportion of forecasts of the event

occurring for which the event did not occur. FAR ranges from 0 to 1; a perfect forecast
would have FAR = 0.

2 Note that the false alarm rate is not the same as the false alarm ratio, also described here.

Appendix C: Verification Measures C-4

Critical Success Index (CSI)
Called “CSI” in CTS output (Table 4-5)

CSI is defined as CSI = n11
n11 + n10 + n01

 . It is the ratio of the number of times the event

was correctly forecasted to occur to the number of times it was either forecasted or
occurred. CSI ignores the “correct rejections” category (i.e., n00). CSI is also known as
the Threat Score (TS). CSI can also be written as a nonlinear combination of POD and
FAR, and is strongly related to Frequency Bias and the Base Rate.

Gilbert Skill Score (GSS)
Called “GSS” in CTS output (Table 4-5)

GSS is based on the CSI, corrected for the number of hits that would be expected by

chance. In particular, , where .

GSS is also known as the Equitable Threat Score (ETS). GSS values range from -1/3
to 1. A no-skill forecast would have GSS = 0; a perfect forecast would have GSS = 1.

Hanssen-Kuipers Discriminant (H-K)
Called “HK” in CTS output (Table 4-5)

H-K is defined as . More simply, . H-K is

also known as the True Skill Statistic (TSS) and less commonly (although perhaps
more properly) as the Peirce Skill Score. H-K measures the ability of the forecast to
discriminate between (or correctly classify) events and non-events. H-K values range
between -1 and 1. A value of 0 indicates no skill; a perfect forecast would have H-K = 1.

Heidke Skill Score (HSS)
Called “HSS” in CTS output (Table 4-5)

HSS is a skill score based on Accuracy, where the Accuracy is corrected by the number

of correct forecasts that would be expected by chance. In particular,

, where . HSS can range from minus infinity

to 1. A perfect forecast would have HSS = 1.

Odds Ratio (OR)
Called “ODDS” in CTS output (Table 4-5)

11 1

11 10 01 1

GSS n C
n n n C

−=
+ + −

11 10 11 01 1. .1
1
()()n n n n n nC

T T
+ += =

11 00 10 01

11 01 10 00

H-K
()()
n n n n

n n n n
−=

+ +
H-K POD POFD= −

11 00 2

2

HSS n n C
T C
+ −=
−

11 10 11 01 01 00 10 00
2
()() ()()n n n n n n n nC

T
+ + + + +=

Appendix C: Verification Measures C-5

OR measures the ratio of the odds of a forecast of the event being correct to the odds of

a forecast of the event being wrong. OR is defined as OR =
n11 ! n00
n10 ! n01

=

POD
1-POD

"
#$

%
&'

POFD
1-POFD

"
#$

%
&'

.

OR can range from 0 to infinity. A perfect forecast would have a value of OR = infinity.
OR is often expressed as the log Odds Ratio or as the Odds Ratio Skill Score
(Stephenson 2000).

C.2 MET verification measures for continuous variables

For continuous variables, many verification measures are based on the forecast error
(i.e., f – o). However, it also is of interest to investigate characteristics of the forecasts,
and the observations, as well as their relationship. These concepts are consistent with
the general framework for verification outlined by Murphy and Winkler (1987). The
statistics produced by MET for continuous forecasts represent this philosophy of
verification, which focuses on a variety of aspects of performance rather than a single
measure.

The verification measures currently evaluated by the Point-Stat tool are defined and
described in the subsections below. In these definitions, f represents the forecasts, o
represents the observation, and n is the number of forecast-observation pairs.

Mean forecast
Called “FBAR” in CNT output (Table 4-6)
Called “FBAR” in SL1L2 output (Table 4-11)

The sample mean forecast, FBAR, is defined as f =
1
n

fi
i=1

n

∑ .

Mean observation
Called “OBAR” in CNT output (Table 4-6)
Called “FBAR” in SL1L2 output (Table 4-11)

The sample mean observation is defined as o =
1
n

oi
i=1

n

∑ .

Forecast standard deviation
Called “FSTDEV” in CNT output (Table 4-6)

Appendix C: Verification Measures C-6

The sample variance of the forecasts is defined as s f
2 =

1
T !1

(fi ! f)2
i=1

T

" .

The forecast standard deviation is defined as s f = s f

2 .

Observation standard deviation
Called “OSTDEV” in CNT output (Table 4-6)

The sample variance of the observations is defined as so
2 =

1
T !1

(oi ! o)
2

i=1

T

" .

The observed standard deviation is defined as so = so
2 .

