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ABSTRACT

The impact of radar assimilation in the 2016 Community Leveraged Unified Ensemble (CLUE) is exam-
ined. Composite reflectivity forecasts are compared between two 10-member CLUE sub-ensembles that are
identical except that one assimilates radar data using a three-dimensional variational technique with cloud
analysis (RAD) and the other does not (NORAD). Forecasts are compared using neighborhood and object-
based verification metrics. It is found that radar assimilation typically improves composite reflectivity fore-
casts for 3–6 hours; however, lower skill is found in next-day (6–30 hour) RAD forecasts. Differences in the
next-day forecast skill are driven by thunderstorm coverage biases, with a low bias in RAD and a high bias in
NORAD. These biases are consistent across cases and degrade the quality of forecasts from both ensembles.
The contrasting biases in next-day RAD and NORAD composite reflectivity forecasts are influenced by vari-
ations in the extent and amplitude of predicted convective available potential energy (CAPE), with NORAD
CAPE forecasts consistently predicting upwards of 10,000 more gridpoints with significant CAPE (>1000 J
Kg−1) than RAD forecasts. Variation in next-day CAPE forecasts is attributable to the impacts of short-term
thunderstorm evolution, in particular large differences between convective cold pool representations in RAD
and NORAD.

1. Introduction

Numerical weather prediction systems with horizon-
tal grid spacing ≤4km capable of explicitly representing
deep convection have profilerated over the past decade.
Despite the growing availability of these convection al-
lowing models (CAMs), many questions remain regard-
ing their optimal design. These questions motivated mu-
tiple institutions to conduct coordinated, controlled exper-
iments on aspects of CAM configuration during the 2016
National Severe Storms Laboratory Hazardous Weather
Testbed Spring Forecasting Experiment (SFE; Kain et al.
2003; Gallo et al. 2017). The resulting CAM superensem-
ble, known as the Community Leveraged Unified Ensem-
ble (CLUE; Clark et al. 2018), was used to conduct 8 ex-
periments on CAM and CAM ensemble design. This study
examines the fourth experiment: Comparison of ensem-
bles with and without radar assimilation.

Assimilation of radar data provides a means of intro-
ducing energy at spatial scales typical of thunderstorms
into CAMs initialized from coarser model analyses. CAM
forecasts including these scales of motion in their initial
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conditions are often referred to as a “hot start” as opposed
to “cold start” forecasts where initial conditions are inter-
polated from a coarser analysis and convective-scale mo-
tion develops during the forecast. As radar assimilation
is expected to provide CAMs with more accurate initial
conditions (Stensrud et al. 2009) it has been implemented
in several real-time numerical weather prediction systems
(e.g. Xue et al. 2003; Gao et al. 2004; Hu et al. 2006;
Wheatley et al. 2015; Benjamin and Coauthors 2016). Al-
though prior studies have examined the impacts of radar
assimilation on short-term forecasts (Kain et al. 2010;
Craig et al. 2012; Stratman et al. 2013; Keil et al. 2014;
Moser et al. 2015; Surcel et al. 2016), comparitively few
studies have examined the impact of radar assimilation on
longer, next day, forecast periods of 6–30 hours1.

Kain et al. (2010) first compared deterministic CAM
forecasts with and without radar assimilation produced
by the University of Oklahoma Center for Analysis and
Prediction of Storms (CAPS) during the 2008 and 2009
SFE. They found that the benefits of radar assimilation
could last as long as 15 hours for low quantitative pre-
cipation forecast (QPF) rates. However, the forecast ben-
efits for higher QPF thresholds or radar reflectivity values

1The terms “short term” and “next day” are used to describe the
0–6 and 6–30 hour forecast periods, respectively, throughout this
manuscript.
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typical of thunderstorms (i.e. >40 dBZ) only lasted 3–6
hours, which matched subjective evaluations provided by
SFE participants. The longer benefits of radar assimila-
tion for lower QPF rates were attributed to a phase lag in
mesoscale convective system (MCS) forecasts initialized
without assimilating radar data.

Stratman et al. (2013) compared CAPS forecasts with
and without radar assimilation from the 2009 and 2010
SFE using traditional, neighborhood (Roberts and Lean
2008), and scale-separation (Casati 2010) verification
techniques. Though variation is observed across different
forecast quantities and verification metrics, their results
largely reinforce those from Kain et al. (2010). The bene-
fits of radar assimilation are found to last out to 12 hours
for spatial scales greater than 40 km, but decrease to less
than 6 hours for reflectivity values and spatial scales typi-
cal of thunderstorms. Similarly, Moser et al. (2015) used
the CAPS Advanced Regional Prediction System (ARPS)
three-dimensional variational (3DVAR) data assimilation
system with cloud analysis (Xue et al. 2003; Gao et al.
2004; Hu et al. 2006) to initialize forecasts with and with-
out radar data assimilation for 12 cases of heavy rainfall,
finding that the benefits of radar assimilation in QPF fore-
casts typically lasted less than 12 hours.

These general findings that the direct benefits of radar
assimilation on thunderstorm forecasts are limited to 3–6
hours are similar to intrinsic predictability limits for con-
vective scales (Durran and Weyn 2016; Weyn and Dur-
ran 2017). However, as errors associated with deep, moist
convection rapidly grow upscale to the mesoscale (Zhang
et al. 2003, 2007), it is reasonable to expect that the impact
of radar assimilation on short-term thunderstorm forecasts
will have indirect impacts on prediction of the next-day
mesoscale environment and convective evolution. For
example, Carbone et al. (2002) have shown that coher-
ent episodes of convective precipitation routinely occur
over 24–48 hour periods, which is longer than the life-
cycle of individual MCSs and provides evidence that ante-
cedant convection influences subsequent convection initi-
ation and evolution. This influence from prior convection
is often manifest as features such as Mesoscale Convec-
tive Vortices and outflow boundaries along convectively-
generated cold pools, which have long been known to in-
fluence next-day thunderstorm prediction (e.g. Bartels and
Maddox 1991; Johns and Doswell 1992; Weckwerth and
Parsons 2006). Several studies have demonstrated that im-
proved prediction of these convectively-induced phenom-
ena can improve subsequent forecasts of thunderstorm de-
velopment and evolution (e.g. Stensrud et al. 1999; Liu
and Xue 2018; Clark et al. 2010; Schumacher and Clark
2014; Thompson 2014; Nielsen and Schumacher 2016;
Degelia et al. 2018).

In practice, many CAMs and CAM ensembles are ini-
tialized at 0000 UTC (including the CLUE) and produce

FIG. 1. The verification domain used in this study. Regions shaded
gray are farther than 180 km from the nearest WSR-88D site and are not
considered in verification.

24–36 hour guidance that is used by operational meteorol-
ogists to generate forecasts, such as the Day 1 Convective
Outlook issued by the Storm Prediction Center. As 0000
UTC occurs at the diurnal convective maximum across
much of the United States, it is expected that the impact of
radar assimilation on model initial conditions, short-term
forecasts, and potentially next-day thunderstorm forecasts
will be maximized at this time. Therefore, examination of
the impacts of radar assimilation in CLUE thunderstorm
forecasts will be of value to forecasters and the aim of this
study is to quantify those impacts for both short-term and
next-day forecasts.

