Basic Verification Concepts

Tressa L. Fowler

National Center for Atmospheric Research
Boulder Colorado USA
Basic concepts - outline

- What is verification?
- Why verify?
- Identifying verification goals
- Forecast “goodness”
- Designing a verification study
- Types of forecasts and observations
- Matching forecasts and observations
- Verification attributes
- Miscellaneous issues
How do you do verification?

• Using MET is the easy part, scientifically speaking.
• Good verification depends mostly on what you do before and after MET.
 – What do you want to know?
 – Good forecasts.
 – Good observations.
 – Well matched.
 – Appropriate selection of methods
 – Thorough and correct interpretation of results.
What is verification?

• Verification is the process of comparing forecasts to relevant observations
 – Verification is one aspect of measuring forecast *goodness*

• Verification measures the *quality* of forecasts (as opposed to their *value*)

• For many purposes a more appropriate term is “*evaluation*”
Why verify?

• Purposes of verification (traditional definition)

 – Administrative purpose
 • Monitoring performance
 • Choice of model or model configuration
 (has the model improved?)

 – Scientific purpose
 • Identifying and correcting model flaws
 • Forecast improvement

 – Economic purpose
 • Improved decision making
 • “Feeding” decision models or decision support systems
Why verify?

• What are some other reasons to verify weather forecasts?
 – Help operational forecasters understand model biases and select models for use in different conditions
 – Help “users” interpret forecasts (e.g., “What does a temperature forecast of 0 degrees really mean?”)
 – Identify forecast weaknesses, strengths, differences
Identifying verification goals

What *questions* do we want to answer?

- **Examples:**
 - In what locations does the model have the best performance?
 - Are there regimes in which the forecasts are better or worse?
 - Is the probability forecast well calibrated (i.e., reliable)?
 - Do the forecasts correctly capture the natural variability of the weather?

Other examples?
Identifying verification goals (cont.)

• What forecast performance attribute should be measured?
 • Related to the question as well as the type of forecast and observation

• Choices of verification statistics, measures, graphics
 • Should match the type of forecast and the attribute of interest
 • Should measure the quantity of interest (i.e., the quantity represented in the question)
Forecast “goodness”

- Depends on the quality of the forecast

AND

- The user and his/her application of the forecast information
Many verification approaches would say that this forecast has NO skill and is very inaccurate.
Good forecast or Bad forecast?

If I’m a water manager for this watershed, it’s a pretty bad forecast…
Good forecast or Bad forecast?

If I’m an aviation traffic strategic planner…
It might be a pretty good forecast

Different users have different ideas about what makes a forecast good

Different verification approaches can measure different types of “goodness”
Forecast “goodness”

• Forecast quality is only one aspect of forecast “goodness”
• Forecast value is related to forecast quality through complex, non-linear relationships
 – In some cases, improvements in forecast quality (according to certain measures) may result in a degradation in forecast value for some users!

• However - Some approaches to measuring forecast quality can help understand goodness
 – Examples
 ✓ Diagnostic verification approaches
 ✓ New features-based approaches
 ✓ Use of multiple measures to represent more than one attribute of forecast performance
 ✓ Examination of multiple thresholds
Basic guide for developing verification studies

Consider the users…
– … of the forecasts
– … of the verification information

• What aspects of forecast quality are of interest for the user?
 – Typically (always?) need to consider multiple aspects

Develop verification questions to evaluate those aspects/attributes

• Exercise: What verification questions and attributes would be of interest to …
 – … operators of an electric utility?
 – … a city emergency manager?
 – … a mesoscale model developer?
 – … aviation planners?
Basic guide for developing verification studies

Identify *observations* that represent the *event* being forecast, including the

- Element (e.g., temperature, precipitation)
- Temporal resolution
- Spatial resolution and representation
- Thresholds, categories, etc.
Observations are not truth

• We can’t know the complete “truth”.
• Observations generally are more “true” than a model analysis (at least they are relatively more independent)
• Observational uncertainty should be taken into account in whatever way possible
 ✓ In other words, how well do adjacent observations match each other?
Observations might be garbage if

• Not Independent (of forecast or each other)
• Biased
 – Space
 – Time
 – Instrument
 – Sampling
 – Reporting
• Measurement errors
• Not enough of them
Basic guide for developing verification studies

Identify multiple verification attributes that can provide answers to the questions of interest

Select measures and graphics that appropriately measure and represent the attributes of interest

Identify a standard of comparison that provides a reference level of skill (e.g., persistence, climatology, old model)
Types of forecasts, observations

- **Continuous**
 - Temperature
 - Rainfall amount
 - 500 mb height

- **Categorical**
 - **Dichotomous**
 - Rain vs. no rain
 - Strong winds vs. no strong wind
 - Night frost vs. no frost
 - Often formulated as Yes/No
 - **Multi-category**
 - Cloud amount category
 - Precipitation type
 - May result from *subsetting* continuous variables into categories
 - *Ex*: Temperature categories of 0-10, 11-20, 21-30, etc.
Types of forecasts, observations