Pearson Correlation Coefficient
Called “PR_CORR” in CNT output (Table 4-6)

The Pearson correlation coefficient, r, measures the strength of linear association
between the forecasts and observations. The Pearson correlation coefficient is defined

as r =
(fi − f) (oi − o)

i=1

T

∑
∑ (fi − f)2 (oi − o)

2∑
.

r can range between -1 and 1; a value of 1 indicates perfect correlation and a value of
-1 indicates perfect negative correlation. A value of 0 indicates that the forecasts and
observations are not correlated.

Spearman rank correlation coefficient (ρs)
Called “SP__CORR” in CNT (Table 4-6)

The Spearman rank correlation coefficient (ρs) is a robust measure of association
that is based on the ranks of the forecast and observed values rather than the actual
values. That is, the forecast and observed samples are ordered from smallest to largest
and rank values (from 1 to n, where n is the total number of pairs) are assigned. The
pairs of forecast-observed ranks are then used to compute a correlation coefficient, as
shown for the Pearson correlation coefficient, r.

Appendix C: Verification Measures C-7

A simpler formulation of the Spearman-rank correlation is based on differences between
the each of the pairs of ranks (denoted as di):

ρs =
6

n(n2 −1)
di
2

i=1

n

∑

Like r, the Spearman rank correlation coefficient ranges between -1 and 1; a value of 1
indicates perfect correlation and a value of -1 indicates perfect negative correlation. A
value of 0 indicates that the forecasts and observations are not correlated.

Kendall’s tau statistic (τ)
Called “KT_CORR” in CNT output (Table 4-6)

Kendall’s tau statistic (τ) is a robust measure of the level of association between the
forecast and observation pairs. It is defined as

! =
NC " ND

n(n "1) / 2

where NC is the number of “concordant” pairs and ND is the number of “discordant”
pairs. Concordant pairs are identified by comparing each pair with all other pairs in the
sample; this can be done most easily by ordering all of the (fi,oi) pairs according to fi, in
which case the oi values won’t necessarily be in order. The number of concordant
matches of a particular pair with other pairs is computed by counting the number of
pairs (with larger fi values) for which the value of oi for the current pair is exceeded (that
is, pairs for which the values of f and o are both larger than the value for the current
pair). Once this is done, Nc is computed by summing the counts for all pairs. The total
number of possible pairs is n(n −1) / 2 ; thus, the number of discordant pairs is
ND = n(n !1) / 2 ! NC .

Like r and ρs, Kendall’s tau (τ) ranges between -1 and 1; a value of 1 indicates perfect
association (concordance) and a value of -1 indicates perfect negative association. A
value of 0 indicates that the forecasts and observations are not associated.

Mean Error (ME)
Called “ME” in CNT output (Table 4-6)

The Mean Error, ME, is a measure of overall bias for continuous variables; in particular

ME = Bias. It is defined as ME =
1
n

fi ! oi() = f ! o
i=1

n

" .

Appendix C: Verification Measures C-8

A perfect forecast has ME = 0.

Multiplicative Bias
Called “MBIAS” in CNT output (Table 4-6)

Multiplicative bias is simply the ratio of the means of the forecasts and the observations:

MBIAS = f
o

Mean-squared error (MSE)
Called “MSE” in CNT output (Table 4-6)

MSE measures the average squared error of the forecasts. Specifically,

MSE =
1
n

fi ! oi()2
i=1

n

" .

Root-mean-squared error (RMSE)
Called “RMSE” in CNT output (Table 4-6)

RMSE is simply the square root of the MSE, RMSE = MSE .

Standard deviation of the error
Called “ESTDEV” in CNT output (Table 4-6)

Bias-Corrected MSE
Called “BCMSE” in CNT output (Table 4-6)

MSE and RMSE are strongly impacted by large errors. They also are strongly impacted
by large bias (ME) values. MSE and RMSE can range from 0 to infinity. A perfect
forecast would have MSE = RMSE = 0.

MSE can be re-written as

MSE= f − o()2 + s f2 + so2 − 2s f sorfo , where f − o =ME and s f

2 + so
2 ! 2s f sorfo is the

estimated variance of the error, s2f −o . Thus, MSE=ME2 + s2f −o . To understand the
behavior of MSE, it is important to examine both of the terms of MSE, rather than
examining MSE alone. Moreover, MSE can be strongly influenced by ME, as shown by
this decomposition.

Appendix C: Verification Measures C-9

The standard deviation of the error, sf-o, is s f !o = s f !o
2 = s f

2 + so
2 ! 2s f sorfo .

Note that the standard deviation of the error (ESTDEV) is sometimes called the “Bias-
corrected MSE” (BCMSE) because it removes the effect of overall bias from the
forecast-observation squared differences.

Mean Absolute Error (MAE)
Called “MAE” in CNT output (Table 4-6)

The Mean Absolute Error (MAE) is defined as MAE =
1
n

fi − oi
i=1

n

∑ .

MAE is less influenced by large errors and also does not depend on the mean error. A
perfect forecast would have MAE = 0.