Descriptions of forecast and verification datasets are
provided in section 2. Comparisons between CLUE com-
posite reflectivity and thunderstorm environment forecasts
with and without radar assimilation are presented in sec-
tion 3, as well as a more thorough comparison for a severe
weather outbreak occurring on 24 May 2016. Discussion
of differences between the two ensembles and recommen-
dations for future research are provided in section 4 and
conclusions are summarized in section 5.

2. Dataset Descriptions

a. The CLUE Forecast Dataset

This study is concerned with two 10-member subsets
of the CLUE2: The s-phys-rad provided by CAPS and s-
phys-norad provided by NSSL (the two subsets are here-
after described as RAD and NORAD, respectively). Both
ensembles are run for the same CONUS domain with

2Readers are referred to Clark et al. (2018) for a complete descrip-
tion of the 2016 CLUE
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3 km horizontal grid spacing using an identical model
core and suite of physical parameterizations. All mem-
bers use the WRF-ARW core (Skamarock et al. 2008)
with Thompson microphysics (Thompson et al. 2008), the
Mellor-Yamada-Janjic planetary boundary layer parame-
terization (Mellor and Yamada 1982), and NOAH land
surface model (Ek et al. 2003). Corresponding members
from each ensemble are initialized using the 0000 UTC
NAM analysis with perturbations provided by NCEP’s
Short-Range Ensemble Forecast System. The only differ-
ence between the two ensembles is that the ARPS 3DVAR
data assimilation (Xue et al. 2003; Gao et al. 2004) and
cloud analysis system (Hu et al. 2006) is used to assim-
ilate radar reflectivity, radial velocity, and traditional ob-
servations (i.e. surface and radiosonde) into the RAD en-
semble3 and a cold start with no data assimilation is used
in the NORAD ensemble. The CLUE was run for 24 days
between 2 May and 3 June 2016, with each member pro-
ducing a 36-hour forecast for the majority of cases (Table
1).

Thunderstorms are approximated in CLUE forecasts us-
ing simulated composite reflectivity. For each hour of
forecast output the instantaneous composite reflectivity
field is verified over a domain covering roughly the east-
ern two-thirds of the continental United States, provided
the grid box is less than 180 km from the nearest WSR-
88D site (Fig. 1).

b. The Multi-Radar Multi-Sensor Verification Dataset

CLUE thunderstorm forecasts are verified against grid-
ded composite reflectivity values provided by the Multi-
Radar Multi-Sensor (MRMS; Smith et al. 2016) system.
The MRMS composite reflectivity product quality con-
trols WSR-88D Level 2 reflectivity observations using a
neural net trained on polarimetric data (Lakshmanan et al.
2014) then merges individual radar observations onto a
CONUS grid with 0.01◦ Latitude and Longitude spacing.
The initial MRMS composite reflectivity field is interpo-
lated onto the CLUE domain using a Cressman scheme
with a 2 km radius of influence.

3. Analysis

a. Model Climatologies

One challenge with verifying thunderstorm forecasts
is that corresponding observations that allow “apples-to-
apples” comparisons are not available. This challenge
includes composite reflectivity in CLUE forecasts and
MRMS observations, where differences in sampling res-
olution, errors in the microphysical parameterization, and

3Though multiple observation types are assimilated into the RAD
ensemble, hydrometeor mixing ratios are primarily determined by radar
reflectivity (Hu et al. 2006) and the broad term ‘radar assimilation’ is
used throughout this study for simplicity.

RAD
NORAD

97.5th - 99.9875th 
percentile

FIG. 2. Scatterplot of the 97.5th–99.875th percentile values of com-
posite reflectivity aggregated across the CLUE dataset. The RAD (NO-
RAD) ensembles are plotted in orange (blue) against corresponding per-
centiles of MRMS composite reflectivity interpolated to the model grid.
The RAD and NORAD results are plotted in orange and blue, respec-
tively through the remainder of the paper.

interpolation to a common grid prevent treating the quanti-
ties as equivalent. Therefore, percentile thresholds derived
from CLUE and MRMS composite reflectivity climatolo-
gies are used in verification (Mittermaier and Roberts
2010; Sobash et al. 2016; Dawson et al. 2017). Compos-
ite reflectivity climatologies are constructed using the cu-
mulative distribution function for CLUE or MRMS grid
points in the forecast and verification datasets (Fig. 2)
and thresholds are determined by matching extreme per-
centiles. Percentile thresholds allow corresponding val-
ues to be identified that minimize the frequency bias over
the experimental period (i.e. the forecast and verification
datasets will have the same number of gridpoints exceed-
ing the percentile chosen over the course of the experi-
ment).

Comparison of climatologies for RAD, NORAD, and
MRMS aggregated across all forecast times reveals com-
posite reflectivity values in CLUE forecasts are generally
higher than corresponding percentiles in MRMS data (Fig.
2). Both RAD and NORAD composite reflectivity values
exceed matching percentiles in MRMS data by around 10
dBZ below approximately the 99th percentile of the cli-
matologies, which corresponds to CLUE (MRMS) values
of roughly 50 (40) dBZ in Fig. 2. This difference is at-
tributable in part to the Cressman interpolation of MRMS
values to the CLUE grid, which will smooth the highest
values within the domain. A climatology created using
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TABLE 1. Summary of cases that make up the CLUE 2016 dataset.
Case number, date, available forecast hours, and total daily Local Storm
Reports (LSRs) from the Storm Prediction Center are provided in the
first 4 columns. The fifth column lists missing forecasts with “NR” and
“R” representing the NORAD and RAD ensembles, respectively and
missing forecast hours provided parenthetically. An asterix indicates
that only thermodynamic variables are missing.

Case Date Forecast Hours Total LSRs Missing Forecasts

1 2 May 36 123 NR 02(24)*
2 3 May 36 120
3 4 May 36 16 NR 02(28)*

NR 05(25)*
NR 07(27)*

4 5 May 36 10
5 6 May 24 12
6 9 May 36 170 NR 02(23)*

NR 05(36)*
NR 10(33)*

7 10 May 36 220 NR 03(27)
8 11 May 36 233
9 12 May 36 79 NR 04(23)*

NR 08(35)*
10 13 May 24 69 NR 01(4,8,21)*

NR 03(8,16)*
NR 04(2)*
NR 05(20)*
NR 07(16)*
NR 09(09)*

11 16 May 36 78
12 17 May 36 54
13 18 May 36 10
14 19 May 36 75
15 20 May 24 37
16 23 May 36 72
17 24 May 36 153 R 06(24–36)
18 25 May 36 163
19 26 May 36 290
20 27 May 24 66
21 31 May 36 64
22 1 June 36 61 R 05(15)
23 2 June 36 51
24 3 June 24 38 R 07(4,8,12)

the uninterpolated MRMS values is generally about 6 dBZ
higher than the interpolated climatology (not shown).