• Probabilistic
 – Observation can be **dichotomous**, **multi-category**, or **continuous**
 • Precipitation occurrence – **Dichotomous** (Yes/No)
 • Precipitation type – **Multi-category**
 • Temperature distribution - **Continuous**
 – Forecast can be
 • Single probability value (for **dichotomous** events)
 • **Multiple probabilities** (discrete probability distribution for multiple categories)
 • **Continuous** distribution
 – For dichotomous or multiple categories, probability values may be limited to certain values (e.g., multiples of 0.1)

• Ensemble
 – Multiple iterations of a **continuous** or **categorical** forecast
 • May be transformed into a probability distribution
 – Observations may be **continuous**, **dichotomous** or **multi-category**

2-category precipitation forecast (PoP) for US

ECMWF 2-m temperature meteogram for Helsinki
Matching forecasts and observations

• May be the *most difficult* part of the verification process!
• Many factors need to be taken into account
 - Identifying observations that represent the forecast event
 ✓ *Example*: Precipitation accumulation over an hour at a point
 - For a gridded forecast there are many options for the matching process
 • Point-to-grid
 • Match obs to closest gridpoint
 • Grid-to-point
 • Interpolate?
 • Take largest value?
Matching forecasts and observations

• Point-to-Grid and Grid-to-Point

• Matching approach can impact the results of the verification
Matching forecasts and observations

Example:
- Two approaches:
 - Match rain gauge to nearest gridpoint or
 - Interpolate grid values to rain gauge location
 - Crude assumption: equal weight to each gridpoint
- Differences in results associated with matching:
 “Representativeness” difference
 Will impact most verification scores
Interpolation Examples

- Nearest Neighbor
- Distance Weighted Mean
- Least Squares
Matching forecasts and observations

Final point:

• It is not advisable to use the model analysis as the verification “observation”.

• Why not??

• Issue: Non-independence!!
Comparison and inference

Uncertainty in scores and measures should be estimated whenever possible!

– Uncertainty arises from
 • Sampling variability
 • Observation error
 • Representativeness differences
 • Others?

– Erroneous conclusions can be drawn regarding improvements in forecasting systems and models

– Methods for confidence intervals and hypothesis tests
 • Parametric (i.e., depending on a statistical model)
 • Non-parametric (e.g., derived from re-sampling procedures, often called “bootstrapping”)

Copyright 2015, University Corporation for Atmospheric Research, all rights reserved
Verification attributes

• Verification attributes measure different aspects of forecast quality
 – Represent a range of characteristics that should be considered
 – Many can be related to joint, conditional, and marginal distributions of forecasts and observations
Joint: The probability of two events in conjunction.

\[
\text{Pr (Tornado forecast AND Tornado observed)} = \frac{30}{2800} = 0.01
\]

Conditional: The probability of one variable given that the second is already determined.

\[
\text{Pr (Tornado Observed | Tornado Fcst)} = \frac{30}{50} = 0.60
\]

Marginal: The probability of one variable without regard to the other.

\[
\text{Pr(Yes Forecast)} = \frac{100}{2800} = 0.04
\]
\[
\text{Pr(Yes Obs)} = \frac{50}{2800} = 0.02
\]

<table>
<thead>
<tr>
<th>Tornado forecast</th>
<th>Tornado Observed</th>
<th>Total fc</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>yes</td>
<td>30</td>
</tr>
<tr>
<td>no</td>
<td>yes</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Total fc</td>
<td>100</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>2680</td>
</tr>
<tr>
<td></td>
<td>Total obs</td>
<td>2700</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Total obs</td>
<td>2750</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>2800</td>
</tr>
</tbody>
</table>
Verification attribute examples

• Bias
 - (Marginal distributions)
• Correlation
 - Overall association (Joint distribution)
• Accuracy
 - Differences (Joint distribution)
• Calibration
 - Measures conditional bias (Conditional distributions)
• Discrimination
 - Degree to which forecasts discriminate between different observations (Conditional distribution)
Miscellaneous issues

• In order to be *verified*, forecasts must be formulated so that they are *verifiable*!
 – **Corollary**: All forecasts should be verified – if something is worth forecasting, it is worth verifying

• Stratification and aggregation
 – Aggregation can help increase sample sizes and statistical robustness but can also hide important aspects of performance
 ✓ Most common regime may dominate results, mask variations in performance.
 – Thus it is very important to *stratify results into meaningful, homogeneous sub-groups*
Some key things to think about ...

Who...
- ... wants to know?

What...
- ... does the user care about?
- ... kind of parameter are we evaluating? What are its characteristics (e.g., continuous, probabilistic)?
- ... thresholds are important (if any)?
- ... forecast resolution is relevant (e.g., site-specific, area-average)?
- ... are the characteristics of the obs (e.g., quality, uncertainty)?
- ... are appropriate methods?

Why...
- ... do we need to verify it?
Some key things to think about…

How…
– …do you need/want to present results (e.g., stratification/aggregation)?

Which…
– …methods and metrics are appropriate?
– … methods are required (e.g., bias, event frequency, sample size)
Resources

Verification Methods FAQ:

Verification Discussion Group:
Subscribe at
http://mail.rap.ucar.edu/mailman/listinfo/vx-discuss