Percentiles of the errors
Called “E10”, “E25”, “E50”, “E75”, “E90” in CNT output (Table 4-6)

Percentiles of the errors provide more information about the distribution of errors than
can be obtained from the mean and standard deviations of the errors. Percentiles are
computed by ordering the errors from smallest to largest and computing the rank
location of each percentile in the ordering, and matching the rank to the actual value.
Percentiles can also be used to create box plots of the errors. In MET, the 0.10th,
0.25th, 0.50th, 0.75th, and 0.90th quantile values of the errors are computed.

Scalar L1 and L2 values
Called “FBAR”, “OBAR”, “FOBAR”, “FFBAR”, and “OOBAR” in SL1L2 output
(Table 4-11)

These statistics are simply the 1st and 2nd moments of the forecasts, observations and
errors:

FBAR = Mean(f) = f = 1
n

fi
i=1

n

∑

OBAR = Mean(o) = o =
1
n

oi
i=1

n

∑

FOBAR = Mean(f !o) = 1
n

fi !oi
i=1

n

"

FFBAR = Mean(f ! f) = 1
n

fi
2

i=1

n

" and

Appendix C: Verification Measures C-10

OOBAR = Mean(o !o) = 1
n

oi
2

i=1

n

"

Some of the other statistics for continuous forecasts (e.g., RMSE) can be derived from
these moments.

Scalar anomaly L1L2 values
Called “FABAR”, “OABAR”, “FOABAR”, “FFABAR”, “OOABAR” in SAL1L2
output (Table 4-12)

Computation of these statistics requires a climatological value, c. These statistics are
the 1st and 2nd moments of the scalar anomalies. The moments are defined as:

FABAR = Mean forecast anomaly = Mean (f - c) = 1
n

fi ! c()
i=1

n

" = f ! c

OABAR = Mean observed anomaly = Mean (o - c) = 1
n

oi ! c()
i=1

n

" = o ! c

FOABAR =Mean (f ! c)(o ! c)[] = 1
n

fi ! c() oi ! c()
i=1

n

"

FFABAR =Mean (f ! c)2"# $% =
1
n

fi ! c()2
i=1

n

& and

OOABAR =Mean (o ! c)2"# $% =
1
n

(oi ! c)
2

i=1

n

&

Vector L1 and L2 values
Called “UFBAR”, “VFBAR”, “UOBAR”, “VOBAR”, “UVFOBAR”, “UVFFBAR”,
“UVOOBAR” in VL1L2 output (Table 4-13)

These statistics are the moments for wind vector values, where u is the E-W wind
component and v is the N-S wind component (uf is the forecast E-W wind component;
uo is the observed E-W wind component; vf is the forecast N-S wind component; and vo
is the observed N-S wind component). The following measures are computed:

1

1UFBAR Mean()
n

f fi f
i

u u u
n =

= = =∑

1

1VFBAR Mean()
n

f fi f
i

v v v
n =

= = =∑

1

1UOBAR Mean()
n

o oi o
i

u u u
n =

= = =∑

1

1VOBAR Mean()
n

o oi o
i

v v v
n =

= = =∑

Appendix C: Verification Measures C-11

Vector anomaly L1 and L2 values
Called “UFABAR”, “VFABAR”, “UOABAR”, “VOABAR”, “UVFOABAR”,
“UVFFABAR”, “UVOOABAR” in VAL1L2 output (Table 4-14)

These statistics require climatological values for the wind vector components, uc and vc.
The measures are defined below:

1

1UVFOBAR Mean() ()
n

f o f o fi oi fi oi
i

u u v v u u v v
n =

= + = +∑
2 2 2 2

1

1UVFFBAR Mean() ()
n

f f fi fi
i

u v u v
n =

= + = +∑
2 2 2 2

1

1UVOOBAR Mean() ()
n

o o oi oi
i

u v u v
n =

= + = +∑

1

1UFABAR Mean forecast anomaly = Mean() ()
n

f c f c f c
i

u u u u u u u
n =

= − = − = −∑

1

1VFABAR Mean forecast anomaly Mean() ()
n

f c fi c f c
i

v v v v v v v
n =

= = − = − = −∑

1

1UOABAR Mean observation anomaly Mean() ()
n

o c oi c o c
i

u u u u u u u
n =

= = − = − = −∑

1

1VOABAR Mean observation anomaly Mean() ()
n

o c oi c o c
i

v v v v v v v
n =

= = − = − = −∑

1

UVFOABAR Mean[()() ()()]