Differences are also apparent between the RAD and
NORAD climatologies, with NORAD forecasts having
slightly higher composite reflectivity values at correspond-
ing percentiles. The differences between the two ensem-
bles become more apparent when a specific percentile
(99.95%) is examined for values aggregated at each fore-
cast hour (Fig. 3). As would be expected, RAD values
are higher during the initial forecast hours as convection
develops within the cold start NORAD ensemble. How-
ever, RAD values during the first four hours of the fore-
cast are higher than either ensemble during the next-day

RAD
NORAD

99.95th Percentile Value

FIG. 3. Time series of the 99.95th percentile value of (orange) RAD,
(blue) NORAD, and (black) MRMS composite reflectivity at each avail-
able forecast hour.

diurnal maximum (forecast hours 22–26). Higher com-
posite reflectivity values occur at the 99.95th percentile of
the NORAD ensemble at later forecast times, particularly
during the next-day maximum. These differences in the
next-day composite reflectivity climatology, which are ex-
acerbated for percentile thresholds greater than 99.95%,
indicate that NORAD forecasts contain more total grid-
points with high values of composite reflectivity than the
RAD ensemble during this period. Calculating an hourly
climatology also allows the diurnal cycle of convection in
RAD and NORAD to be compared to observations (Fig.
3). Both ensembles roughly match the observed diurnal
cycle in timing, but display a smaller range of values be-
tween the morning minimum and evening max.

b. Verification of Thunderstorm Forecasts

1) NEIGHBORHOOD VERIFICATION

Skill in RAD and NORAD composite reflectivity fore-
casts is first assessed using the Fractions Skill Score (FSS;
Roberts and Lean 2008). The FSS is calculated for each
member of the RAD and NORAD ensembles at each avail-
able forecast hour, allowing the distributions of scores be-
tween the ensembles over the course of the experiment to
be compared (Fig. 4). A 40 dBZ composite reflectivity
threshold is chosen to define thunderstorms in CLUE fore-
casts, 30 dBZ is used as a threshold for MRMS observa-
tions as it approximately matches the 40 dBZ percentile in
the RAD and NORAD climatologies (Fig. 2).

Consistent with past studies (Kain et al. 2010; Craig
et al. 2012; Stratman et al. 2013; Keil et al. 2014; Moser
et al. 2015; Surcel et al. 2016), the RAD ensemble gen-
erally produces more skillful short-term forecasts. This
initial period of improved skill extends until forecast hour
5 (2) for a 75 km (295 km) diameter neighborhood, and
indicates improved initial conditions from radar assimila-
tion improves short-term prediction of convective storms.
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a) RAD
NORAD

b) RAD
NORAD

75 km Neighborhood

195 km Neighborhood

FIG. 4. Hourly box-and-whisker plots of Fractions Skill Score distributions for each composite reflectivity forecast issued by the RAD and
NORAD ensembles. FSS are calculated using thresholds of 40 (30) dBZ for CLUE (MRMS) composite reflectivity and neighborhoods with a (a)
75 km and (b) 195 km diameter.

However, distributions between the two ensembles rapidly
become similar and the median FSS of the NORAD en-
semble surpasses RAD by forecast hour six for each re-
flectivity threshold and neighborhood tested4 then remains
higher through the duration of the forecast (Fig. 4). FSS
differences between NORAD and RAD are particularly
pronounced for larger neighborhoods and forecast hours

4FSS was calculated for CLUE composite reflectivity thresholds of
30, 35, 40, 45, and 50 dBZ with corresponding MRMS thresholds 10
dBZ lower and for neighborhood diameters of 75, 105, 135, 165, and
195 km. FSS values change across different thresholds and neighbor-
hoods, but comparisons between RAD and NORAD remain similar.

outside the next-day diurnal maximum (i.e. hours 6–18
and 24–36), where the entire interquartile range of the NO-
RAD FSS distribution is above the interquartile range of
the RAD distribution. These large differences in FSS be-
tween the two ensembles following the first six forecast
hours suggest that radar assimilation has a negative im-
pact on thunderstorm forecast skill for the majority of the
forecast period.

Despite large relative differences in FSS between RAD
and NORAD, the median FSS for both ensembles remains
below 0.5 for all forecast hours and neighborhoods con-
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sidered, indicating generally unskillful forecasts of com-
posite reflectivity according to the criteria of Roberts and
Lean (2008). A majority of reflectivity forecast FSS val-
ues fall below 0.5, even for a large neighborhood where
skill would be expected to begin to asymptote (Fig. 4b),
suggesting that frequency biases are potentially present in
reflectivity forecasts from both the RAD and NORAD en-
semble and are resulting in lower asymptote FSS (Roberts
and Lean 2008).

2) OBJECT-BASED VERIFICATION

The skill of RAD and NORAD composite reflectiv-
ity forecasts are also assessed using the Method for
Object-based Diagnostic Evaluation (MODE; Davis et al.
2006a,b). Object-based verification techniques, such as
MODE, allow a customizable total interest value to be de-
fined that matches forecast objects to corresponding ob-
jects in a verification dataset. The configurable nature of
object matching, ability to match objects across different
forecast and verification fields (provided they are consis-
tently defined [Wolff et al. 2014]) and ability to quan-
tify specific forecast errors, such as location biases, make
object-based techniques attractive for verification of thun-
derstorm forecasts (e.g. Burghardt et al. 2014; Pinto et al.
2015; Cai and Dumais 2015; Skinner et al. 2018).

MODE identifies objects in CLUE and MRMS com-
posite reflectivity fields by applying a circular convolution
filter with a 9 km radius to each gridpoint, then apply-
ing a threshold to the smoothed fields. Application of the
convolution filter complicates the choice of a composite
reflectivity threshold as values typically used for thunder-
storm identification (i.e. 40 dBZ) will be smoothed in the
convolved field. Given the small convolution radius ap-
plied to CLUE forecasts, which is intended to retain in-
dividual thunderstorm cells, thresholds are reduced by 5
dBZ from those used for the FSS to 35 (25) dBZ in CLUE
(MRMS) composite reflectivity fields. Tests using thresh-
olds between 25 and 45 dBZ did not significantly change
interpretation of verfication scores. Following threshold-
ing, composite reflectivity objects are retained if they en-
compass at least 15 contiguous grid boxes (135 km2). The
object area threshold is intended to reduce the impact of
small reflectivity objects, which can result from weak or
misidentified thunderstorms, on verification scores.

Object pairs between CLUE forecasts and MRMS ob-
servations are matched using a total interest score com-
posed of measures of spatial displacement and the area
ratio of the objects. The majority of the total interest is
determined by spatial displacement between forecast and
observed object pairs, with the object centroid displace-
ment and boundary displacement (the minimum distance
between object edges) each accounting for 40% of the
overall total interest score. The final 20% of the total in-
terest score is determined by the area ratio of the object

pair, calculated with the larger area as the denominator.
Fuzzy logic-based interest functions are used for assign-
ing a value between 0 and 1 to each input to the final total
interest score. Centroid displacement is assigned a value
of 1 for distances ≤10 km that linearly decreases to 0 at 60
km displacement and boundary displacement is similar ex-
cept that values decrease from 1 to 0 for all displacements
up to 60 km. The area ratio interest function is assigned
a value of 1 for ratios ≥0.8 that decreases linearly to 0 as
ratios decrease. Object pairs are considered matched if the
total interest score is greater than or equal to 0.6. For ex-
ample, two objects of equal size with a 35 (30) km centroid
(boundary) displacement would have a total interest score
of 0.4*0.5 + 0.4*0.5 + 0.2*1.0 = 0.6 and be considered a
match.