1 [()() ()()]

f c o c f c o c

n

fi c oi c fi c oi c
i

u u u u v v v v

u u u u v v v v
n =

= − − + − −

= − − + − −∑
2 2 2 2

1

1UVFFABAR Mean[() ()] [() ()]
n

f c f c fi c fi c
i

u u v v u u v v
n =

= − + − = − + −∑
2 2 2 2

1

1UVOOABAR Mean[() ()] [() ()]
n

o c o c oi c oi c
i

u u v v u u v v
n =

= − + − = − + −∑

Appendix C: Verification Measures C-12

C.3 MET verification measures for probabilistic forecasts

The results of the probabilistic verification methods that are included in the Point-Stat,
Grid-Stat, and Stat-Analysis tools are summarized using a variety of measures. MET
treats probabilistic forecasts as categorical, divided into bins by user-defined thresholds
between zero and one. For the categorical measures, if a forecast probability is
specified in a formula, the mid-point value of the bin is used. These measures include
the Brier Score (BS) with confidence bounds (Bradley 2008); the joint distribution,
calibration-refinement, likelihood-base rate (Wilks 2006); and receiver operating
characteristic information. Using these statistics, reliability and discrimination diagrams
can be produced.

The verification statistics for probabilistic forecasts of dichotomous variables are
formulated using a contingency table such as the one shown in Table C-2. In this table
f represents the forecasts and o represents the observations; the two possible forecast
and observation values are represented by the values 0 and 1. The values in Table C-2
are counts of the number of occurrences of all possible combinations of forecasts and
observations.

Table C-2: nx2 contingency table in terms of counts. The nij values in the table
represent the counts in each forecast-observation category, where i represents the

forecast and j represents the observations. The “.” symbols in the total cells represent
sums across categories.

Forecast Observation Total o = 1 (e.g., “Yes”) o = 0 (e.g., “No”)
p1 = midpoint of (0

and threshold1)
n11 n10 n1. = n11 + n10

p2 = midpoint of
(threshold1 and

threshold2)

n21 n20 n2.= n21 + n20

 . . .

 . . .

 . . .

 . . .

pj = midpoint of
(thresholdi and 1)

ni1 ni0 nj = nj1 + nj0

Total n.1 = Σni1 n.0 = Σni0
T = Σni

Reliability – A component of the Brier score. Reliability measures the average
difference between forecast probability and average observed frequency. Ideally, this
measure should be zero as larger numbers indicate larger differences. For example, on
occasions when rain is forecast with 50% probability, it should actually rain half the time.

Appendix C: Verification Measures C-13

Reliabilityi =
1
T

ni pi ! oi()2"

Resolution – A component of the Brier score that measures how well forecasts divide
events into subsets with different outcomes. Larger values of resolution are best since it
is desirable for event frequencies in the subsets to be different than the overall event
frequency.

Resolution = 1
T
ni.(oi ! o)

2

Uncertainty – A component of the Brier score. For probabilistic forecasts, uncertainty is
a function only of the frequency of the event. It does not depend on the forecasts, thus
there is no ideal or better value. Note that Uncertainty is equivalent to the variance of
the event occurrence.

Uncertainty = n.1
T

1! n.1
T

"
#$

%
&'

Brier score

The Brier score is the mean squared probability error. In MET, the Brier Score (BS) is

calculated from the nx2 contingency table via the equation, BS = 1
T

n.1(p1 −1)
2 + n.0 p0

2⎡⎣ ⎤⎦

The equation you will most often see in references uses the individual probability
forecasts (pi) and the corresponding observations (oi), and is given as

BS = 1
T

(pi ! oi)
2

i
" . This equation is equivalent when the midpoints of the binned

probability values are used as the pi .

BS can be partitioned into three terms: (1) reliability, (2) resolution, and (3) uncertainty
(Murphy, 1973).

BS = 1
T

(pi ! oi)
2

i
" =

1
T i
" ni.(pi ! oi)

2 !
1
T i
" ni.(oi ! o)

2 + o(1! o)

This score is sensitive to the base rate or climatological frequency of the event.
Forecasts of rare events can have a good BS without having any actual skill. Since Brier
score is a measure of error, smaller values are better.

Appendix C: Verification Measures C-14

OY_TP – Observed Yes Total Proportion. This is the cell probability for row i, column
j=1 (observed event), a part of the joint distribution (Wilks, 2006). Along with ON_TP,
this set of measures provides information about the joint distribution of forecasts and
events. There are no ideal or better values.

OY _TPi =
ni1
T

= probability(oi1)

ON_TP – Observed No Total Proportion. This is the cell probability for row i, column j=0
(observed non-event), a part of the joint distribution (Wilks, 2006). Along with OY_TP,
this set of measures provides information about the joint distribution of forecasts and
events. There are no ideal or better values.

ON_TPi = ni0
T

= probability(oi0)

Calibration – Calibration is the conditional probability of an event given each probability
forecast category (i.e. each row in the nx2 contingency table). This set of measures is
paired with refinement in the calibration-refinement factorization discussed in Wilks
(2006). A well-calibrated forecast will have calibration values that are near the forecast
probability. For example, a 50% probability of precipitation should ideally have a
calibration value of 0.5. If the calibration value is higher, then the probability has been
underestimated, and vice versa.

calibrationi =
ni1
n1.