Object matching allows each composite reflectivity ob-
ject in the CLUE and MRMS datasets to be classified
as a hit (matched object pair)5, false alarm (unmatched
CLUE object), or miss (unmatched MRMS object) and
object-based contingency table metrics to be calculated
(e.g. Griffin et al. 2017a,b; Skinner et al. 2018). Aggre-
gation of contingency table elements across all forecast
cases and ensemble members allows the ensemble mean
probability of detection (POD), false alarm ratio (FAR),
frequency bias (BIAS), and critical success index (CSI) of
the RAD and NORAD ensembles to be calculated for each
forecast hour (Fig. 5).

Clear differences in object-based verification metrics
of RAD and NORAD composite reflectivity forecasts are
present. Statistically significant differences for a 99% con-
fidence interval, calculated using a resampling technique
with 1000 iterations (Hamill 1999), are present between
RAD and NORAD POD, FAR, BIAS, and CSI for nearly
all forecast hours (Fig. 5). Differences in POD, FAR, and
CSI are influenced by contrasting biases in the number of
composite reflectivity objects, with NORAD generally ex-
hibiting a high bias and RAD a low bias. As NORAD fore-
casts are initialized without hydrometeors, biases are ini-
tially very low but increase rapidly as convection develops
within the ensemble and remain near 1 (unbiased) for fore-
cast hours 3–15. NORAD biases increase during the next-
day convective maxima, with overforecast biases present
between forecast hours 16 and 27 before dropping to near,
or slightly below 1 for the final 8 hours of the forecast
period. Biases in the RAD ensemble follow a similar diur-
nal pattern, but are considerably lower and remain below
1 throughout the forecast period. As would be expected
for forecasts with a larger frequency bias, the NORAD en-
semble has a higher POD than RAD for forecast hours

5MODE permits multiple forecast objects to be matched to the same
observed object. As a result, two different measures of matched ob-
ject pairs are possible: Matched forecast objects and matched observed
objects. The number of matched forecast objects are chosen as the mea-
sure for ‘hits’, although small changes in contingency table metrics oc-
cur if matched observed objects are used, qualitative score comparisons
between RAD and NORAD are similar (not shown).
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a)
RAD
NORAD

c)
RAD
NORAD

d)
RAD
NORAD

b)
RAD
NORAD

FIG. 5. Time series of MODE contingency table metrics for the RAD and NORAD ensemble forecasts of composite reflectivity, including (a)
Probability of Detection, (b) frequency bias, (c) false alarm ratio, and (d) critical success index. Solid lines represent the ensemble mean for each
forecast hour and shading encompasses the 99% confidence interval.

greater than 3 and a higher FAR for each forecast hour.
However, the relative difference between NORAD and
RAD POD is greater than FAR, resulting in higher NO-
RAD CSI values for forecast hours 6–36. Differences be-
tween verification metrics for NORAD and RAD increase
if scores are weighted by object area, with RAD scores de-
creasing while NORAD scores increase (not shown). This
decrease in RAD scores indicates that the ensemble not
only produces fewer thunderstorm objects than the NO-
RAD ensemble or MRMS observations, but that objects
are smaller in area, resulting in a more severe underfore-
cast.

Hourly MODE contingency table scores (Fig. 5) are
generally consistent with corresponding time series of FSS
(Fig. 4) and the reflectivity climatology (Fig. 3). Both
FSS and MODE scores support a 3–6 hour initial period of
improved skill in the RAD ensemble attributable to reflec-
tivity assimilation (e.g. Kain et al. 2010; Stratman et al.
2013) followed by improved skill in the NORAD ensem-
ble for the remainder of the forecast period. Both FSS
and MODE scores indicate a relative peak in skill for both
ensembles during the next day convective maximum be-
tween forecast hours 18 and 24 (Figs. 4, 5); however, this
peak is likely strongly influenced by the number of ob-
served thunderstorms. For example, the hourly climatol-

ogy of MRMS reflectivity (Fig. 3) has a greater range of
values between the diurnal minimum (hour 15) and max-
imum (hour 25) than either ensemble, which would result
in more observed gridpoints/objects to verify against dur-
ing the diurnal maximum and a commensurate increase in
skill scores.

Aggregation of MODE contingency table elements by
forecast hour provides a bulk measure of forecast skill
but does not provide insight into case-to-case variations
in skill, which have been identified in past studies exam-
ining the impact of radar assimilation (Craig et al. 2012;
Keil et al. 2014; Surcel et al. 2016). Therefore, contin-
gency table elements are additionally aggregated for 3-
hour periods during the expected cross-over time for skill
in the RAD and NORAD ensembles (forecast hours 4–
7) and during the next-day convective maximum (forecast
hours 21–24) for each day during the experiment. Per-
formance diagrams (Roebber 2009) for ensemble mean
scores from each case show that the contrasting biases be-
tween NORAD and RAD were generally consistent across
cases (Fig. 6). During the cross-over period (Fig. 6a) NO-
RAD cases exhibit small biases, although a slim majority
of cases have a slight overforecast between 1 and 1.5. The
case-by-case distribution of RAD biases covers a larger
range than NORAD (roughly <0.1 to 1.5) with most cases
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a) RAD
NORAD

b) RAD
NORAD

Fcst Hours 4-7 Fcst Hours 21-24

FIG. 6. Performance diagrams (Roebber 2009) of ensemble mean scores for each RAD and NORAD case in the 2016 CLUE dataset for composite
reflectivity forecasts between (a) 4–7 hours and (b) 21–24 hours. Numbers within each marker correspond to the case numbers in Table 1.

underforecasting composite reflectivity objects. Case-by-
case variation is also larger for RAD CSI scores, which
vary between <0.1 and nearly 0.6 compared to roughly
0.2 to 0.45 for NORAD cases. The subset of RAD cases
with higher CSI scores than any NORAD case indicates
that, for some cases, improved forecast initial conditions
provided by radar assimilation are resulting in improve-
ments in composite reflectivity forecasts out to 6 hours or
beyond. However, a separate subset of RAD cases with
low frequency biases <0.5 and lower CSI scores than any
NORAD case suggest that radar assimilation can also de-
grade short-term forecasts.

Consistent case-by-case differences in biases of NO-
RAD and RAD forecasts are present during the next-day
convective maximum (Fig. 6b). A frequency bias >1 is
present for each NORAD case during this period while the
majority of RAD cases exhibit a bias <1. Though ranges
in CSI scores are similar between the two ensembles dur-
ing this period, the range of NORAD scores is roughly
0.1 higher than RAD scores (i.e. roughly 0.3–0.6 for NO-
RAD and 0.2–0.5 for RAD). This relative improvement in
NORAD forecasts is consistent with bulk FSS and contin-
gency table metrics (Figs. 4, 5). Despite the overall higher
scores for NORAD forecasts, there are several cases where
NORAD and RAD CSI scores are similar but NORAD bi-
ases are higher. These cases include the two periods pro-
ducing the most widespread severe weather, as measured
by the count of local storm reports (Table 1) on 9, 10 May
(cases 6, 7) and 24–26 May (cases 17–19).

3) SUBJECTIVE VERIFICATION: 24 MAY 2016

In order to provide a sense of how differences in the
bulk verification measures of RAD and NORAD mani-
fest in a single composite reflectivity forecast, the 24 May
2016 case is examined in greater detail (Fig. 7). The
24 May case is selected as it was one of the most active
days in the experiment for severe thunderstorms, produc-
ing one of the highest totals of local storm reports during
the experiment (Table 1) and multiple tornadic supercells
in eastern Colorado and western Kansas (Weinhoff et al.
2018).