= probability(o1 pi)

Refinement – The relative frequency associated with each forecast probability,
sometimes called the marginal distribution or row probability. This measure ignores the
event outcome, and simply provides information about the frequency of forecasts for
each probability category. This set of measures is paired with the calibration measures
in the calibration-refinement factorization discussed by Wilks (2006).

refinementi =
ni.
T

= probability(pi)

Likelihood – Likelihood is the conditional probability for each forecast category (row)
given an event and a component of the likelihood-base rate factorization; see Wilks
(2006) for details. This set of measures considers the distribution of forecasts for only
the cases when events occur. Thus, as the forecast probability increases, so should the
likelihood. For example, 10% probability of precipitation forecasts should have a much
smaller likelihood value than 90% probability of precipitation forecasts.

Appendix C: Verification Measures C-15

likelihoodi =
ni1
n.1

= probability(pi o1)

Likelihood values are also used to create “discrimination” plots that compare the
distribution of forecast values for events to the distribution of forecast values for non-
events. These plots show how well the forecasts categorize events and non-events.
The distribution of forecast values for non-events can be derived from the POFD values
computed by MET for the user-specified thresholds.

Base Rate – This is the probability of an event for each forecast category pi (row), i.e.
the conditional base rate. This set of measures if paired with likelihood in the likelihood-
base rage factorization, see Wilks (2006) for further information. This measure is
calculated for each row of the contingency table. Ideally, the event should become more
frequent as the probability forecast increases.

 Base Ratei =
ni1
ni.

= probability(oi1)

Reliability diagram –

The reliability diagram is a plot of the observed frequency of events versus the forecast
probability of those events, with the range of forecast probabilities divided into
categories.

The ideal forecast (i.e., one with perfect reliability) has conditional observed probabilities
that are equivalent to the forecast probability, on average. On a reliability plot, this
equivalence is represented by the one-to-one line (the solid line in the figure below). So,
better forecasts are closer to the diagonal line and worse ones are farther away. The
distance of each point from the diagonal gives the conditional bias. Points that lie below
the diagonal line indicate over-forecasting; in other words, the forecast probabilities are
too large. The forecast probabilities are too low when the points lie above the line. The
reliability diagram is conditioned on the forecasts so it is often used in combination with
the ROC, which is conditioned on the observations, to provide a “complete”
representation of the performance of probabilistic forecasts.

Appendix C: Verification Measures C-16

Receiver operating characteristic

MET produces hit rate (POD) and false alarm rate (POFD) values for each user-
specified threshold. This information can be used to create a scatter plot of POFD vs.
POD. When the points are connected, the plot is generally referred to as the receiver
operating characteristic (ROC) curve (also called the “relative operating characteristic”
curve). See the area under the ROC curve (AUC) entry for related information.

Appendix C: Verification Measures C-17

An ROC plot is shown for an example set of forecasts, with a solid line connecting the
points for six user-specified thresholds (0.25, 0.35, 0.55, 0.65, 0.75, 0.85). The diagonal
dashed line indicates no skill while the dash-dot line shows the ROC for a perfect
forecast.

An ROC curve shows how well the forecast discriminates between two outcomes, so it
is a measure of resolution. The ROC is invariant to linear transformations of the
forecast, and is thus unaffected by bias. An unbiased (i.e., well-calibrated) forecast can
have the same ROC as a biased forecast, though most would agree that an unbiased
forecast is “better”. Since the ROC is conditioned on the observations, it is often paired
with the reliability diagram, which is conditioned on the forecasts.

Appendix C: Verification Measures C-18

Area Under the ROC curve (AUC)

The area under the receiver operating characteristic (ROC) curve is often used as a
single summary measure. A larger AUC is better. A perfect forecast has AUC=1.
Though the minimum value is 0, an AUC of 0.5 indicates no skill.

The area under the curve can be estimated in a variety of ways. In MET, the simplest
trapezoid method is used to calculate the area. AUC is calculated from the series of hit
rate (POD) and false alarm rate (POFD) values (see the ROC entry below) for each
user-specified threshold.

AUC =
1
2

(PODi+1 + PODi
i=1

Nthresh

!)(POFDi+1 " POFDi)

Appendix C: Verification Measures C-19

C.4 MET verification measures for ensemble forecasts

CRPS
The continuous ranked probability score (CRPS) is the integral, over all possible
thresholds, of the Brier scores (Gneiting et al, 2004). In MET, the CRPS calculation
uses a normal distribution fit to the ensemble forecasts. In many cases, use of other
distributions would be better.

WARNING: The normal distribution is probably a good fit for temperature and
pressure, and possibly a not horrible fit for winds. However, the normal
approximation will not work on most precipitation forecasts and may fail for many
other atmospheric variables.

Closed form expressions for the CRPS are difficult to define when using data rather
than distribution functions. However, if a normal distribution can be assumed, then the
following equation gives the CRPS for each individual observation (denoted by a
lowercase crps) and the corresponding distribution of forecasts.

crpsi (N(µ,!
2), y) = ! y " µ

!
2# y " µ

!
$
%&

'
()
"1

$

%&
'

()
+ 2* y " µ

!
$
%&

'
()
"
1
+

$

%
&

'

(
)

In this equation, the y represents the event threshold. The estimated mean and
standard deviation of the ensemble forecasts (µ and σ) are used as the parameters of
the normal distribution. The values of the normal distribution are represented by the
probability density function (PDF) denoted by ϕ and the cumulative distribution function
(CDF), denoted in the above equation by Φ.

The overall CRPS is calculated as the average of the individual measures. In equation
form.

CRPS = average(crps) = 1N crpsi
i−1

N

∑

The score can be interpreted as a continuous version of the mean absolute error (MAE).
Thus, the score is negatively oriented, so smaller is better. Further, similar to MAE, bias
will inflate the CRPS. Thus, bias should also be calculated and considered when
judging forecast quality using CRPS.

IGN

The ignorance score (IGN) is the negative logarithm of a predictive probability density
function (Gneiting et al, 2004). In MET, the IGN is calculated based on a normal
approximation to the forecast distribution (i.e. a normal pdf is fit to the forecast values).
This approximation may not be valid, especially for discontinuous forecasts like

Appendix C: Verification Measures C-20

precipitation, and also for very skewed forecasts. For a single normal distribution N with
parameters µ and σ, the ignorance score is:

ign(N(µ,σ), y) = 1
2
ln(2πσ 2) +

y − µ()2
σ 2

Accumulation of the ignorance score for many forecasts is via the average of individual
ignorance scores. This average ignorance score is the value output by the MET
software. Like many error statistics, the IGN is negatively oriented, so smaller numbers
indicate better forecasts.

PIT

The probability integral transform (PIT) is the analog of the rank histogram for a
probability distribution forecast (Dawid, 1984). Its interpretation is the same as that of
the verification rank histogram: Calibrated probabilistic forecasts yield PIT histograms
that are flat, or uniform. Underdispersed (not enough spread in the ensemble) forecasts
have U-shaped PIT histograms while overdispersed forecasts have bell shaped
histograms. In MET, the PIT calculation uses a normal distribution fit to the ensemble
forecasts. In many cases, use of other distributions would be better.

RANK
The rank of an observation, compared to all members of an ensemble forecast, is a
measure of dispersion of the forecasts (Hamill, 2001). When ensemble forecasts
possesses the same amount of variability as the corresponding observations, then the
rank of the observation will follow a discrete uniform distribution. Thus, a rank
histogram will be approximately flat.

The rank histogram does not provide information about the accuracy of ensemble
forecasts. Further, examination of “rank” only makes sense for ensembles of a fixed
size. Thus, if ensemble members are occasionally unavailable, the rank histogram
should not be used. The PIT may be used instead.

C.5 MET verification measures for neighborhood methods

The results of the neighborhood verification approaches that are included in the Grid-
Stat tool are summarized using a variety of measures. These measures include the
Fractions Skill Score (FSS) and the Fractions Brier Score (FBS). MET also computes

Appendix C: Verification Measures C-21

traditional contingency table statistics for each combination of threshold and
neighborhood window size.

The traditional contingency table statistics computed by the Grid-Stat neighborhood
tool, and included in the NBRCTS output, are listed below:

• Base Rate (called “BASER” in Table 5-3)
• Mean Forecast (called “FMEAN” in Table 5-3)
• Accuracy (called “ACC” in Table 5-3)
• Frequency Bias (called “FBIAS” in Table 5-3)
• Probability of Detection (called “PODY” in Table 5-3)
• Probability of Detection of the non-event (called “PODN” in Table 5-3)
• Probability of False Detection (called “POFD” in Table 5-3)
• False Alarm Ratio (called “FAR” in Table 5-3)
• Critical Success Index (called “CSI” in Table 5-3)
• Gilbert Skill Score (called “GSS” in Table 5-3)
• Hanssen-Kuipers Discriminant (called “H-K” in Table 5-3)
• Heidke Skill Score (called “HSS” in Table 5-3)
• Odds Ratio (called “ODDS” in Table 5-3)

All of these measures are defined in Section C1 of Appendix C.

In addition to these standard statistics, the neighborhood analysis provides two
additional continuous measures, the Fractions Brier Score and the Fractions Skill
Score. These measures are defined here, but are explained in much greater detail in
Ebert (2008) and Roberts and Lean (2008). Roberts and Lean (2008) also present an
application of the methodology.