Comparison of RAD and NORAD 1-hour forecasts re-
veals the impacts of 3DVAR radar assimilation and cloud
analysis on short-term forecasts (Figs. 7a, d). Storms have
just begun to develop in the NORAD forecast and the en-
semble mean number of gridpoints exceeding 40 dBZ is
roughly one third of the number of MRMS gridpoints ex-
ceeding 30 dBZ. In contrast, the RAD forecast shows most
members predicting thunderstorms coincident with obser-
vations; however, the spatial extent of these thunderstorms
is too large, resulting in an ensemble mean gridpoint count
of composite reflectivity more than twice as large as the
count of MRMS values. By forecast hour six (Figs. 7b,
e) more storms have developed in NORAD members and
the overforecast bias in RAD has decreased, with both
ensembles providing a generally accurate prediction of
thunderstorms extending from western Iowa southwest-
ward to western Kansas. Although these storms are accu-
rately predicted in both ensembles, most RAD members,
and a few NORAD members, have erroneously predicted
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NORAD:  05-24 - 0100 UTC a) NORAD:  05-24 - 0600 UTC NORAD:  05-24 - 1200 UTC 

RAD:  05-24 - 0100 UTC RAD:  05-24 - 0600 UTC RAD:  05-24 - 1200 UTC 

NORAD:  05-24 - 1800 UTC NORAD:  05-24 - 2100 UTC NORAD:  05-25 - 0000 UTC 

RAD:  05-24 - 1800 UTC RAD:  05-24 - 2100 UTC RAD:  05-25 - 0000 UTC 

b) c)

d) e) f)

g) h) i)

j) k) l)

# of Gridpoints: 
MRMS:        6,290
Ens. Mean:  2,285

# of Gridpoints: 
MRMS:        5,820
Ens. Mean:  4,429

# of Gridpoints: 
MRMS:        6,109
Ens. Mean:  5,177

# of Gridpoints: 
MRMS:        6,290
Ens. Mean: 14,843

# of Gridpoints: 
MRMS:        5,820
Ens. Mean:  6,605

# of Gridpoints: 
MRMS:        6,109
Ens. Mean:  4,995

# of Gridpoints: 
MRMS:        4,740
Ens. Mean:  8,725

# of Gridpoints: 
MRMS:        7,487
Ens. Mean: 16,586

# of Gridpoints: 
MRMS:       10,710
Ens. Mean: 18,459

# of Gridpoints: 
MRMS:        4,740
Ens. Mean:  8,422

# of Gridpoints: 
MRMS:        7,487
Ens. Mean: 13,481

# of Gridpoints: 
MRMS:       10,710
Ens. Mean: 10,785

FIG. 7. Paintball plots of (a, b, c, g, h, i) NORAD and (d, e, f, j, k, l) RAD forecasts initialized at 0000 UTC on 24 May 2016 and valid at (a,
c) 0100, (b, e) 0600, (c, f) 1200, (g, j) 1800, (h, k) 2100, and (i, l) 0000 UTC on 24 and 25 May. Gridpoints with composite reflectivity exceeding
40 dBZ are plotted with a unique color for each member and corresponding MRMS composite reflectivity values exceeding 30 dBZ are shaded
gray. Light gray shading indicates masked regions in the verification domain and the ensemble mean and total MRMS gridpoints exceeding the
prescribed thresholds are annotated at the lower right of each panel. Note that only a portion of the verification domain is plotted to improve clarity.
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dryline convection in western Texas to grow upscale and
move into central Texas. In general, the coverage of spu-
rious convection is larger in the RAD ensemble, and re-
mains larger at forecast hour 12 (Figs. 7c, f) despite both
ensembles having a small low bias in gridpoint reflectivity
counts. The RAD 12-hour forecast additionally predicts
the decaying MCS in central Kansas to cover a larger area
and propogate further southward than either the NORAD
ensemble or MRMS observations.

Despite the large differences in RAD and NORAD
12-hour forecasts, the coverage of composite reflectivity
objects in the two ensembles are remarkably similar at
forecast hour 18 (Figs. 7g, j). Both ensembles have a
strong overprediction bias, with nearly double the ensem-
ble mean gridpoints associated with convection as MRMS
observations. This overprediction is consistent with large
differences between the CLUE and MRMS climatologies
in the 12–18 hour period (Fig. 3). With the exception
of one outlier member in RAD predicting an MCS along
the Texas and Louisiana border, the overprediction results
from a greater spatial extent of thunderstorms in Missouri
and the Great Lakes Region. An overprediction of thun-
derstorm coverage is maintained in both ensembles at 21
UTC (Figs. 7h, k) but is stronger in the NORAD ensem-
ble6. One reason for the larger bias in the NORAD en-
semble is that more expansive convection initiation is pre-
dicted along the front range of the Rocky Mountains in
Colorado and Wyoming and along the dryline extending
southward from a triple point with the outflow boundary
of the nocturnal MCS in southwestern Kansas. NORAD
overprediction of thunderstorms is maintained in the 24-
hour forecast (Fig. 7i), with dramatic overpredictions of
thunderstorm coverage in Missouri extending northeast-
ward into the Great Lakes Region, in the western por-
tion of the domain from roughly the Black Hills of South
Dakota southward into northeastern Colorado, and along
the dryline from western Kansas into the Texas Panhan-
dle. This positive bias results in nearly twice as many en-
semble mean NORAD gridpoints associated with thunder-
storms as MRMS observations, which cover a total area of
>70,000 km2. The 24-hour RAD forecast is nearly unbi-
ased, which is atypical of RAD forecasts during this period
(Figs. 5, 6). Despite the improved bias, significant loca-
tion errors are present in the RAD forecast, including an
overprediction of convection along the eastern extent of an
outflow boundary from the nocturnal MCS through south-
eastern Kansas, northeastern Oklahoma, and into Missouri
and a southward shift in the locations of dryline thunder-
storms. This southward shift results in minimal thunder-
storm coverage over southwestern Kansas, where the ma-
jority of the severe weather, including 28 tornado reports,
occurred.

6MODE object-based frequency biases during this period are the
highest of any case during the experiment for both ensembles (Fig. 6b;
Case 17).

The 24 May composite reflectivity forecast provides an
example of how the evolution of nocturnal convection, in
this case the MCS in the central Plains, can influence the
location and timing of thunderstorm development the fol-
lowing day (Stensrud et al. 1999). Biases in overnight
thunderstorm coverage impacted the location and extent
of the cold pool produced by the MCS and an associated
outflow boundary responsible for convection initiation the
following afternoon. Additionally, more widespread thun-
derstorm coverage in the RAD ensemble overnight fol-
lowed by less coverage the following day suggest that
radar assimilation is impacting the extent and magnitude
of the next-day potential instability.

c. Verification of the Thunderstorm Environment

Differences in the next-day convective environment of
the RAD and NORAD ensembles are first examined us-
ing ensemble mean surface-based Convective Available
Potential Energy (CAPE; Fig. 8). For 24 May, rela-
tively large ensemble mean CAPE differences are already
present 1 hour into the forecast (Figs. 8a, d). Though the
coverage of positive CAPE is consistent between the two
ensembles, large differences in magnitude, locally greater
than 1000 J Kg−1, are present from the Gulf Coast through
central Minnesota. Furthermore, the axis of high CAPE
values (>3600 J Kg−1) ahead of the dryline in western
Texas is smaller in the RAD ensemble with CAPE min-
ima, indicative of convective cold pools, coincident with
the locations of predicted thunderstorms (Fig. 7d).

Differences between the 6-hour RAD and NORAD
CAPE forecasts are dramatic (Figs. 8b, e). Convective
cold pools with ensemble mean CAPE values near zero
have spread across much of western Texas in the RAD en-
semble whereas the NORAD CAPE field in west Texas
is largely unchanged from the 1-hour forecast. The ex-
tent of cold pools in the RAD forecast is likely exacer-
bated by the spurious maintenance of dryline convection
into central Texas (Fig. 7e). The near-zero CAPE values
within cold pools in the RAD ensemble have diminished
by forecast hour 12 (Fig. 8f) but large differences (>3000
J Kg−1) persist throughout west Texas. CAPE values in
Texas and the southern Plains have largely recovered by
18 UTC in the RAD forecast but generally remain lower
than those in the NORAD forecast (Figs. 8g, j). Addi-
tionally, differences in the location and spatial extent of
the cold pool associated with the nocturnal MCS in Ne-
braska and Kansas are apparent at 18 UTC, with a larger
cold pool in the RAD ensemble that has propagated into
northern Oklahoma. The additional southward propaga-
tion of this outflow boundary in the RAD ensemble re-
sults in weaker CAPE in southwestern Kansas and east-
ern Colorado during the early afternoon and a dearth of
storms in the regions of widespread severe weather on 24
May (Figs. 8h, 8k, 7i, 7j). Where the RAD ensemble
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NORAD:  05-24 - 0100 UTC a) NORAD:  05-24 - 0600 UTC NORAD:  05-24 - 1200 UTC 

RAD:  05-24 - 0100 UTC RAD:  05-24 - 0600 UTC RAD:  05-24 - 1200 UTC 

NORAD:  05-24 - 1800 UTC NORAD:  05-24 - 2100 UTC NORAD:  05-25 - 0000 UTC 

RAD:  05-24 - 1800 UTC RAD:  05-24 - 2100 UTC RAD:  05-25 - 0000 UTC 

b) c)

d) e) f)

g) h) i)

j) k) l)

FIG. 8. As in Fig. 7 except for ensemble mean surface-based CAPE (J Kg−1)
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a)

b)

RAD
NORAD

RAD
NORAD

CAPE > 0 J Kg-1

CAPE > 1000 J Kg-1

CAPE > 2000 J Kg-1

dBZ > 10

dBZ > 40

dBZ > 50

FIG. 9. Hourly ensemble mean counts of gridpoints exceeding
thresholds of (a) 0, 1000, and 2000 J Kg−1 of surface-based CAPE and
(b) 10, 40, and 50 dBZ in composite reflectivity. Shading indicates the
region within one standard deviation of the mean, calculated as the mean
of standard deviations for each individual case. A logorithmic y-axis is
used for composite reflectivity counts to improve clarity.

has limited to moderate potential instability in the corridor
from southwest Kansas to eastern Colorado where most
severe weather reports occurred, the NORAD ensemble
mean CAPE often exceeds 3000 J Kg−1. In general, the
CAPE field in the NORAD forecast is higher than RAD
throughout the domain at 18, 21, and 00 UTC. The greater
extent and magnitude of potential instability in the NO-
RAD next-day forecasts suggests that the high frequency
bias in NORAD composite reflectivity objects (Fig. 7) is
at least partially attributable to greater potential instability.

The tendency for the NORAD ensemble to predict more
gridpoints with high composite reflectivity and surface-
based CAPE is consistent throughout the experiment (Fig.
9). The ensemble mean count of gridpoints exceeding 40
dBZ in the NORAD ensemble is several thousand grid-
points greater than the RAD count beyond forecast hour 9.
Similarly, counts of ensemble mean surface-based CAPE
>1000 J Kg−1 in NORAD are more than 10,000 points
higher than RAD for the majority of the forecast period.
Although differences are smaller, NORAD also predicts
more gridpoints exceeding higher composite reflectivity
(CAPE) thresholds of 50 dBZ (2000 J Kg−1). In contrast,
a smaller increase in NORAD gridpoint counts of CAPE
greather than 0 J Kg−1 is present and counts of reflectiv-

ity exceeding 10 dBZ are similar for both ensembles dur-
ing much of the forecast. Furthermore, higher gridpoint
counts of composite reflectivity greather than 10 dBZ oc-
cur in the RAD ensemble during the first 12 hours. These
higher counts suggest that radar assimilation is affecting
forecasts for a longer period of time for weak reflectiv-
ity thresholds, which are typical of stratiform precipitation
and larger spatial scales than thunderstorms and consis-
tent with the results of Kain et al. (2010), Stratman et al.
(2013), and Surcel et al. (2016).

To further compare the impact of radar assimilation on
the next-day environment, predicted 2-m temperature and
dewpoint temperature fields in the first member of the
RAD and NORAD ensembles are verified against Auto-
mated Surface Observing System (ASOS) observations on
24 May (Figs. 10, 11). Consistent, and sometimes large,
biases are found compared to ASOS observations in both
members across much of the domain. For example, a cool
and moist bias is present in both the RAD and NORAD
members along and east of the Mississippi River Valley
throughout the forecast, with a broad region of large, pos-
itive dewpoint errors in excess of 5 K in the 18-hour fore-
cast (Figs. 11c, f, 12). The generally similar errors be-
tween the two members result in similar distributions of
point verification metrics such as median error (Fig. 12)
and root mean square error (not shown). However, locally
large differences in near-surface temperature and dewpoint
are present between the RAD and NORAD members near
thunderstorms (Figs. 10g–i, 11g–i).

The influence of convective cold pools on the 1-hour
RAD 2-m temperature forecast is obvious (Fig. 10g) and
colocated with observed regions of high reflectivity (Fig.
7a). These cold pools result in smaller positive tempera-
ture biases in the RAD member in northeastern Colorado
and Minnesota; however, there is some evidence a cold
bias is being introduced by radar assimilation in the north-
east Texas Panhandle (although most predicted cold pools
in West Texas lie between ASOS observations). A Con-
flicting temperature bias in the RAD and NORAD ensem-
bles is present near convection in central Nebraska, with
errors of up to -5 K in the RAD ensemble coincident with
errors of 5 K in the NORAD ensemble. These conflict-
ing biases provide an example of how radar assimilation
can lead to overprediction of cold pool intensity and result
in an overcorrection of temperature errors in a cold start
forecast.