Fractions Brier Score
Called “FBS” in NBRCNT output (Table 5-4)

The Fractions Brier Score (FBS) is defined as FBS = 1
N N
∑ Pf s

− Po s
⎡
⎣

⎤
⎦
2
 , where N is

the number of neighborhoods; Pf s
 is the proportion of grid boxes within a forecast

neighborhood where the prescribed threshold was exceeded (i.e., the proportion of grid
boxes that have forecast events); and Po s

 is the proportion of grid boxes within an
observed neighborhood where the prescribed threshold was exceeded (i.e., the
proportion of grid boxes that have observed events).

Fractions Skill Score

Appendix C: Verification Measures C-22

Called “FSS” in NBRCNT output (Table 5-4)

The Fractions Skill Score (FSS) is defined as FSS = 1− FBS
1
N

Pf s

2
− Po s

2

N
∑

N
∑⎡
⎣⎢

⎤
⎦⎥

 , where

the denominator represents the worst possible forecast (i.e., with no overlap between
forecast and observed events). FSS ranges between 0 and 1, with 0 representing no
overlap and 1 representing complete overlap between forecast and observed events,
respectively.

Appendix D: Confidence Intervals D-1

Appendix D – Confidence Intervals

A single verification statistic is statistically meaningless without associated uncertainty
information in accompaniment. There can be numerous sources of uncertainty
associated with such a statistic including observational, physical uncertainties about the
underlying processes governing the equation, sample uncertainty, etc. Although all of
the sources of uncertainty can be important, the most heavily researched, and easiest
to calculate, is that of sampling uncertainty. It is this source of uncertainty that can
presently be obtained with MET, and the techniques for deriving these estimates are
described here. Sampling uncertainty through MET is gleaned by way of confidence
intervals (CIs) as these are generally most informative. A confidence
interval is interpreted, somewhat awkwardly, in the following way. If the test were
repeated 100 times (so that we have 100 such intervals), then we expect the true value
of the statistics to fall inside of these intervals. For example, if then
we expect the true value to fall within 95 of the intervals.

There are two main types of CIs available with MET: parametric and non-parametric.
All of the parametric intervals used with MET rely on the underlying sample (or the
errors,) to be at least approximately independent and normally distributed.
Future releases will allow for some types of dependency in the sample. The non-
parametric techniques utilize what is known in the statistical literature as bootstrap
resampling, which does not rely on any distributional assumptions for the sample; the
assumption is that the sample is representative of the population. Bootstrap CIs can be
inaccurate if the sample is not independent, but there are ways of accounting for
dependence with the bootstrap, some of which will be added to MET in future releases.
Details about which verification statistics have parametric CIs in MET are described
next, and it should be noted that the bootstrap can be used for any statistic, though care
should be taken in how it is carried out, and this is described subsequently.

The most commonly used confidence interval about an estimate for a statistic (or
parameter), θ, is given by the normal approximation

 ! ± z! /2 !V !() , (D.1)

where is the α-th quantile of the standard normal distribution, and is the
standard error of the statistic (or parameter), θ. For example, the most common
example is for the mean of a sample, X1,	 .	 .	 .,	 Xn, of independent and identically
distributed (iid) normal random variables with mean µ and variance . Here, the

mean is estimated by , and the standard error is just the standard deviation
of the random variables divided by the square root of the sample size. That is,

(1) 100%α− ⋅

(1) 100α− ⋅ 0.05α =

F −O

zα V (θ)

σ 2

1
n

Xi
i=1

n

∑ = X

Appendix D: Confidence Intervals D-2

, and this must be estimated by V (X) , which is obtained here by

replacing σ by its estimate, !̂ , where !̂ = Xi ! X()
i=1

n

"
2

(n !1) .

Mostly, the normal approximation is used as an asymptotic approximation. That is, the
interval (D.1) may only be appropriate for large n. For small n, the mean has an interval

based on the Student’s t distribution with n-‐1 degrees of freedom. Essentially, of
(D.1) is replaced with the quantile of this t distribution. That is, the interval is
given by

 µ ± t! /2,"!1 "
#
n

, (D.2)

where again, σ is replaced by its estimate, !̂ , as described above.

Table 1 summarizes the verification statistics in MET that have normal approximation
CIs given by (D.1) along with their corresponding standard error estimates, V (!) . It
should be noted that for the first two rows of this table (i.e., Forecast/Observation Mean
and Mean error) MET also calculates the interval (D.2) for small sample sizes.

Table D1: Verification statistics with normal approximation CIs provided given by (D.1)
provided in MET along with their associated standard error estimate.

 V (!)

Forecast/Observation
Mean V (X) = ! x

n
where ! x emphasizes that this is the estimated

standard deviation of the underlying sample.
Mean error V (F !O) = ! F!O

n
, where ! F"O emphasizes that this is the estimated

standard deviation of the errors, .
Brier Score (BS)

V (BS) = 1
T

F 4! +O 1" 4 FFO=1
3 + 6 FFO=1

2 " 4 FFO=1!!!()" BS2#
$

%
&

where F is the probability forecast and O is the observation. See
Bradley et al (2008) for derivation and details.

Peirce Skill Score
(PSS) V (PSS) = H (1!H)

nH
+ F(1! F)

nF
, where is the hit rate, the false

alarm rate, the number of hits and misses, and the number
of false alarms and correct negatives.

Logarithm of the
odds ratio (OR) V (ln(OR)) = 1

a
+ 1
b
+ 1
c
+ 1
d

, where the values in the denominators

are the usual contingency table counts.

V(θ) =V(X) = σ
n

zα /2
α / 2

θ
∧

F −O

H F

nH nF

Appendix D: Confidence Intervals D-3

Other statistics in MET having parametric CIs that rely on the underlying sample to be at
least approximately iid normal, but have a different form derived from the normality
assumption on the sample include the variance, standard deviation, and the linear
correlation coefficient. These are addressed subsequently.

Generally, the normal interval (D.1) is appropriate for statistics of continuous variables,
but a limit law for the binomial distribution allows for use of this interval with proportions.
The most intuitive estimate for in this case is given by V (p) =

!p(1! !p) / n .
However, this only applies when the sample size is large. A better approximation to the
CI for proportions is given by Wilson’s interval, which is

!p + z! /2

2 + z! /2
!p(1! !p) / 4n

1+ z! /2
2 / n

, (D.3)

where p̂ is the estimated proportion (e.g., hit rate, false alarm rate, PODy, PODn, etc.).
Because this interval (D.3) generally works better than the more intuitive normal
approximation interval for both large and small sample sizes, this is the interval
employed by MET.

The forecast/observation variance has CIs derived from the underlying sample being
approximately iid normal with mean µ and variance . The lower and upper limits for
the interval are given by

 l(! 2) = (n "1)s
2

#$ /2,n"1
2 and u(! 2) = (n !1)s

2

"1!# /2,n!1
2 , (D.4)

respectively, where is the α-th quantile of the chi-square distribution with ν degrees
of freedom. Taking the square roots of the limits in (D.4) yields the CI for the
forecast/observation standard deviation.

Finally, the linear correlation coefficient has limits given by

 , (D.5)

where and .

All other verification scores with CIs in MET must be obtained through bootstrap
resampling. However, it is also possible to obtain bootstrap CIs for any of the statistics
given above, and indeed it has been proven that the bootstrap intervals have better
accuracy for the mean than the normal approximation. The bootstrap algorithm is
described below.

V (θ)

2σ

2
,α νχ

22

22

1 1,
1 1

u

u

cc

cc
e e
e e

⎛ ⎞− −
⎜ ⎟+ +⎝ ⎠

l

l

/ 2

3
zc
n
αν= −
−l

/ 2

3u
zc
n
αν= +
−

Appendix D: Confidence Intervals D-4

1. Assume the sample is representative of the population.
2. Resample with replacement from the sample (see text below).
3. Estimate the parameter(s) of interest for the current replicated sample.
4. Repeat steps 2 and 3 numerous times, say B times, so that you now have a

sample of size B of the parameter(s).
5. Calculate CIs for the parameters directly from the sample (see text below for

more details)

Typically, a simple random sample is taken for step 2, and that is how it is done in MET.
As an example of what happens in this step, suppose our sample is .
Then, one possible replicate might be . Usually one samples m = n points
in this step, but there are cases where one should use m < n. For example, when the
underlying distribution is heavy-tailed, one should use a smaller size m than n (e.g., the
closest integer value to the square root of the original sample size).

There are numerous ways to construct CIs from the sample obtained in step 4. MET
allows for two of these procedures: the percentile and the BCa. The percentile is the
most commonly known method, and the simplest to understand. It is merely the
and percentiles from the sample of statistics. Unfortunately, however, it has
been shown that this interval is too optimistic in practice (i.e., it doesn’t have accurate
coverage). One solution is to use the BCa method, which is very accurate, but it is also
computationally intensive. This method adjusts for bias and non-constant variance, and
yields the percentile interval in the event that the sample is unbiased with constant
variance.

If there is dependency in the sample, then it is prudent to account for this dependency in
some way. One method that does not make a lot of assumptions is circular block
bootstrapping. This is not currently implemented in MET, but will be available in a future
release. At that time, the method will be explained more fully here, but until then consult
Gilleland (2008, unpublished) for more details.

X1,X2 ,X3,X4
X2 ,X2 ,X2 ,X4

/ 2α
1 / 2α−