Changes associated with radar assimilation are more
widespread in the 1-hour near-surface dewpoint forecast
(Fig. 11g) and largely result in higher values in the RAD
member than NORAD member (Fig. 12). Higher dew-
points in the RAD member reduce negative biases in the
Southeast US and a small area of lower dewpoints in RAD
results in a smaller positive bias in central Nebraska. How-
ever, larger positive biases compared to ASOS observa-
tions are present in the majority of regions where radar as-
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NORAD:  05-24 - 0100 UTC a) b) c)NORAD:  05-24 - 1200 UTC NORAD:  05-24 - 1800 UTC 

RAD:  05-24 - 0100 UTC d) e) f)RAD:  05-24 - 1200 UTC RAD:  05-24 - 1800 UTC 

RAD - NORAD:  0100 UTC g) h) i)RAD - NORAD:  1200 UTC RAD - NORAD:  1800 UTC 

FIG. 10. Plots of 2 m temperature (K) for the first member of the (a, b, c) NORAD and (d, e, f) RAD ensembles intitialized at 0000 UTC 24 May
and valid at (a, d) 0100, (b, e) 1200, and (c, f) 1800 UTC. ASOS observations are overlain on each plot and color coded according to the difference
resulting from subtracting the observed value from the predicted value. The difference between the RAD and NORAD forecasts is plotted in panels
g, h, and i.
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NORAD:  05-24 - 0100 UTC a) b) c)NORAD:  05-24 - 1200 UTC NORAD:  05-24 - 1800 UTC 

RAD:  05-24 - 0100 UTC d) e) f)RAD:  05-24 - 1200 UTC RAD:  05-24 - 1800 UTC 

RAD - NORAD:  0100 UTC g) h) i)RAD - NORAD:  1200 UTC RAD - NORAD:  1800 UTC 

FIG. 11. As in Fig. 10 except for dewpoint temperature.
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similation modified the low-level water vapor field (Figs.
11a, d, g). In particular, regions trailing ongoing convec-
tion from West Texas northward through the Oklahoma
Panhandle, western Kansas, eastern Colorado, and west-
ern, Nebraska switch from mixed to modest negative er-
rors in the NORAD member to consistently positive er-
rors in the RAD member, suggesting that 3DVAR radar
assimilation and cloud analysis has introduced a positive
dewpoint bias.

The temperature and dewpoint differences associated
with radar assimilation combine with differences in the
forecasted evolution of the nocturnal MCS in Nebraska
and Kansas (Fig. 7) to influence near-surface thermo-
dynamic errors later in the forecast period. For exam-
ple, higher dewpoint values are present in the RAD mem-
ber along and behind the dryline through the forecast pe-
riod (Fig. 11). While the strongest differences (>10 K
higher in RAD) are attributable to differences in dryline
position, broader areas of higher dewpoints in the RAD
member, particularly in eastern Colorado, appear partially
attributable to moisture introduced by data assimilation.
Additionally, generally cooler temperatures persist in the
RAD member near, and downstream, of locations of con-
vective cold pools in the 1-hour forecast (Fig. 10).

Differences between the RAD and NORAD members
later in the forecast period are clearly influenced by the
evolution of the nocturnal MCS. The propagation of the
MCS cold pool farther to the southwest in the RAD mem-
ber results in a band of cooler temperatures (in places
more than 5 K less than NORAD) and lower dewpoints
from northwest Oklahoma through western Kansas and
into eastern Colorado in the 18-hour forecast (Figs. 10c, f,
11c, f). This region represents the pre-convective environ-
ment of most severe thunderstorms later in the afternoon
and the cool and dry biases in the RAD member contribute
to lower CAPE and a lack of predicted storms (Figs. 7,
8). On the other hand, the more expansive outflow in the
RAD member results in cooler, and generally dryer, fore-
casts from Missouri through the upper Mississippi River
Valley. These differences produce generally smaller er-
rors compared to ASOS observations through the region,
particularly in Missouri, than the NORAD member and a
smaller overprediction of thunderstorm development than
NORAD (Fig. 7).

4. Discussion

Several differences in the short-term and next-day thun-
derstorm forecasts produced by the RAD and NORAD en-
sembles in 2016 have been identified. Many aspects of
these differences are consistent with past studies. Specif-
ically, more accurate model initial conditions provided by
radar assimilation produce improvements in thunderstorm
forecasts that typically persist for 3-6 hours (Figs. 4–6;
Kain et al. 2010; Craig et al. 2012; Stratman et al. 2013;

a)

b)

RAD
NORAD

RAD
NORAD

FIG. 12. Hourly median median error of the (a) 2 m temperature
(K) and (b) 2 m dewpoint temperature (K) for the first member of the
RAD and NORAD ensembles and corresponding ASOS observations.
Shading encompasses the 10th–90th percentiles of the error distribution.

Keil et al. 2014; Surcel et al. 2016). Additionally, the
length of improved skill in short-term forecasts that as-
similate radar data varies from case-to-case (Fig. 6) sim-
ilarly to the findings of Craig et al. (2012) and Keil et al.
(2014). However, in contrast to some past studies (Kain
et al. 2010; Stratman et al. 2013), large differences are
found between RAD and NORAD next-day thunderstorm
forecast skill (Figs. 4–6), thunderstorm coverage (Figs. 7,
9), and convective environment (Figs. 8-11).

Though large differences in next-day thunderstorm
forecast skill are present, with NORAD producing higher
FSS and object-based CSI following forecast hour 6, dif-
ferences in the skill scores are likely partially attributable
to contrasting frequency biases in the RAD and NORAD
ensembles. For example, the majority of next-day thun-
derstorm FSS from both ensembles are considered unskill-
ful according to the criteria of Roberts and Lean (2008)
(Fig. 4). Furthermore, higher scores in the NORAD en-
semble may be influenced by more random hits to observa-
tions produced by larger coverage and, for FSS, potentially
by a higher asymptote score resulting from a smaller fre-
quency bias than the RAD ensemble. Similarly, a higher
frequency bias in NORAD thunderstorm objects identified
by MODE results in both a higher POD and FAR for much
of the forecast period (Fig. 5). Finally, clear differences
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in 24-hour forecast skill were not identified in subjective
evaluations by 2016 SFE participants (Clark et al. 2017),
which suggests differences in bulk next-day verification
metrics may not translate to practical forecast usefulness.
Despite these ambiguity in interpreting relative differences
in next-day thunderstorm forecast skill, large, contrasting,
and consistent biases in thunderstorm coverage are present
in both ensembles that degrade the overall accuracy of
forecasts.

The cold start NORAD ensemble overpredicts next-day
thunderstorm coverage, with object-based frequency bi-
ases greater than 1 through much of the 6–30 hour forecast
period and the highest biases during the afternoon convec-
tive maximum (Fig. 5b). The bias is remarkably consistent
between cases, with an overforecast of composite reflec-
tivity objects during forecast hours 21 through 24 present
for all 24 cases examined (Fig. 6b). The high thunder-
storm coverage bias appears to stem from an overforecast
of potential instability in the next-day convective environ-
ment, as evidenced by experiment-long mean counts of
NORAD CAPE gridpoints exceeding 1000 J Kg−1 that
are several thousand gridpoints higher than corresponding
RAD counts (Fig. 9).

The overprediction biases in the NORAD ensemble are
similar to biases produced by model spinup of convec-
tive scales. Wong and Skamarock (2017) found that over
24 hours of forecast time was required to spin up con-
vective scales in convection-allowing Model for Predic-
tion Across Scales (MPAS) forecasts during the spring of
2016. The spin up period was characterized by an over-
prediction of next-day hourly rainfall rates compared to
MRMS observations. Additionally, the bias was mitigated
if forecasts were initialized using prior day 24-hour fore-
casts that contained convective-scale motion and hydrom-
eteors. The similarity of the findings of Wong and Ska-
marock (2017) and the present study suggest that inclu-
sion of convective scales of motion and hydrometeor fields
are important for producing unbiased next-day thunder-
storm forecasts in CAMs. As upscale error growth from
convection influences the mesoscale environment (Zhang
et al. 2003, 2007), particularly in regions of widespread
convection (Nielsen and Schumacher 2016), inclusion of
convective scales in forecast initial conditions have the po-
tential to improve predictions of convectively-induced fea-
tures such as MCVs and cold pools. Improved prediction
of these features would then be expected to improve next-
day forecasts of the convective environment and thunder-
storm evolution (Stensrud et al. 1999; Liu and Xue 2018;
Clark et al. 2010; Schumacher and Clark 2014; Thompson
2014; Degelia et al. 2018).

Despite the apparent potential for improving next-day
CAM forecasts by including convective scales, RAD fore-
casts illustrate difficulties in realizing this potential. The
RAD ensemble produces a low bias of thunderstorm cov-
erage, consistent across most individual cases, through the

entire forecast period (Figs. 5b, 6b). As with the over-
prediction bias of thunderstorm coverage in NORAD, this
low bias appears attributable in part to the available po-
tential instability (Figs. 8, 9). In the CLUE, 3DVAR
radar assimilation and cloud analysis introduces convec-
tive cold pools and hydrometeor fields to the initial con-
ditions, which largely results in negative (positive) incre-
ments to the near-surface temperature (dewpoint) fields
(Figs. 10, 11). Errors in these data assimilation incre-
ments can introduce biases into model initial conditions,
which then degrade short-term forecasts of thunderstorm
evolution (Fig. 7) and subsequent development of features
important to the next-day convective environment and evo-
lution. The potential for short-term errors introduced by
radar assimilation to degrade the next-day forecast was
identified by 2016 SFE participants (Gallo et al. 2017) and
the RAD forecast from 24 May provides one example. On
24 May, a short-term overforecast of convective coverage
and introduction of errors related to cold pools leads to a
more expansive nocturnal MCS. Outflow from this MCS
propagates farther southwestward than in the NORAD en-
semble and results in reduced CAPE and limited convec-
tion initiation in the region with the highest concentration
of severe weather reports in the 18–24 hour forecast pe-
riod.

Realizing potential gains in next-day thunderstorm fore-
casts from assimilation of radar data likely requires im-
provements to two aspects of convective-allowing ensem-
ble forecast systems: 1) Improving the accuracy of thun-
derstorm scales in the initial condition and resulting short-
term forecasts and 2) reduction of errors associated with
model physics. Convective-scale radar data assimilation
is an active area of research and indirect (Benjamin and
Coauthors 2016), variational (Gao et al. 2004), ensemble-
based (Wheatley et al. 2015), or hybrid (Gao and Sten-
srud 2014) assimilation techniques have been developed
for real-time forecast systems. Comparison of different
techniques is beyond the scope of this paper and is be-
ing addressed in other CLUE experiments (Clark et al.
2018); however, examination of RAD forecasts in the
2016 CLUE suggest that assimilation techniques that pro-
vide both accurate initializations of convective scales and
reduce biases in the mesoscale environment have the high-
est potential for improving both short-term and next-day
thunderstorm prediction. Similarly, extensive research
has documented next-day forecast sensitivity to physi-
cal parameterizations in CAMS, particularly the planetary
boundary layer (e.g. Clark et al. 2015; Cohen et al. 2017)
and microphysical (e.g. (Yussouf et al. 2013; Clark et al.
2014; Wheatley et al. 2014) parameterizations. Improved
representations of physical processes important to thun-
derstorm evolution, particularly those related to cold pool
development and propagation (Wheatley et al. 2014), of-
fer similar potential for improving short-term predictions
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of convection and resulting impacts on the next-day con-
vective environment.

5. Conclusions

This study has examined the impact of 3DVAR radar as-
similation and cloud analysis (Xue et al. 2003; Gao et al.
2004; Hu et al. 2006) on short-term and next-day ensem-
ble forecasts of thunderstorms produced by the Commu-
nity Leveraged Unified Ensemble over 24 days during the
spring of 2016. The skill of CLUE composite reflectiv-
ity forecasts in two 10-member sub-ensembles, one which
assimilates radar data and one that does not, is assessed
using neighborhood and object-based verification against
MRMS composite reflectivity observations. Additionally,
the convective environment in the two ensembles is com-
pared and a case that produced extensive severe weather
on 24 May 2016 is subjectively interpreted in order to ex-
amine differences in forecast evolution between the two
ensembles.

It is found that large differences in thunderstorm cover-
age are present between the two ensembles during the en-
tirety of the 36-hour forecast period (Figs. 4–7, 9). These
differences result in contrasting frequency biases in the
next-day RAD and NORAD composite reflectivity fore-
casts compared to a matched-percentile threshold (Figs.
2, 3) in MRMS observations, with NORAD producing
an overforecast and RAD an underforecast. These biases
are influenced by differences in the thunderstorm environ-
ment, as larger areas of significant CAPE (i.e. >1000 J
Kg−1) are present in NORAD forecasts (Figs. 8, 9). Be-
cause RAD and NORAD forecasts are identical except
for changes in the initial conditions provided by radar as-
similation, the consistent, contrasting biases between the
two ensembles demonstrate that inclusion of convective-
scale motion in model initial conditions (e.g. hot vs. cold
start) can alter resulting forecasts beyond the intrinsic pre-
dictability limit of convective scales. The forecast evolu-
tion on 24 May provides a specific example of this process,
as radar assimilation results in local biases to near-surface
temerature and dewpoint fields (Figs. 10, 11) and a short-
term overforecast in convective coverage (Fig. 7). These
short-term differences in the RAD ensemble result in more
extensive convective cold pools and a southwestward dis-
placement of an outflow boundary responsible for next-
day convection initiation, which then limits thunderstorm
coverage in the primary region of severe weather (Figs. 7,
8).

Comparison of Fractions Skill Score and MODE-based
contingency table metrics between RAD and NORAD in-
dicate the duration of improvements in composite reflec-
tivity forecasts from radar assimilation is generally be-
tween 3–6 hours (Figs. 4–6), which is similar to prior
studies (Kain et al. 2010; Craig et al. 2012; Stratman et al.
2013; Keil et al. 2014; Moser et al. 2015; Surcel et al.

2016). Both verification methods then indicate more skill-
ful thunderstorm in the NORAD ensemble for all forecast
times beyond 6 hours. However, this result should be inter-
preted with caution as most next-day forecasts from both
ensembles produce unskillful FSSs and high frequency bi-
ases in NORAD composite reflectivity forecasts may re-
sult in more random matches with observed values. There-
fore, the relative values of next-day verification scores are
believed to be of lower relevance for improving opera-
tional CAM forecasts than the large biases present in both
ensembles. In other words, both ensembles produce bi-
ased, inaccurate forecasts of next-day thunderstorm cov-
erage.

The relationship between short-term thunderstorm evo-
lution and the next-day convective environment and thun-
derstorm evolution suggest potential for improving CAM
forecasts. As an idealized example, radar assimilation
which both accurately initializes thunderstorms within the
CAM and improves analyses of the convective environ-
ment can improve short-term forecasts of convection. Re-
duction of errors in short-term forecasts, coupled with ac-
curate parameterization of physical processes in the CAM,
would then limit biases in the next-day convective environ-
ment and improve prediction of features such as MCVs
and cold pools that influence next-day thunderstorm de-
velopment.
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